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Airline fleet assignment involves the allocation of aircraft to a set of
flights legs in order to meet passenger demand, while satisfying a variety
of constraints. Over the course of the day, the routing of each aircraft
is determined in order to minimize the number of required flights for a
given fleet. The associated flow continuity and aircraft count constraints
have led researchers to focus on obtaining quasi-optimal solutions, especially
at larger scales. In this paper, the authors propose the application of an
agent-based integer optimization algorithm to a “cold start” fleet assignment
problem. Results show that the optimizer can successfully solve such highly-
constrained problems (129 variables, 184 constraints).

Introduction

SCHEDULE development, a crucial aspect of prof-
itable airline management, involves many steps,

including schedule design, fleet assignment, aircraft
routing, and crew pairing.1 In this project, we assume
that schedule design has been finalized; the focus is
on fleet assignment, that is the assignment of avail-
able aircraft to the scheduled flights, and on aircraft

routing, the sequence of flights to be flown by each
aircraft throughout the day (Figure 1). Typical fleet
assignment objectives include minimizing assignment
cost or maximizing the profit from each flight. In our
case, due to the absence of an airline revenue and cost
model, the objective is to meet the passenger demand
throughout the day with a minimum number of flights
for a given fleet.

Fleet assignment problems can be classified as ei-
ther “warm start”, in which case an existing assign-
ment is used as a starting point, or “cold start”,
in which only the fleet size, aircraft types, and pas-
senger demand are known.2 Fleet assignment and
aircraft routing problems have been solved using var-
ious optimization methods, including integer linear
programming,3,4 neighborhood search,5 and genetic
algorithms.6

An alternate approach pursued here is to distribute

∗Doctoral Candidate, AIAA Student Member.
†Doctoral Candidate, AIAA Member.
‡Professor, AIAA Fellow.
§Senior Research Scientist.

Schedule Design
 Fleet Assignment


Aircraft Routing
Crew Pairing


Fig. 1 Airline Schedule Development

the optimization among agents that represent, for ex-
ample, members of the fleet or the airports in the
network. Formulating the problem as a distributed op-
timization allows for the application of techniques from
machine learning, statistics, multi-agent systems, and
game theory. The current work leverages these fields
by applying Collective Intelligence (COIN) to the fleet
assignment problem. COIN techniques have been suc-
cessfully applied to a variety of distributed optimiza-
tion problems including network routing, computing
resource allocation, and data collection by autonomous
rovers.7–9

The next section of the paper details the formulation
of the optimization problem. This is followed by a de-
scription of the COIN framework. Finally, results from
an example fleet assignment problem are presented.

Problem Statement

The objective is to determine the aircraft routing
and resident fleet size at each airport that minimizes
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Fig. 2 The 9-airport, 20-arc problem.

the number of flights while meeting demand. The
9-airport, 20-flight directed arc sample problem (Fig-
ure 2) is used to demonstrate the performance of the
approach. The passenger demand on each arc is given
as a function of time (determined as part of the sched-
ule design). The day is split into six 4-hour segments.
It is assumed that each arc can be flown and the
aircraft turned around in one time segment. The op-
timization problem is as follows:

Minimize: Number of flights
Variables: Number of aircraft on each arc

Resident fleet at each airport
Constraints: Passenger demand

Assignment continuity
Resident fleet conservation
Total fleet size

The two types of variables are: ui,j , the number
of aircraft assigned to flight arc i at time segment j
and vk, the number of resident aircraft at airport k.
The resident fleet is the number of airplanes at each
airport at the start and end of the day, which must
be the same to repeat the schedule the next day. The
allowable ranges for the variables are :

0 ≤ ui,j ≤ 12

0 ≤ vk ≤ 30

The objective function can be written as:

min
ui,j ,vk



G =
∑

i,j

ui,j





There are 20 arcs and 6 time segments in this prob-
lem, which, with 9 airports, results in a total of 129
variables. Constraints are required to ensure that pas-
senger demand Di,j is met in full by capacity Ci,j for
each arc, at each time segment. There are 20 arcs and
6 time segments, for a total of 120 passenger demand
constraints. For these constraints to be satisfied:

−Ci,j +Di,j ≤ 0

with:
Ci,j = 100 · ui,j

While the framework supports multiple aircraft mod-
els, in this example problem the fleet is composed of
a single aircraft type with a capacity of 100 passen-
gers. Assignment continuity ensures that an airplane
can only be assigned to an arc if an airplane is avail-
able at the originating airport. With 9 airports and 6
time segments, 54 continuity constraints are included.
Defining Sk,j as the state of the fleet at airport k at
the beginning of time increment j, we require:

−Sk,j ≤ 0

where:

Sk,j = Sk,j−1 +
∑

i

Mk,i · ui,j +
∑

i

Nk,i · ui,j−1

The M matrix is used to tally outbound aircraft for
each airport during a time segment. Likewise, N is
used to determine the inbound aircraft to be added to
an airport pool. For example, for our 9-city, 20-arc
case:

M =

AB AC . . . BA . . . IE

A -1 -1 . . . 0 . . . 0

B 0 0 . . . -1 . . . 0

C 0 0 . . . 0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

I 0 0 . . . 0 . . . -1

N =

AB AC . . . BA . . . IE

A 0 0 . . . 1 . . . 0

B 1 0 . . . 0 . . . 0

C 0 0 . . . 0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

I 0 0 . . . 0 . . . 0

The resident fleet size SIk at each airport k must equal
the number of airplanes SFk at the end of the day so
the schedule can be restarted the following day. In
equation form, we require:

−SIk + SFk ≤ 0

with:
SIk = vk

SFk =
∑

i

Nk,i · ui,jfinal

The airports in this sample problem contribute 9 res-
idence fleet constraints. Finally, the total fleet size F
is enforced using:

∑

k

SIk − F ≤ 0

This results in a total of 184 constraints.
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Collective Intelligence

Collective Intelligence (COIN) is a framework for
designing a collective, defined as a group of agents
with a specified system-level objective. Selecting the
right types of agents can significantly accelerate con-
vergence. In the case of the fleet assignment problem,
two types of agents were chosen. These match the two
types of variables: the first is the number of airplanes
assigned to each route for each time segment, and the
second is the size of the resident fleet at each airport.
The COIN solution process consists of the agents

selecting actions (a value from the decision space) and
receiving rewards based upon their private utility func-
tions in order to determine their next choice of action.
The process reaches equilibrium when the agents can
no longer improve their rewards by changing actions.
Product Distribution (PD) theory formalizes and

substantially extends the COIN framework.10–12 In
particular PD theory handles constraints,13 a necessity
for problems such as fleet assignment. The core insight
of PD theory is to concentrate on how the agents up-
date the probability distributions across their possible
actions rather than specifically on the joint action gen-
erated by sampling those distributions.

Basic Formulation

Consider the unconstrained optimization problem,

min
~x

G(~x)

Assume each agent sets one component of ~x, that
agent’s action. Define the Lagrangian Li(qi) for each
agent as a function of the probability distribution
across its actions,

Li(qi) = E[G(xi, x(i))] − T S(qi)

=
∑

xi

qi(xi)E[G(xi, x(i))|xi] − T S(qi)

where G is the world utility (system objective) which
depends upon the action of agent i, xi, and the
actions of the other agents, x(i). The expectation
E[G(xi, x(i))|xi] is evaluated according to the distri-
butions of the agents other than i:

P (x(i)) =
∏

j 6=i

qj(xj)

The entropy S is given by:

S(qi) = −
∑

xj

qi(xj) ln qi(xj)

Each agent then addresses the following local opti-
mization problem,

min
qi

Li(qi)

s.t.
∑

xi

qi(xi) = 1, qi(xi) ≥ 0,∀xi

The Lagrangian is composed of two terms weighted
by the temperature T : the expected reward across i’s
actions, and the entropy associated with the probabil-
ity distribution across i’s actions. During the mini-
mization of the Lagrangian, the temperature provides
the means to trade-off exploitation of good actions
(low temperature) with exploration of other possible
actions (high temperature).

The minimization of the Lagrangian is amenable to
solution using gradient descent or Newton updating
since both the gradient and the Hessian are obtained in
closed form. Using Newton updating and including the
constraint on total probability, the following update
rule is obtained:13

qi(xi)← qi(xi)
−qi(xi)[

1
T
(E[G|xi]−E[G]) + S(qi) + ln qi(xi)]

Role of Private Utilities

Performing the update requires estimating the ex-
pected utility of the agents. This is accomplished
through Monte-Carlo sampling, with the agents gen-
erating actions according to their current probability
distributions. Since accurate estimates usually require
extensive sampling, the private utility is altered from
G to ensure that the sampling results in estimates
which have low bias and variance.14

Intuitively bias represents the alignment between
the private utility and world utility. With zero bias,
updates which reduce the private utility are guaran-
teed to reduce the system objective. It is also desirable
for an agent to distinguish its contribution from that
of the other agents: variance measures this sensitiv-
ity. With low variance, the agents can perform the
individual optimizations accurately without too much
Monte-Carlo sampling.

Two private utilities were selected for use in the fleet
assignment problem, Team Game (TG) andWonderful
Life Utility (WLU). These are defined as:

gTGi
(xi, x(i)) = G(xi, x(i))

gWLUi
(xi, x(i)) = G(xi, x(i))−G(CLi, x(i))

For the team game, the local utility is simply the
world utility. For WLU, the local utility is the world
utility minus the world utility with the agent action
“clamped” by the value CLi. Here the clamping value
fixes the agent action to its lowest probability action.10

Both of these utilities have zero bias. However, due to
the subtracted term, WLU should have much lower
variance than TG.10

3 of 5



Time Segment

Arc 1 2 3 4 5 6

AB 100 200 200 200 100 100

AC 200 100 100 100 200 200

AD 200 200 200 200 200 200

AE 400 600 800 800 600 400

AI 100 100 200 100 100 100

BA 100 100 200 200 200 100

CA 200 200 100 100 100 200

DA 200 200 200 200 200 200

DE 200 200 200 200 200 200

EA 400 600 800 800 600 400

ED 200 200 200 200 200 200

EF 100 0 100 100 100 100

EG 100 100 100 100 100 100

EH 200 200 200 200 200 200

EI 100 100 100 100 100 100

FE 100 0 100 100 100 100

GE 100 100 100 100 100 100

HE 200 200 200 200 200 200

IA 100 100 100 100 100 100

IE 100 100 100 100 100 100

Table 1 Passenger demand for each arc as a func-
tion of time.

Incorporating Constraints

The approach outlined above can be extended to
constrained problems by augmenting the world util-
ity with Lagrange multipliers, βj , and the constraint
functions, cj(~x),

G(~x)→ G(~x) +
∑

j

βjcj(~x)

where the cj(~x) are non-negative. In the constrained
implementation, the individual agents search for dis-
tributions which minimize the augmented objective
function. Private utilities have the same form as before
with the substitution of the augmented world utility.
The update rule for the Lagrange multipliers is found
by taking the derivative of the augmented Lagrangian
with respect to the Lagrange multiplier, giving:

βj ← βj + E[cj(~x)]

Results

The 9-city, 20-arc fleet assignment problem was
solved using the PD theory framework. The problem
features a time-dependant, asymmetric demand struc-
ture as shown in Table 1. The demand requires 228
flights, yielding an objective of 51,984. The minimum
fleet size was found to be 45 aircraft.

To enhance the convergence speed, the objective was
squared, effectively dramatizing the topology of the
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Fig. 3 Comparison of convergence with two pri-
vate utilities (200 Monte Carlo samples).

problem:

min
ui,j ,vk



G = (
∑

i,j

ui,j)
2





In order to capture the stochastic nature of the ap-
proach, the optimization was repeated 20 times. The
figures show averages and ranges for the minimum ob-
jective in each block of Monte-Carlo samples. Each
iteration is an update to the probability distributions
using a single block of Monte-Carlo samples.

The importance of selecting the appropriate private
utility is shown in Figure 3. For each utility, the best
temperature was selected, 10 for WLU and 1000 for
TG. The results show that WLU performs consider-
ably better than Team Game. This is consistent with
previous applications of COIN.9

As illustrated in Figure 4, the number of Monte
Carlo samples between updates affects the rate of con-
vergence. In almost all cases, 50 samples were not
sufficient to find the minimum objective. With 200
samples, the minimum was found in 18 of 20 cases.
Increasing the number of samples to 1000 resulted in
all cases converging to the minimum.

Similarly, selecting the correct temperature influ-
ences the optimization process (Figure 5). A low
temperature (T=1) did not allow enough exploration,
while a high temperature (T=100) slowed convergence.
For this example, a moderate temperature (T=10)
offered the best trade-off between exploration and ex-
ploitation. In particular, the case with the lowest tem-
perature rapidly converged to an infeasible minimum.
The objective then grew as the Lagrange multipliers
increased. The optimizer, at this low temperature, is
unable to explore other regions of the design space.

4 of 5



0 10 20 30 40 50
5

5.5

6

6.5

7

7.5
x 10

4
O

bj
ec

tiv
e

Iterations

50 MC samples
200 MC samples
1000 MC samples
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Fig. 5 Effects of temperature on convergence (200
Monte Carlo samples, WLU, 20 runs).

Conclusion

A collective-intelligence framework was successfully
applied to a sample fleet assignment problem and
yielded optimum solutions. With the basic framework
proven to handle highly-constrained design spaces, a
fleet assignment problem of more realistic size can
be approached. The function evaluation was care-
fully formulated to allow for scalability and automa-
tion, and features such as transfer passengers, environ-
mental considerations, and maintenance visit require-
ments can be implemented. Exploring other types of
agents (perhaps airports or flight arcs) and develop-
ing problem-specific local utilities may also yield faster
convergence rates and require fewer Monte Carlo sam-
ples.
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