spects, Wrappers and Events

n Robert E. Filman

esearch Institute for Advanced Computer
Science

NASA Ames Research Center

rfilman(@mail.arc.nasa.gov

Tallk Overview

spective

% Object Infrastructure Framework (OIF)
— A system devélop to simplify building distributed

applications llowing independent implementation of
multiple concerns I .

“ Aspect-Oriented Progra}nming (AOP)

— Mechanisms for independent implementation of
multiple concerns

% Quantification over Events
— Current work on “most general” AOP technologies

"Distributed Computing

ibuted sy is difficult
— Hard chi ams W mat?c?“'

properties, e.g.: F ™ . 2

* Reliability

- Security

« Manageabilit b

« Quality of Service '

» Scalability

— Distribution is complex
« Concurrency is complicated
 Distributed algorithms are difficult to implement
* Every policy must be realized in every component
- Existing frameworks are difficult to use

U

=

—
| 3 b

Requirements

L | ‘*‘»“ ‘Q‘
irements

— Real e g code " |f|c\l'ace
» Systematic requirements
= Requiremenia hievable by h ;-,_ . hawor

throughout a system

» Combinatorial requﬂ‘emnts

— Requirements that emerge as a measurable
property of the system as a whole

+» Aesthetic requirements

— Requirements that require human judgment to
decide if they’re satisfied

Terminology

s abou

— Cros . q C i .
- Aconcern /hose cc 2S W er behavior in a system
« Crosscutting is a functic organization and environment
Policy _ : o % AT
— A “way of doing‘ngs” that is to'l realizéd%hroughout a

system | [y
11147
— A desirably overall property of a software system
Systematic behavior
— A behavior seen throughout a system

Non-functional requirement

— A requirement for a system that is not localized to a particular
point in the system

Aspect
— The code that realizes a concern

Q unctzonal and Non-Functw)
E Reﬁtrements

oRal. __ No a1 (lity):

- - Avallablhty Rehablhty

5 ' ¥ s
- Func. Req 4 - Manageablhty M
x X J/
s ¥ SN "¢ a \ ¥ ¥

Functional requirements llity requirements map
map to specific components almost everywhere
l?gnction 1 < Function 3
& ility support\ & ility support
Function 2 Function 4

& ility support & ility support

Services and llities

Tty requirements

Manageabilit Avallablhty Rehablhty
Services: /
Authentlcatlon Fault Detectlon_|—| Queue Mgmt. Rephcatlon
I | I | |
Encryption Resource Reservation_l—l Transactions _|—|
I I T T
| | ~

Tracing & Audit _|-|

+ llity requirements are implemented by combinations

of service algorithms.
+» Supporting ilities involves a complex selection from

sets of alternative service algorithms.
+ IThe services must be invoked pervasively.

. TheProblem:

anagtngﬁte Servzce Spa -

ai-

e Compa le supy ility re ements
(security, con5|st ncy po siveness, etc.) is a

key componenz‘ntrat e oblef

+ llities Iimpose difficult upgrade requwements on
component subsystems

— Algorithms that support ilities are usually intertwined
with the subsystem functional logic.

— Separately developed subsystems may have chosen
different algorithms (for encryption, transactions, etc.)

Researeh Hypothesis

e ".l 4 4__- s
k=

llities can be achieved by inserting services into
the communication path between functional
components

— On both sides of the communication divide

Frameworks that automate service insertion can
systematically achieve non-functional
requirements

— Object Infrastructure Framework (OIF)

L Archltecture with Services in
' omponenﬂi’ommumcaao

Traditiona SL L >omponents:

Function 1 Function 3
& ility support & ility support

\ Function 2 N Function 4

& ility support & ility support

=
Separate service functionality from functional logic by inserting
the services into the communications paths among components.

Encrypt Decrypt
Function 1 > Function 3

Set Priority Queue Mgmt
Decrypt /
Encrypt Decrypt
Queue Mgmt.|[Function 2 > Function 4
IPass Priority] Queue Mgmt
Replication

L lStrtbutedCb]ect T echnolo 3

roc e g N

Messa se
Remote Procedure C
Object based. ' | . B
+ Distributed Obj tféchn ogy allows for OO

applications to b |mple;nent' using objects
that do not reside in the same address space (e.g..
machine).

— Key semantic of DOT is providing “location
transparency”.

+» CORBA: Objects provide services described in-an

Interface Definition Language (IDL)

— CORBA allows object-oriented applications to be written
in multiple languages.

Msing Stubs and Skeletons as Pro:

Server
application
object

A clie | et
a method i at N O
the stub.

The Stub “implemf_. ts®

the IDL defined interface
by being a proxy for the
actual implementation
object.

CORBA
skeleton

Network

Similarly, the Skeleton acts as a proxy for the client
application (from the implementation’s perspective).

The implementation object needs to have the actual
code for each method defined the IDL interface.

b
o,

& What do Prexies do for you2:

The s . Q
e Application ;
IDL c The

operatiol gu Buciiiil
put into a request obj "" CORBA
marshaled and passed o\ -
the network to the server
machine.

‘ Network

Marshaling handles all of the issues relating to
transmission and translation of the various data types.

The ORB on the server machine demarshals the
client’s request, and invokes the skeleton. The
skeleton calls the appropriate implementation object

method. The process is applied in reverse to the
return value.

IDEExample

module Bank {
exception overdraft {string msg;};

interface Account {
float balance() ;
float withdrawal (in float amount)
raises(overdraft) ;
oneway void deposit(in float amount)

};

interface AccountManager ({
Account open(in string name) ;
};
};

L Compiling Stubs and Skeletons

& e
e

3

T T
LT e
Tty

CORBA
IDL
Compiler

‘e
L]
L]
L]
....
L]
L]
L]
o,

Linked together to build
the distributed application

The IDL compiler produces both client-side stubs and

server side skeletons.

. Distributed Object Proxies

i’ ’: L.
» Y i e e
". e -] I . .- rl_.":! i -

— Pro ok ;ation trar oy S
— Hide details of communication protocols

» What they domofdo:

— Handle partial failures (reliability).
— Security related issues.

— Quality of service issues.

OIF Challenge: Can we leverage the “proxy”
design to address these missing characteristics?

AN

¢ KepOIF Ideas

'<_ Injecting behavior cation paths
mponents. . .' 4

e

| ec crete, djects
— Injectors are by object/n T
— Injectors are d ically configurable

-
—
el

" e, gjca ‘allow injected
services to pass parameters to service peers

(e.g., message priority, user-id, tracing status)

preserve annotations through
calls

High-level specification language for
describing desired injections

Conﬁgﬁmble Proxies

Client Server

| ¥

Reliability I
Authenticate I
Retry I

Management

RN
Reliability

Check auth. I
Quality of Service I

Management

CORBA
Skeleton

Network

< OIF’s injectors can operate in pairs (e.g., encrypt/decrypt;
request authentication/authenticate) or singly (e.g., retry on
failure; log results)

- Configuration is by proxy/method instance

o-€onfiguration is dynamic

Injector Invocation

Client Side Server Side

E

Server

[

Queue

Client

L1

Log

before after

I

Authorize

before after

v

Authenticate

before after

v

before after

I

Encrypt Decrypt
/ before after before after
injector.exec(request) { Dieieiahel
... before logic Marshal ~
doNext (request); T
... after logic
return;

Annotations

— Injec [unicate ¢ emselves
» e.g., passing the us hentica d session
information ' -

% _ ; ._ -

<+ Solution: ‘\

.

— Add additional meta-information, annotations, to
communications
* Reify communications

« Annotations are name-value pairs
— Names are strings
— Values are “any’s

— Injectors can read and write annotations.

A g

Thread Contexts

Prc 1 ;
— The a atl D CO nmi
Injecto s L e 4 e
* e.g., setting the priorit a request” L
— Don’t want to change the client interface to the IDL
- Can’t add additional argume function calls
Solution: L ¥ |
— Provide annotations for user threads---the thread
context

— Copy information between request annotations and
thread contexts

» Declarations control which information is copied at each
juncture

Benefit:

— Contextual information propagates through a series of
calls

. Propagating Annotations 3

Application Application Application
Component A 1 ComponentB Component C
Context Context Context

' Proxy I Proxy |
2 AR

Ann—Cntxt CntxteAnnl AnneCntxtl Cntxt-Ann 9
| _
| |
—
A A

R

When object A makes a call on method m in Object B, it’s thread
context is copied over into the annotation of the request.
After creating the thread to serve A’s request, the annotations of the

request are copied to that thread’s context

B calls method n on C. This process is repeated for B’s calls when
handling that request. Thus, an annotation (e.g., priority) set in A is
carried over through B to C.

Injector Features

» Ab tate mett ents and
return ve |

Ability to pass meta-data (property sets) between
themselves to coordinate their behavior.™

» Access to COR‘A’S" DIl and DSI services

A

— Access/modify function arguments, return value

— Change “target” of request (load balancing, reliability)
Fully capable code module.

— Can be multi-threaded.

— Can access other objects/services

— Throw/catch exceptions

. Injector-enabled services

repeti T equests an es “dela
call by value.” ™ |

+ Serialization of arriving'requests reduces cognitive
load on applicati‘g\n develope Sy

% "
+ Reified requests allow reasoning about priorities

+» Targets allow application components to invoke
logical destinations rather than a specific object (so
injected services can do load-balancing, replication,
transaction processing, redirection, etc.)

+ Futures enable asynchronous interaction between
application components while writing synchronous
code.

IIitis must be grounded in the reality of invoking

actual services
Sayinma

+ Rather, you have to deci
if you B |

— Encrypt all comm .nicatim%s using { 64|128|3 } bit { DES |
RSA | ROT-13} -
— Check the user’s H)assword | finﬁerprints | DNA } for {

every | occasional } access to { all | only sensitive }
methods

— Recognize intrusions that { come from strange sites | try a
series of passwords | ask too many questions }

— Keep track of privileges by { proximity | job function
dynamic agreements }

+ Need to have (implementations) of the algorithms

<~ Need to know where which algorithms are to be
applied in which circumstances

Injecf‘ng Services

Client

Sfutf

3

\ 4
Injector Injector Injector
| A
1 ¢4
h 4 Injector
Injector |
\ 4 * \ 4
A
| Injector Injector
4 | * A
Injector v
| Injector
|
4 T A 4 * A 4
Injector Injector Injector

_ A \ A \ A
SNSRI RN

Server
Skeletog, | | |
Injector Injector Injector
|
K S
Injector 4
| Injector
A 4 * A \ 4
Injector v Injector
I A
A 4 * Injector
Injector T
|
\ 4 * \ 4 \ 4
Injector Injector Injector

[4] 4] 4
W A

Network

\/

& B :.. 2

R'agma

OIF’s Quantifig Langua g ¥
+~ Probl y i | “‘“_
— Locallyisss T . -
- Arranging for the appropriate injectors to be on the
appropriate methods ight orderfor ea r
« Precluding incompatible injectors i,
— Globally: Q‘
- Achieving ilities %

<+ Solution:

— Pragma: A high-level, declarative specification language
for defining
* llities
« Ways to achieve ilities (i.e. which injectors + parameters to
run to get that ility)
« The mapping for each ility to the methods of the
application objects
— Pragma compiler:

« Takes declarative specification and compiles Java injector
initializations

Pragma Concepts

ior Ve hieve an il K
“HighSecurity™ acl secur i€rypting on the
client last, decrypting on the server first, access control
on both, ... g ' .. .

- Can be required orallowed 9

1 'y

: Where'an acgon is applie

On all methods of class C, on all methods named foo, ...

: declares annotations
Priority, user-identification, due-date, electronic-wallet,

: Commands tie ilities to locations and
actions.
— Use “HighSecurity” in class C

: A collection of Pragma statements

— Mechanisms for successive refinement of policies
through an organization

Ad.d

| This is policy vendoom

A

These are namespace imports.

Vendoom uses five ilities. For each
ility, class and method, there (may)
be more than one way to achieve that
ility.

Var declares annotations, their types,
default values and when they’re
copied to thread contexts.

For each ility, we can declare a
mapping from a location (on method
in class) to how that ility is to be
achieved.

Here we define the mapping from the
achieve names to injector factories.
The “do” clauses specify a partial
ordering on the injectors.

vendoom
vendoom;
injectors;
Context, Security, QualityOfService,
Reliability, Efficiency;
priority : int = {1};
retries : int = {5} :
Context copyContext;
Security request Controller do iButton;

QualityOfService call ByPriorityController
queueing;

cachedStuff identifier, description,
valueTo;

Efficiency cachedStuff caching;
Reliability retry;
copyContext Context
ContextinjectorFactory
ContextlnjectorFactory
iButton Security

injectors.
AccessControlPkg.AccessControllnjectorFactory,

injectors.

IdentificationPkg.IButtonldentificationlnjectorFactory;

queueing QualityOfService

injectors.
QManager.QueueManagerinjectorFactory;

caching Efficiency
CachelnjectorFactory

retry Reliability
ErrorRetrylnjectorFactory (retries = {"5"})

copyContext;

. Language Semantics

ap [jector initiali:
that in ‘ ~
— Additional input: CO DL
Semantics: : . Y
— For each meth;ic ass, ilityyselect the “most spe _fi'c""-way

T

of doing that ility on that methc lass
« Actions inheritthrough the conventional interface hierarchy

- An action on a class and method is more specific than one on
just a class or a method; just a class or a method is more
specific than an action done everywhere

» Actions on subclasses are more specific

— Order the actions on a method, class on the basis of their
sequencers

— Output the results
Additional actions:
— Declarations of annotations
— Declarations of all classes/methods
— Semantic compatibility checks (NYI)

Compilation Process
e 3

OIF
Pragma
Compiler
o OIF
Ication
Compiler

OIF Application
Initialization code
Injector
Library

Linked together to build

K the run-time system /

() o [] userwritten
[/ / pPragma [| OIF-generated
() code [] ofFiibray
() compiler [] compiler

OILF Process

s S
b l‘"l" gt J;_‘l. -

wed by : ed components

Distribution and llity =~ Domain Programmers
Architect specifies develop application. Distributed

services. & application
_/’%

O—C—

AP=r=

v

Quality of
Service

Ol Framework

Reliability Manageability Security

o,

L Aspect-Oriented Programming

4 ogrammin
on . 3 i
— Separate expressiol ross oncerns
— Mechanisms to weave the separate expressions into a
unified system . | 4 o SR
+ OIF is an AOP ”chaniim |

-

« -:'1 e o .
. Separatien of concerns

= I

’0

» Af ering ole ~ separat
erns § ~ | s
— Reali: ffe m concepts ate, weakly linked
elements = _,
— Distribution of expert i |
Separation of concerns promises bette
— Maintainability
_ Evolvability a‘
— Reusability |
— Adaptivity
Concerns occur at both the
— User/requirements level
— Design/implementation level
Concerns crosscut
— Apply to different modules in a variety of places

Concerns must be composed to build running systems

*

In conventional programming, the code for different concerns
often becomes mixed-together (tangled)

. -

_ Examples ofiSoftware Concerns'

+ Sec | |
— : zheck before al hbase access
Account aali |

— Always debit the user’s tone s to'a service of
objects in the class... 3 ‘ e

Synchronization 3

— Don’t let multiple users call any of nethods f, g, or h on a single object
simultaneously | w1

— The effects of these actions sh'b_uld be transactional
Quality of service

— Queue up the waiting calls handling them by priority
Reliability

— Provide replicants of this object
Performance enhancements

— Cache the results of calls to elements in this class

— Display routines should show the results of changes, except display
routines called in the scope of other display routines should buffer
their changes for display all at once

Q Aspect—Ortented Progmmmmg
'7A OP)

+ Sa ¢ g e no
. ic proper
nevertheless prodt Fru
embody these pr e

Need to expre

— Base program %
— Separate concerns

— How the separate concerns map to the base program

* Or, if you prefer, just a jumble of program elements that
must be combined.

OIFE as AOP

ce of an / me
nd"

provide a mecha 1 to | rate the injector
mechanism into the running system =

S

Real AOP Value

We h o define a
. v)| C.) Py

» Developers of tools, services, and
repositories%(r: emain(almost)

completely ighorant of these issues

+~ We can change polidies without
reprogramming the system

+ We can change policies of a running
system

o,

' % "Other AOP approaches

S Wr
— JAC N - -
Frameworks — CASER
— Aspect-Moderat: \ "Meta-level strateaies
Framework \ - T
“= Bouragadi et al.

— Sullivan

— QSOUL/Logic Meta-
Programming

Compilation technologies y
— Aspectd '
— HyperJ

Post-processing strategies

— JOIE

— JMangler

‘.1'!

‘a ltlonal Separation of Conc .

Inherit

Do a good job of concern'separation, but.

ST

— The programmer. has to exp invoke the desired

behavior

— The programmer has to a’ﬁways be aware of when to
invoke what behavior

— Changing a policy (that’s not already embodied in a
subprogram) requires finding all the places that need
modification and changing them

+» AOP is an alternative to this regime

‘Q_‘uantiﬁcggon and Implicit.
Invocation g

MR L oaE

(5
ti

iy -
1 o
-

The ur) of these aches (and
the characterizing definition of AOP) is the ability
to state universally quantified programmatic
assertions (quantification) on programs that have
not been explicitly preparedic receive these
assertions (implicit invocation, obliviousness).

— Quantification: A given assertion can have effect in
many places in the system

— Implicit invocation: One can’t tell for examining the local
program source that the aspect will be invoked.

« Surgery

. The space o
e

In programs P, whenever condition C arises,
perform action A.

+» Dimensions of conc r the designer
and implementer of an P system:

_ Quantification: What kinds of conditions C can
be specified.

— Interaction: What is the interface of the actions
A. That is, how do they interact with base
programs and each other.

— Weaving: How will the system arrange to
intermix the execution of the base actions of P
with the actions A.

Quantification

| ients car
— Static quantification refers to events
recogt |zale in the ourcecode .
— Dynamic q\an ification refers to the

pattern of dynamiec execution events

Interaction

Th r e aspect cc

Interac ' A vects

— Including which runs first and
recognized ar‘iq re Iv Yo

— Ordering

.-_}' b e

How aspects communicate with each other and
the base code '

— Visibility

Aspect parameterizations

Weaving

» Ho . ystem arr:
the asp ¥ .
— Compilers
— Link-level wrapping
— IDL compilers h
— Object-code modifiers
— Meta-interpreters

Extreme Experiment

+ OVe 1antify?

+ The extreme of;

-| g d
el . o
e TER 'ﬂ"al [
o R T 5
i
el o

— Stat t orogram | —_

— The events that hag | € execution of a
system . bl

expressiveness in quanti cation

is to be able to s_lantify‘ove “all the history of

events in a program execution

+» Events are with respect to the abstract interpreter

of a language
— Software dark matter

+ Unfortunately, language definitions don’t define

their abstract interpreters.

Event

Syntactic locus

Accessing the value of a variable or
field

References to that variable

Modifying the value of a variable or
field

Assignments to that variable

Invoking a subprogram

Subprogram calls

Cycling through a loop

Loop statements

Branching on a conditional

The conditional statement

Initializing an instance

The constructors for that object

Throwing an exception

Throw statements

Catching an exception

Catch statements

-

. More Events and Loci

Event

Syntactic locus

Resuming after a lock wait

Other's notify and end of
synchronizations

Testing a predicate on several fields

Every modification of any of those
fields

Changing a value on the path to
another

Control and data flow analysis over
statements (slices)

Swapping the running thread

Not reliably accessible, but
atomization may be possible

Being below on the stack

Subprogram calls

Freeing storage

Not reliably accessible, but can try
using built-in primitives

Throwing an error

Not reliably accessible; could

Research regime

» De] ge of ever
on those ¢ &
» Determin h ‘each eventis re d(or

can be made visible)in source code

+~ Create a system to t'g.ans Orm programs
with respect to these events and actions.

+~ Developing an environment for
experimenting with AOP languages (DSL
for AOP)

L Transformational Alternatives

‘:; Fo y ansfor i

— The byte-code le

Architectural View

Event-action
descriptions

i |

compilation

Transform

Source Java :gO; . Target Java
Parse PrettyPrint
code code

Applications

sud .Il
B de
gt % ;
r"" .ﬁ('
e g e
/allC tlng
Y A

.:.ﬂ A ¢ a \ e 0 ug o_'
o t Y _.._. i ' \«

o Applyin ;Et.‘;.-':A P -_ '.‘ _tr b ?.:‘ 1Q \uring
operation, scil*:t actions can be initiated

in case bad things happen.

+~ Applying AOP as a general programming
paradigm.

=
0,

2ading pr
d res
HNC “r ¥-Ts T

» Validate tracﬂg ecutions against user
requirements.” A ™

+~ Validate muItithreadéd programs by
exploring schedule interleavings.

s
‘ _1.!

Detect

Multz—threadmg Problem ﬂ‘

+~ Dee e in w?. ler loc

are tak 1d released and infel potentlal
deadloc sfro cyc .

» Data Races: "Qbserve vhat locks threads

own when they access varlables and infer
potential data races from empty overlaps.

Deadlocks

A deadlock can occur when threads
access and lock shared resources,
and lock these in different order.

Example Solution: Impose order on locks: L1 < L2

Problem:
T1 locks L1 first
T2 locks L2 first

gl 2
&, by

g

=2

C

-

_Java Program with Deadlocl

lass Value{
[FIESXE =]
synchronized void add(Value v){x = x + v.get();}

synchronized int get(){return x;}

}

Thread T1 Thread T2

p

_

\/ vl=new Value(); |-, e I
v1.add(v2) W v2.add(v1)
\

A vZ2=new Value();

/

Applying AOP

e .

| aspect DeadlockDetection

when synchronize(obj){
Thread curr = Thread.currentThread();
Set locks = Threads.getLocks(curr);
Graph.addEdges(locks,obj);
Graph.findCycles();
Threads.addLock(curr,obj);

}

when endof synchronize(obj){
Threads.remove(curr,obj);

)
)

b

A data race occurs when two threads
eAccess a shared variable,
*At least one access is a write, and
*No mechanism is used to prevent simultaneous access.

L

Example Solutions: monitors, semaphores, ...

x:0

Shared
variable

%

Thread 1 Thread 2

Result after both updates : 2 ... or maybe 1

= Program with Datarac '

g5 '...- -‘l_
; A R o
E—— e s

class Value{
intx=1;
void add(Value v){x = x + v.get();}
int get(){return x;}

}

Thread T1 Thread T2
" "\~ Vl=new Value(); |- [~ N

v1.add(v2) W v2.add(v1)
\

L v2=new Value(); -

\

~ For W Variable:
Lockset and a Statemach

(.. 2

set of protecting locks ..

rd,wr
wr (new thread)

rd,wr (first thread) |rd (new thread

] = no action
= refinement
I = also warnings

rd

Eraser algorithm (Compaq)

T Applying AOP

| aspect DataraceDetection |

when synchronize(obj){
Thread curr = Thread.currentThread();
Threads.addLock(curr,obj);

J

when endof synchronize(obj){
Thread curr = Thread.currentThread();
Threads.remove(curr,obj);

;

when accessto(var,isWrite){
Thread curr = Thread.currentThread();
Statemachine.update(curr,var,isWrite);
Statemachine.checkEmptyness(var);

)
)

. Validating gxecution Traces

Against User Requiremen'

aspec CheckRequirementsj{' '
when(CLOSED and not previously DO_CLOSI
Report(“System closed by itself”);
}
whennot(DO_CLOSE implies
eventually(20)CLOSED){

Report(“System did not close”);
CloseSystem(); // repair

}
}

=
i

' W - Explore Scheduling

» Si ‘ ssume tha

acces:s = 2d with |

=+ Insert a call of a randomized yield statement in
front of all synchronization statements and calls
of synchronizet‘n hods.™

+ This will cause the scheduler to randomly make a
context switch whenever a lock is taken. This
may be used, for example, to reveal deadlocks.

Readings

| - P
’:’ OI . ’ y . . *‘ r = e

- R | | arrett, Dlan dTed mden
Insel ie ng |
Comn tlo of _) uary, 2002
Pp. 116- 22 . X B

— http:/lic.arc. nasa gov/~fili t/oiflc -0|f p

AOP Is ‘ a8

— Robert E. Filman and Danlel P. Friedman. Aspect -Oriented
Programming is Quantification and Obliviousness. Workshop

on Advanced Separation of Concerns, OOPSLA 2000,
Minneapolis, October 2000.

— http:/lic.arc.nasa.gov/~filman/text/oif/aop-is.pdf

Event-based AOP

— Robert E. Filman and Klaus Havelund. Source-Code
Instrumentation and Quantification of Events. AOSD 2002
Workshop on Foundations Of Aspect-Oriented Languages
(FOAL), Twente, Netherlands, April 2002.

— http:/lic.arc.nasa.gov/~filman/text/oif/aop-events.pdf

| ataprogram
— Colcun \bet, “radet ';l olt
— Schonger et al. XML transfc matio |

— Skipper ku ",

- Nelson et al. c&ern Ie‘ indational
composition operators: correspondence
behavioral semantics and binding

+» Walker and Murphy on events as join points

‘ Concluding remarks

Presented
AOP
b OIF, an AOP system
The nature of AOP

Event-based quantification

