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An optimal predictive control approach for the suppression of thermo-acoustic 
instabilities in the combustor chamber is investigated. The approach uses the combustor 
pressure fluctuations and fuel modulation data for building internal dynamic input-output 
models and designing the controller. The knowledge of the physical model of the system is 
not required.  This data-based nature of the approach is therefore useful for rapid 
prototyping to different geometries and new configurations without having to spend time in 
developing the physical models. The control approach is capable of rejecting unknown 
periodic disturbances to the system in an implicit manner.  This capability is critical in 
stabilizing the pressure fluctuations in the combustor system, which is characterized by a 
very high noise to signal ratio.  The simulation results illustrating the success of the control 
approach in stabilizing the pressure fluctuations are presented. 

I. Introduction 
Reduction of nitrous oxide (NOx) from commercial aircraft engines during take-off and landing has received 

significant attention in recent years. Lean combustion provides a direct way for reducing the NOx emissions and is 
therefore being actively researched in that context. Running the combustor lean, however, leads to thermo-acoustic 
instabilities which can ultimately result in stalling the engine. Several authors have looked at active control of the 
fuel flow rate as a means of stabilizing the combustor operation in this lean mode.1-6 Recently an adaptive instability 
suppression control method has been evaluated experimentally in a successful manner.7 The phase of the fuel flow 
with respect to the combustor pressure is continuously adapted to control the pressure oscillations.  

In this work we illustrate an optimal predictive control approach that uses the combustor input-output data 
corresponding to the fuel flow rate and combustor pressure to design a dynamic input-output feedback controller. A 
major advantage of this control approach lies in its capability to reject disturbances and noise in an implicit manner. 
8 One of the big problems in combustor control lies in the noise to signal ratio being very high. The dynamic input-
output feedback controller is successfully able to control the combustor pressure with this high noise to signal ratio. 
Further having designed the controller, it does not need to be adapted to control the system if the system or the 
operating conditions remain unchanged. One of the concerns while running the combustor lean is to be able to 
control it in different operating conditions. We illustrate that the current approach can be easily used to re-compute 
the control gains for simulated changes in the system dynamics. 

In section 2, we describe the optimal predictive control approach. We use the same model used in Ref. [7] to 
illustrate our control approach. Section 3 describes this model. Section 4 presents the simulation results using the 
optimal predictive control approach and re-computation of the control gains to handle model changes for different 
operating conditions. 
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II. Control Approach 
A traditional control approach involves two steps: estimating the state of the system from the given system input-

output data and using this information of the estimated state to design a state feedback control. Both these steps 
implicitly assume the knowledge of the model of the system, which may not be available for a complex engineering 
system such as the engine combustor. A model derived from physical principles, even if available, can show 
significant differences from the working physical system, which can lead to errors in the control design. A data-
based approach, on the other hand, strives to design an input-output dynamic feedback controller directly from the 
system input-output data. A performance-seeking controller can be designed reliably for the problem under 
consideration. The existence and stability of this control design depends on basic minimum requirements such as the 
guarantee of system observability and controllability. Phan and Juang have illustrated the use of such predictive 
controllers for feedback stabilization.8 Phan, Lim and Longman9 as well as Kulkarni and Phan10 have illustrated 
these data-based approaches and their relation to the state-feedback control design.  

Every engineering system is subjected to unknown disturbances, depending on the nature of its operation. 
Handling these in a real environment can lead to further complexities in the control design. Phan, Juang and Eure 
have illustrated the applicability of the dynamic input-output data-based approaches for simultaneous feedback 
stabilization and disturbance rejection.11 The appealing nature of this new approach lies in that it involves no new 
conceptual changes to the original approach presented in Ref. [9]. The only difference lies in the data length needed 
for the feedback control design. Recently Darling and Phan have illustrated the theoretical details of this approach 
for successful disturbance rejection.12  

From a practical standpoint, this approach is very appealing for two reasons. One is that they bypass the state 
estimation step, which can provide big error reductions depending on the accuracy of the system modeling. The 
second appealing character is that it provides a performance seeking controller which leads to an overall optimal 
design. 

The present analysis follows the theory established in Refs. [9,12]. To illustrate the optimal predictive control 
approach, consider a linear time invariant system 

 ( 1) ( ) ( )k k k+ = +x Ax Bu , (1) 

where A  and B  are the state and control transition matrices of the system. We assume that the state ( )kx  is n 
dimensional and the control ( )ku  is m dimensional. 

We can write the future states of the system in terms of the present state and the present and future control 
values. 

 1( ) ( ) ( ) ... ( 2) ( 1)i ik i k k k i k i−+ = + + + + − + + −x A x A Bu ABu Bu  (2) 

To help us with the notations, we define a supervector, ( )
s

kz  for a vector z  as the concatenation of its value for 
s time indices starting from time index k. 
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Thus we can write Eq. (2) using the supervector notation as 

 1( ) ( ) ( )i i

i
k i k k−+ = + � �� �x A x A B AB B u�  (4) 

Let the system output be given by an l dimensional vector y. So the output equation can be given as 

 ( ) ( ) ( )k k k= +y Cx Du  (5) 



Translating the index by i steps, we can write, 

 ( ) ( ) ( )k i k i k i+ = + + +y Cx Du  (6) 

Substituting Eq. (4) in Eq. (6), we get 
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Eq. (7) can be translated for indices 0 through q-1 to get 
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which can be written in a concise form as 

     ( ) ( ) ( )
r r r r

k k k= +y O x T u   (9) 

where 
r

O  is the system observability matrix and 
r

T  is the Toeplitz matrix consisting of system Markov parameters.  

Premultiplying Eq. (4) by 
r

O  gives 

 1( ) ( ) ( )i i

r r r i
k i k k−+ = + � �� �O x O A x O A B AB B u�  (10) 

Let 
i

C denote the controllability matrix, 

 1i

i

−= � �� �C A B AB B�  (11) 

Let us assume that we have a matrix, MI , called the interaction matrix of an appropriate dimension such that 
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For il > n, we can always guarantee the existence of the matrix MI  for an observable system, which satisfies the 
relation 

 ( )i

r i
+ =MO A I O 0  (13) 

So we can write 



 ( ) ( ) ( ) ( )
r r i i i i

k i k k+ = + −M MO x O C I T u I y  (14) 

Translating the index by i and substituting the dummy variable i by q, 

 ( ) ( ) ( ) ( )
r r q q q q

k k q k q= + − − −M MO x O C I T u I y  (15) 

Substituting in Eq. (9), 
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To illustrate the details, we can write Eq. (16) in an expanded form as 
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Eq. (17) illustrates that the system dynamics for a linear system can be represented using the system inputs and 
outputs alone. Specifically the present and future outputs of the system depend on the past inputs and outputs of the 
system and the present and future inputs to the system. The condition for the existence of the interaction matrix 
depends on the size of the scalar q.  

 ql n≥ , (18) 

Let us now consider that the system represented by Eq. (1) is excited by external disturbances. So the system 
dynamics are now represented as 

 ( 1) ( ) ( ) ( )k k k k+ = + + dx Ax Bu B d  (19) 

Ref. [12] proves that if the disturbance d  can be represented by a discrete number of cyclic frequencies, the 
system dynamics can again be represented as a dynamic input-output model. 
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q q

k k q k q k−+ = − + + − + +y yu yy A y A u B u  (20) 

The condition on the data length q is now given equivalent to Eq. (18) as 

 2 1ql n f> + +  (21) 

where f corresponds to the number of distinct frequencies in the external disturbance. So the disturbance information 
is subsumed in the dynamic input-output model and the disturbance signal does not appear explicitly in the system 
equations. Eq. (21) again corresponds to a one-step model. We can also obtain a r-step ahead model equivalent to 
Eq. (17) given by 

  1
( 1) ( 1) ( 1) ( )

r r q r q r r
k k q k q k−+ = − + + − + +y yu yy A y A u B u  (22) 

q therefore corresponds to a design variable and by choosing a large enough value, we can always satisfy Eq. 
(21). 

Now consider minimizing a cost-to-go function in terms of system inputs and outputs  
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where the cost weighting matrices ryQ  and ryR are given as 
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Define a vector ( )qk q−v  as 

 ( ) ( ) ( )
TT T

q q q
k q k q k q− = − −� �� �v u y  (25) 

Define matrix 
rvA  as 

 [ ]r r r
=v yu yA A A  (26) 

Substituting Eq. (22) with the definitions given by Eqs. (25-26), in Eq. (23) we get 
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Implementing the optimality condition, 
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we get 
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If the optimal gain matrices are given by 1 2, , ...,
r

∗ ∗ ∗

y y yG G G  where, 

 ( 1) ( )
i q

k i k q∗ ∗+ − = −yu G v  (30) 

then the optimal gains can be found by comparing Eqs. (29) and (30). 
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In the system implementation we use the first gain matrix to compute the control 

 1( ) ( )
q

k k q∗ ∗= −yu G v  (32) 

To compute the gains using input-output data, we extract the matrices 
rvA  (

ryuA  and 
ryA ), and 

ryB . The 
remaining matrices in Eq. (31) involve the output and control weighting matrices in the cost-to-go function that are a 
design choice.  

Using the expanded form Eq. (22), we can write 
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This represents one data sample for Eq. (33). We can write Eq. (33) for multiple data samples as 
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We define the data matrices in Eq. (34) as 
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We can therefore write Eq. (33) as 
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The system matrices, 
ryuA , 

ryA , and 
ryB , can now be computed by inverting Eq. (35) as 
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Substituting these matrices in Eq. (31) we can compute the control gains. 

III. Combustor System Model 

 
We use the combustor instability simulation model used in Ref. [7]. This model has been updated to model the 

high frequency instability typically observed in the combustor. Original work modeled low frequency instability for 
the system.13 Figure 1 illustrates the closed loop block diagram of the system with its different feedback structures. 
We have substituted the adaptive sliding phasor averaged control (ASPAC) algorithm that was used to control the 
combustor instability with the data-based predictive control algorithm described in section 2. The figure illustrates 
the self-sustained oscillations loop (

F
G ,

A
G , NL) and the controller with the fuel valve actuation. In this closed loop 

simulation, the overall combustor pressure is expressed as the sum of the instability pressure generated by the self-
excited flame and acoustics loop, and the pressure caused by the controller actuated fuel modulation. The gain and 
damping for the reduced-order model of this high frequency combustor simulations remain the same as the previous 
low frequency simulations [13]. The frequencies were changed to simulate the high frequency instability. The 
sampling time of 10 kHz was selected to reflect the sampling frequency of the test hardware, which defines the 
controlled phase resolution. Given the choices of damping and sampling time this simulation is numerically unstable 
(limited by the saturation nonlinearity NL), which means the open-loop response also depends on the sampling time. 
Numerical instability is not an undesirable feature with this simulation, as long as the results are repeatable. The 
purpose of the nonlinearity (NL) is to provide a soft limit for the instability. Soft limit implies that the amplitude of 
the instability will be limited when no forcing is applied, but also the amplitude can grow when forcing or fuel 

Figure 1: Combustion instability control block diagram (adapted from Ref. [7]) 



modulation is applied. Without NL, and due to the low damping and the numerical instability, the amplitude of the 
simulated combustor instability will grow unbounded.  

The noise level was adjusted based on the averaged wideband noise of the experimental combustor rig which 
produced averaged noise that was approximately 7 to 10 times higher than the instability. As before, two identical 
band pass filters are placed in series in the feedback path. These filters achieve two objectives: 1) filtering out the 
process and sensor noise; and 2) representing the dead-time phase shift in the combustion process. Normally, the 
time delay associated with the delivery, injection, atomization, vaporization, and burning of the fuel would be 
included in the deadtime phase shift of the plant. However, for convenience, this dead-time phase shift has been 
included in the feedback path. Note: From block diagram this is not a standard feedback control system. The filter 
structure and attenuation characteristics for the HF case are the same as in Ref. [19], only the band pass frequency 
has been updated. Based on that, the state space model of the HF band pass filter used in the simulation, with a 
passband frequency of 510 to 640 Hz, is given as 
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 (37) 

f
x  represents the internal state of the filter, 

uf
y represents the unfiltered signal and 

f
y represents the filtered 

signal. 
 

IV. Simulation Results 
 
 

 
 
The model with the feedback control loop given in figure 1. is coded using Simulink. Figure 2 illustrates the 

Simulink block diagram for the control implementation. The terms _y_flippedG and _u_flippedG correspond to the 
gain matrices resolved from the optimal gain matrix 1

∗

yG as given in Eq. (32), for the output and input terms, with 
their coefficients flipped to  match with the pole-zero notation for the discrete transfer function. 

 
 
 

Figure 2: Combustor system input output closed-loop Simulink architecture 



A. Open-loop Behavior 
 
Figure 3 shows the open loop behavior of the system along with the noise characteristics used in the simulation. 

The open loop behavior illustrates the unstable nature of the combustion dynamics. If uncontrolled, these pressure 
fluctuations can easily lead to flame-out. For the open-loop simulation, the feedback loop in figure 2 is removed. 

 

B. Closed-loop Behavior 
 
Figure 4 shows the closed loop response of the system using the data-based predictive control approach. For the 

initial 0.03 seconds, a random control profile is given to excite the system after which the designed controller takes 
over. Figure 5 shows the control response. The figures illustrate that the designed controller is successfully able to 
stabilize the pressure instability in the combustor. The average magnitude of the applied control is found to be 
similar to that obtained in Ref. [7]. The design variables for the controller correspond to the past data length q and 
the future predictive data length r. These are chosen to be 125 and 75 respectively.  
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Figure 3: a) Open-loop response from the system b) Noise profile 
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Figure 4: Closed-loop response with the data-based predictive feedback controller 



 

C. Re-computation of controller gains for modeling errors/changes in operating conditions: 
 
During operation, the combustor goes through different operating conditions as the engine is taken through the 

entire flight envelope. The designed controller works well when designed using system input-output data that 
reflects the operating condition of the combustor. However it may need to be adapted to cover the entire operating 
envelope of the combustor. We illustrate re-tuning the controller by re-computing the controller gains while the 
system is in operation. The controller gains are computed in the same manner as in the closed-loop case after storing 
sufficient system input-output data. To illustrate differing operating conditions we change the damping ratios and 
the natural frequencies of the system.  

 
Figure 6 illustrates the adaptation that is carried out while the system is operating. For the first 0.05 seconds, a 

random control profile is given to the system, then the control is given by the data-based predictive controller 
designed based on the data given by original model till 0.1 seconds. At t = 0.1 seconds, the controller re-computes 
the control gains after which we see the output profile based on this new adapted control profile. We see that even 
though the original controller tries to reduce the pressure fluctuations, the adapted controller gives a much better 
pressure profile and is able to suppress the fluctuations.  
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Figure 6. Pressure profile with the randomized, nominal and the adapted controller 
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Figure 5: Fuel control command given by the data-based predictive controller 



V. Conclusion 
In this work we applied the data-based predictive control approach to control the thermo-acoustic instability in a 

liquid fueled combustor. The approach is successfully able to control the pressure fluctuations while being restricted 
by the system noise. Given combustor input-output test data, the controller can be designed in an offline setting.  
This controller may be valid for a particular operating condition and may not be able to stabilize the pressure 
fluctuations across the entire flight envelope. Similarly there could be degradations in the physical system. These 
reasons motivate an adaptive element in the original design. We illustrate a simple gain re-computation during 
system operation after collecting the system input-output data that reflects changes in the system behavior. However 
this approach may be realistically inappropriate based on the time involved in re-computing the control gains. Future 
research will investigate combining this data-based predictive control approach with various adaptive approaches 
that can update the control gains in a conservative yet rapid manner.  

The current illustration has looked at the combustor system that has a single fuel flow actuator and a single 
pressure gauge sensor. Future combustor designs will include multiple fuel flow actuators for producing uniform 
combustion profiles in the combustor. Similarly there can be multiple pressure gauge sensors to monitor the 
combustion process accurately. Model based control designs would need re-modeling of the combustion process, 
which, can get very complex especially with multiple fuel flow actuators. However the data-based control design 
that we have presented can be directly applied to multiple actuator multiple sensor combustors without any 
modifications of the equations presented in this work. This constitutes a major advantage of this control approach. 
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