
Aspects, Wrappers and Events
Robert E. Filman

Research Institute for Advanced Computer
Science

NASA Ames Research Center

rfilman@mail.arc.nasa.gov

2

Talk Overview

v Chronological Perspective

v Software development

v Object Infrastructure Framework (OIF)
– A system developed to simplify building distributed

applications by allowing independent implementation of
multiple concerns

v Aspect-Oriented Programming (AOP)
– Mechanisms for independent implementation of

multiple concerns

v Quantification over Events
– Current work on “most general” AOP technologies

3

Distributed Computing

v Developing distributed systems is difficult
– Hard to achieve systems with systematic

properties, e.g.:
• Reliability
• Security
• Manageability
• Quality of Service
• Scalability

– Distribution is complex
• Concurrency is complicated
• Distributed algorithms are difficult to implement
• Every policy must be realized in every component
• Existing frameworks are difficult to use

4

Requirements

v Functional requirements
– Realizable by writing code in a specific place

v Systematic requirements
– Requirements achievable by hygienic behavior

throughout a system

v Combinatorial requirements
– Requirements that emerge as a measurable

property of the system as a whole

v Aesthetic requirements
– Requirements that require human judgment to

decide if they’re satisfied

5

Terminology
v Concern

– Something one cares about in software development that is
realized in code

– Crosscutting concern
• A concern whose code intermixes with other behavior in a system
• Crosscutting is a function of organization and environment

v Policy
– A “way of doing things” that is to be realized throughout a

system

v Ility
– A desirably overall property of a software system

v Systematic behavior
– A behavior seen throughout a system

v Non-functional requirement
– A requirement for a system that is not localized to a particular

point in the system

v Aspect
– The code that realizes a concern

6

Functional and Non-Functional
Requirements

Functional: Non-functional (ility):

Availability Reliability

Security Manageability Responsiveness

Function 1
& ility support

Function 4
& ility support

Function 2
& ility support

Function 3
& ility support

Func. Req. 2 Func. Req. 4

Func Req. 1 Func. Req. 3

Functional requirements
map to specific components

Ility requirements map
almost everywhere

7

Services and Ilities

v Ility requirements are implemented by combinations
of service algorithms.

v Supporting ilities involves a complex selection from
sets of alternative service algorithms.

v The services must be invoked pervasively.

Ility requirements:

Services:

Availability ReliabilitySecurity Manageability Responsiveness

Replication AReplication 2Replication

Replication AReplication 2TransactionsEncryption

Authentication

Tracing & Audit

Fault Detection

Resource Reservation

Queue Mgmt.

8

The Problem:
Managing the Service Space

v Compatible support for ility requirements
(security, consistency, responsiveness, etc.) is a
key component integration problem

v Ilities impose difficult upgrade requirements on
component subsystems
– Algorithms that support ilities are usually intertwined

with the subsystem functional logic.

– Separately developed subsystems may have chosen
different algorithms (for encryption, transactions, etc.)

9

Research Hypothesis

v Ilities can be achieved by inserting services into
the communication path between functional
components

– On both sides of the communication divide

v Frameworks that automate service insertion can
systematically achieve non-functional
requirements
– Object Infrastructure Framework (OIF)

v Ilities can be achieved by inserting services into
the communication path between functional
components

– On both sides of the communication divide

v Frameworks that automate service insertion can
systematically achieve non-functional
requirements
– Object Infrastructure Framework (OIF)

10

Architecture with Services in
Component Communications

Traditional designs mix ility support within functional components:

Function 1
& ility support

Function 3
& ility support

Function 4
& ility support

Function 2
& ility support

Separate service functionality from functional logic by inserting
the services into the communications paths among components.

Function 4
Decrypt

Queue Mgmt
Function 2

Encrypt

Pass Priority

Decrypt

Queue Mgmt.

Replication

Function 1
Encrypt

Set Priority
Function 3

Decrypt

Queue Mgmt

11

Distributed Object Technology
v Many kinds of approaches:

– Socket based
– Message based.
– Remote Procedure Call
– Object based.

v Distributed Object Technology allows for OO
applications to be implemented using some objects
that do not reside in the same address space (e.g..
machine).
– Key semantic of DOT is providing “location

transparency”.

v CORBA: Objects provide services described in an
Interface Definition Language (IDL)
– CORBA allows object-oriented applications to be written

in multiple languages.

12

Using Stubs and Skeletons as Proxies

A client application makes
a method invocation on
the stub.

The Stub “implements”
the IDL defined interface
by being a proxy for the
actual implementation
object.

Similarly, the Skeleton acts as a proxy for the client
application (from the implementation’s perspective).

The implementation object needs to have the actual
code for each method defined the IDL interface.

Network

Client
Application

Client
Application

CORBA
stub

CORBA
stub

Server
application

object

Server
application

object

CORBA
skeleton

CORBA
skeleton

13

What do Proxies do for you?

The ORB on the server machine demarshals the
client’s request, and invokes the skeleton. The
skeleton calls the appropriate implementation object
method. The process is applied in reverse to the
return value.

Marshaling handles all of the issues relating to
transmission and translation of the various data types.

Marshaling handles all of the issues relating to
transmission and translation of the various data types.

The stub “implements” the
IDL defined interface. The
operation’s arguments are
put into a request object,
marshaled and passed over
the network to the server
machine.

Network

Client
Application

CORBA
stub

CORBA
skeleton

Server
application

object

14

IDL Example
module Bank {

 exception overdraft {string msg;};

 interface Account {
 float balance();
 float withdrawal(in float amount)

raises(overdraft);
 oneway void deposit(in float amount);
 };

 interface AccountManager {
 Account open(in string name);
 };
};

module Bank {

 exception overdraft {string msg;};

 interface Account {
 float balance();
 float withdrawal(in float amount)

raises(overdraft);
 oneway void deposit(in float amount);
 };

 interface AccountManager {
 Account open(in string name);
 };
};

15

Compiling Stubs and Skeletons

The IDL compiler produces both client-side stubs and
server side skeletons.

CORBA
IDL

Compiler

Application
code

Stubs

 Skeletons

Application
IDL

Linked together to build
the distributed application

16

Distributed Object Proxies
v What they do:

– Provide object location transparency

– Hide details of communication protocols

v What they do not do:
– Handle partial failures (reliability).

– Security related issues.

– Quality of service issues.

– …

OIF Challenge: Can we leverage the “proxy”
design to address these missing characteristics?

OIF Challenge: Can we leverage the “proxy”
design to address these missing characteristics?

17

Key OIF Ideas
v Injecting behavior on the communication paths

between components
– Injectors are discrete, uniform objects
– Injectors are by object/method
– Injectors are dynamically configurable

v Annotated communications allow injected
services to pass parameters to service peers
(e.g., message priority, user-id, tracing status)

v Thread contexts preserve annotations through
calls

v Pragma: High-level specification language for
describing desired injections

18

Configurable Proxies

ù OIF’s injectors can operate in pairs (e.g., encrypt/decrypt;
request authentication/authenticate) or singly (e.g., retry on
failure; log results)

ù Configuration is by proxy/method instance

ù Configuration is dynamic

AuthenticateAuthenticate

RetryRetry

ManagementManagement

ReliabilityReliability

CORBA
Proxy

Check auth.Check auth.

Quality of ServiceQuality of Service

ManagementManagement

ReliabilityReliability

CORBA
Skeleton

ClientClient ServerServer

Network

19

ServerClient

Marshal DemarshalMarshalMarshal

Injector Invocation

Server

Client Side Server Side

Client

before after

Authenticate

before after

Encrypt

before after

Log
before after

Queue

before after

Authorize

before after

Decrypt

injector.exec(request) {
… before logic
doNext (request);
… after logic
return;

DemarshalDemarshal

20

Annotations

v Problem:
– Injectors need to communicate among themselves

• e.g., passing the user authentication and session
information

v Solution:
– Add additional meta-information, annotations, to

communications
• Reify communications

• Annotations are name-value pairs
– Names are strings

– Values are “any”s

– Injectors can read and write annotations.

21

Thread Contexts

v Problem:
– The application needs to communicate with the

injectors
• e.g., setting the priority of a request

– Don’t want to change the client interface to the IDL
• Can’t add additional arguments to function calls

v Solution:
– Provide annotations for user threads---the thread

context
– Copy information between request annotations and

thread contexts
• Declarations control which information is copied at each

juncture

v Benefit:
– Contextual information propagates through a series of

calls

22

Propagating Annotations

ProxyProxy

Cntxt¨AnnCntxt¨Ann

ProxyProxy

Ann¨CntxtAnn¨Cntxt

Application
Component B
Application

Component B
Context

ProxyProxy

Ann¨CntxtAnn¨Cntxt

Application
Component A
Application

Component A
Context

ProxyProxy

Cntxt¨AnnCntxt¨Ann

Application
Component C
Application

Component C
Context

ç éR
é

B’s proxies C’s proxies

}m injectors{ }n injectors{

1. When object A makes a call on method m in Object B, it’s thread
context is copied over into the annotation of the request.

2. After creating the thread to serve A’s request, the annotations of the
request are copied to that thread’s context

3. B calls method n on C. This process is repeated for B’s calls when
handling that request. Thus, an annotation (e.g., priority) set in A is
carried over through B to C.

23

Injector Features

v Ability to access/mutate method arguments and
return value.

v Ability to pass meta-data (property sets) between
themselves to coordinate their behavior.

v Access to CORBA’s DII and DSI services
– Access/modify function arguments, return value
– Change “target” of request (load balancing, reliability)

v Fully capable code module.
– Can be multi-threaded.
– Can access other objects/services
– Throw/catch exceptions

24

Injector-enabled services
v Caching of static object attributes reduces

repetitious remote requests and enables “delayed
call by value.”

v Serialization of arriving requests reduces cognitive
load on application developer.

v Reified requests allow reasoning about priorities

v Targets allow application components to invoke
logical destinations rather than a specific object (so
injected services can do load-balancing, replication,
transaction processing, redirection, etc.)

v Futures enable asynchronous interaction between
application components while writing synchronous
code.

25

Ilities must be grounded in the reality of invoking
actual services

Ilities must be grounded in the reality of invoking
actual services

Reality

Saying you want security doesn’t cause security to
happen.

v Rather, you have to decide that you’ve got security
if you
– Encrypt all communications using { 64|128|3 } bit { DES |

RSA | ROT-13 }
– Check the user’s { password | fingerprints | DNA } for {

every | occasional } access to { all | only sensitive }
methods

– Recognize intrusions that { come from strange sites | try a
series of passwords | ask too many questions }

– Keep track of privileges by { proximity | job function |
dynamic agreements }

v Need to have (implementations) of the algorithms

v Need to know where which algorithms are to be
applied in which circumstances

26

Injecting Services

SkeletonStub

Injector Injector

Injector

Injector

Injector

Injector

Injector

InjectorInjector

Client

Injector

Injector

Injector

Injector

Injector

Injector

Injector

Injector

Injector

Injector

Injector

Injector

Injector

Injector

Injector

Server

Network

27

Pragma
OIF’s Quantification Language

v Problem:
– Locally:

• Arranging for the appropriate injectors to be on the
appropriate methods in the right order for each proxy

• Precluding incompatible injectors
– Globally:

• Achieving ilities

v Solution:
– Pragma: A high-level, declarative specification language

for defining
• Ilities
• Ways to achieve ilities (i.e. which injectors + parameters to

run to get that ility)
• The mapping for each ility to the methods of the

application objects
– Pragma compiler:

• Takes declarative specification and compiles Java injector
initializations

28

Pragma Concepts
v Ility: Qualities an application is to have

– (reliability, security, …)
v Action: A way to achieve an ility.

– “HighSecurity” achieves security by encrypting on the
client last, decrypting on the server first, access control
on both, …

• Can be required or allowed

v Location: Where an action is applied
– On all methods of class C, on all methods named foo, ...

v Context variable: declares annotations
– Priority, user-identification, due-date, electronic-wallet,

...

v Command: Commands tie ilities to locations and
actions.
– Use “HighSecurity” in class C

v Policy: A collection of Pragma statements
– Mechanisms for successive refinement of policies

through an organization

29

Pragma Example
policy vendoom is
 import vendoom;
 import injectors;
 ility Context, Security, QualityOfService,
 Reliability, Efficiency;
 var priority : int = {1};
 var retries : int = {5} only from client;

 for Context do copyContext;
 for Security on request in Controller do iButton;
 for QualityOfService on call in ByPriorityController do

queueing;
 group cachedStuff on identifier, on description, on

valueTo;
 for Efficiency within cachedStuff do caching;
 for Reliability do retry ;
 define copyContext for Context as
 client ContextInjectorFactory do first,
 server ContextInjectorFactory do last;
 define iButton for Security do last as
 client server injectors.

AccessControlPkg.AccessControlInjectorFactory,
 client server injectors.

IdentificationPkg.IButtonIdentificationInjectorFactory;
 define queueing for QualityOfService as
 server injectors.

QManager.QueueManagerInjectorFactory;
 define caching for Efficiency as
 client CacheInjectorFactory do after copyContext;
 define retry for Reliability as
 client ErrorRetryInjectorFactory (retries = {"5"}) do

last;
end;

policy vendoom is
 import vendoom;
 import injectors;
 ility Context, Security, QualityOfService,
 Reliability, Efficiency;
 var priority : int = {1};
 var retries : int = {5} only from client;

 for Context do copyContext;
 for Security on request in Controller do iButton;
 for QualityOfService on call in ByPriorityController do

queueing;
 group cachedStuff on identifier, on description, on

valueTo;
 for Efficiency within cachedStuff do caching;
 for Reliability do retry ;
 define copyContext for Context as
 client ContextInjectorFactory do first,
 server ContextInjectorFactory do last;
 define iButton for Security do last as
 client server injectors.

AccessControlPkg.AccessControlInjectorFactory,
 client server injectors.

IdentificationPkg.IButtonIdentificationInjectorFactory;
 define queueing for QualityOfService as
 server injectors.

QManager.QueueManagerInjectorFactory;
 define caching for Efficiency as
 client CacheInjectorFactory do after copyContext;
 define retry for Reliability as
 client ErrorRetryInjectorFactory (retries = {"5"}) do

last;
end;

This is policy vendoom.

These are namespace imports.

Vendoom uses five ilities. For each
ility, class and method, there (may)
be more than one way to achieve that
ility.

Var declares annotations, their types,
default values and when they’re
copied to thread contexts.

For each ility, we can declare a
mapping from a location (on method
in class) to how that ility is to be
achieved.

Here we define the mapping from the
achieve names to injector factories.
The “do” clauses specify a partial
ordering on the injectors.

30

Language Semantics
v Top-level goal: for each interface/method, determine the

appropriate default injector initialization sequence for
that interface method.
– Additional input: CORBA IDL

v Semantics:
– For each method, class, ility, select the “most specific” way

of doing that ility on that method, class
• Actions inherit through the conventional interface hierarchy
• An action on a class and method is more specific than one on

just a class or a method; just a class or a method is more
specific than an action done everywhere

• Actions on subclasses are more specific

– Order the actions on a method, class on the basis of their
sequencers

– Output the results

v Additional actions:
– Declarations of annotations
– Declarations of all classes/methods
– Semantic compatibility checks (NYI)

31

OIF
Pragma
Compiler

IDL User written

Code OIF library

Linked together to build
the run-time system

Application
code

Application
Pragma

Compilation Process

OIF
IDL

Compiler

Application
CORBA IDL

Pragma OIF-generated

OIF
 Stubs

OIF
Initialization

Compiler Compiler

Injector
Library

32

Domain Programmers
develop application.

Security Quality of
Service

Manageability

Distribution and Ility
Architect specifies

services.

Reliability

Distributed
application

OI Framework

OIF Process
v Map organizational policies to implementation

– E.g.,
• define a security policy
• ensure that policy is followed by all distributed components

33

Aspect-Oriented Programming

v Aspect-Oriented Programming (AOP) is centered
on
– Separate expression of crosscutting concerns
– Mechanisms to weave the separate expressions into a

unified system

v OIF is an AOP mechanism

34

Separation of concerns
v A fundamental engineering principle is that of separation of

concerns
– Realizing different system concepts as separate, weakly linked

elements
– Distribution of expertise

v Separation of concerns promises better
– Maintainability
– Evolvability
– Reusability
– Adaptivity

v Concerns occur at both the
– User/requirements level
– Design/implementation level

v Concerns crosscut
– Apply to different modules in a variety of places

v Concerns must be composed to build running systems

In conventional programming, the code for different concerns
often becomes mixed-together (tangled)

35

Examples of Software Concerns

v Security
– Always call the security check before allowing database access

v Accounting
– Always debit the user’s account on each access to a service of

objects in the class…

v Synchronization
– Don’t let multiple users call any of methods f, g, or h on a single object

simultaneously
– The effects of these actions should be transactional

v Quality of service
– Queue up the waiting calls handling them by priority

v Reliability
– Provide replicants of this object

v Performance enhancements
– Cache the results of calls to elements in this class
– Display routines should show the results of changes, except display

routines called in the scope of other display routines should buffer
their changes for display all at once

36

Aspect-Oriented Programming
(AOP)

v Software engineering technology for separately
expressing systematic properties while
nevertheless producing running systems that
embody these properties

v Need to express
– Base program

– Separate concerns

– How the separate concerns map to the base program
• Or, if you prefer, just a jumble of program elements that

must be combined.

37

OIF as AOP

v OIF is an instance of an AOP system
– We separate concerns into injectors, and

provide a mechanism to integrate the injector
mechanism into the running system

38

Real AOP Value

v We don’t have to define all these policies
before building the system

v Developers of tools, services, and
repositories can remain (almost)
completely ignorant of these issues

v We can change policies without
reprogramming the system

v We can change policies of a running
system

39

Other AOP approaches

v Wrapping technologies
– Composition filters

– JAC

v Frameworks
– Aspect-Moderator

Framework

v Compilation technologies
– AspectJ

– HyperJ

v Post-processing strategies
– JOIE

– JMangler

v Traversals
– DJ

v Event-based
– EAOP

v Meta-level strategies
– Bouraqadi et al.

– Sullivan

– QSOUL/Logic Meta-
Programming

40

Traditional Separation of Concerns

v Subprograms (procedures, functions, methods)
v Inheritance

v Do a good job of concern separation, but
– The programmer has to explicitly invoke the desired

behavior
– The programmer has to always be aware of when to

invoke what behavior
– Changing a policy (that’s not already embodied in a

subprogram) requires finding all the places that need
modification and changing them

v AOP is an alternative to this regime

41

Quantification and Implicit
Invocation

v The unifying element of these approaches (and
the characterizing definition of AOP) is the ability
to state universally quantified programmatic
assertions (quantification) on programs that have
not been explicitly prepared to receive these
assertions (implicit invocation, obliviousness).
– Quantification: A given assertion can have effect in

many places in the system

– Implicit invocation: One can’t tell for examining the local
program source that the aspect will be invoked.

• Surgery

42

The space of AOP language
design

In programs P, whenever condition C arises,
perform action A.

v Dimensions of concern for the designer
and implementer of an AOP system:
– Quantification: What kinds of conditions C can

be specified.
– Interaction: What is the interface of the actions

A. That is, how do they interact with base
programs and each other.

– Weaving: How will the system arrange to
intermix the execution of the base actions of P
with the actions A.

43

Quantification

v Over which events can one quantify
– Static quantification refers to events

recognizable in the source code

– Dynamic quantification refers to the
pattern of dynamic execution events

44

Interaction

v The structure of the aspect code

v Interactions among aspects
– Including which runs first and how conflicts are

recognized and resolved

– Ordering

v How aspects communicate with each other and
the base code
– Visibility

v Aspect parameterizations

45

Weaving

v How does the system arrange to intermix
the aspect and base behaviors
– Compilers

– Link-level wrapping

– IDL compilers

– Object-code modifiers

– Meta-interpreters

46

Extreme Experiment

v Over What can one Quantify?

– Static structure of the program

– The events that happen in the dynamic execution of a
system

v The extreme of expressiveness in quantification
is to be able to quantify over all the history of
events in a program execution

v Events are with respect to the abstract interpreter
of a language
– Software dark matter

v Unfortunately, language definitions don’t define
their abstract interpreters.

47

Events and Event Loci

Event Syntactic locus
Accessing the value of a variable or
field

References to that variable

Modifying the value of a variable or
field

Assignments to that variable

Invoking a subprogram Subprogram calls
Cycling through a loop Loop statements
Branching on a conditional The conditional statement
Initializing an instance The constructors for that object
Throwing an exception Throw statements
Catching an exception Catch statements
Waiting on a lock Wait and synchronize statements

48

More Events and Loci

Event Syntactic locus
Resuming after a lock wait Other's notify and end of

synchronizations
Testing a predicate on several fields Every modification of any of those

fields
Changing a value on the path to
another

Control and data flow analysis over
statements (slices)

Swapping the running thread Not reliably accessible, but
atomization may be possible

Being below on the stack Subprogram calls
Freeing storage Not reliably accessible, but can try

using built-in primitives
Throwing an error Not reliably accessible; could

happen anywhere

49

Research regime

v Define a language of events and actions
on those events.

v Determine how each event is reflected (or
can be made visible) in source code.

v Create a system to transform programs
with respect to these events and actions.

v Developing an environment for
experimenting with AOP languages (DSL
for AOP)

50

Transformational Alternatives

v For Java, can transform at
– The source-code level

– The byte-code level

51

Architectural View

Source Java
code

Source Java
code

Event-action
descriptions

Event-action
descriptions

Event-
Edit

compilation

TransformTransform

AST

Target Java
code

Target Java
code

Parse PrettyPrint

52

Applications

v Applying AOP to debugging and validating
concurrent programs.

v Applying AOP to monitor programs during
operation, so that actions can be initiated
in case bad things happen.

v Applying AOP as a general programming
paradigm.

53

Program Debugging

v Detect multi-threading problems caused
by access to shared resources by
competing threads.

v Validate trace executions against user
requirements.

v Validate multithreaded programs by
exploring schedule interleavings.

54

Detect
Multi-threading Problems

v Deadlocks: Observe in what order locks
are taken and released and infer potential
deadlocks from cycles.

v Data Races: Observe what locks threads
own when they access variables and infer
potential data races from empty overlaps.

55

Deadlocks

A deadlock can occur when threads
access and lock shared resources,
and lock these in different order.

A deadlock can occur when threads
access and lock shared resources,
and lock these in different order.

L2

1

2 1

2

L1

T1 T2

1

2 1

2
Problem:
T1 locks L1 first
T2 locks L2 first

Example Solution: Impose order on locks: L1 < L2

L1 L2

cycle

56

class Value{
 int x = 1;
 synchronized void add(Value v){x = x + v.get();}
 synchronized int get(){return x;}
}

class Value{
 int x = 1;
 synchronized void add(Value v){x = x + v.get();}
 synchronized int get(){return x;}
}

Java Program with Deadlock

v1.add(v2)

v1=new Value();

v2.add(v1)

v2=new Value();

Thread T1 Thread T2

57

aspect DeadlockDetection{
 when synchronize(obj){
 Thread curr = Thread.currentThread();
 Set locks = Threads.getLocks(curr);
 Graph.addEdges(locks,obj);
 Graph.findCycles();
 Threads.addLock(curr,obj);
 }
 when endof synchronize(obj){
 Threads.remove(curr,obj);
 }
}

aspect DeadlockDetection{
 when synchronize(obj){
 Thread curr = Thread.currentThread();
 Set locks = Threads.getLocks(curr);
 Graph.addEdges(locks,obj);
 Graph.findCycles();
 Threads.addLock(curr,obj);
 }
 when endof synchronize(obj){
 Threads.remove(curr,obj);
 }
}

Applying AOP

58

Data Races

A data race occurs when two threads
•Access a shared variable,
•At least one access is a write, and
•No mechanism is used to prevent simultaneous access.

A data race occurs when two threads
•Access a shared variable,
•At least one access is a write, and
•No mechanism is used to prevent simultaneous access.

x = x + 1 x = x + 1x:0

Thread 1
Shared
variable Thread 2

Example Solutions: monitors, semaphores, …

Result after both updates : 2 … or maybe 1

59

v1.add(v2)

v1=new Value();

v2.add(v1)

class Value{
 int x = 1;
 void add(Value v){x = x + v.get();}
 int get(){return x;}
}

class Value{
 int x = 1;
 void add(Value v){x = x + v.get();}
 int get(){return x;}
}

Java Program with Datarace

v2=new Value();

Thread T1 Thread T2

60

For Each Variable:
A Lockset and a Statemachine

not used

exclusive

shared

shared
modified

wr

rd (new thread)rd,wr (first thread)

rd

wr (new thread)

wr

rd,wr

= no action

= refinement

= also warnings

{… set of protecting locks …}

Eraser algorithm (Compaq)

61

aspect DataraceDetection{
 when synchronize(obj){
 Thread curr = Thread.currentThread();
 Threads.addLock(curr,obj);
 }
 when endof synchronize(obj){
 Thread curr = Thread.currentThread();
 Threads.remove(curr,obj);
 }
 when accessto(var,isWrite){
 Thread curr = Thread.currentThread();
 Statemachine.update(curr,var,isWrite);
 Statemachine.checkEmptyness(var);
 }
}

aspect DataraceDetection{
 when synchronize(obj){
 Thread curr = Thread.currentThread();
 Threads.addLock(curr,obj);
 }
 when endof synchronize(obj){
 Thread curr = Thread.currentThread();
 Threads.remove(curr,obj);
 }
 when accessto(var,isWrite){
 Thread curr = Thread.currentThread();
 Statemachine.update(curr,var,isWrite);
 Statemachine.checkEmptyness(var);
 }
}

Applying AOP

62

Validating Execution Traces
Against User Requirements

aspect CheckRequirements{
 when(CLOSED and not previously DO_CLOSE){
 Report(“System closed by itself”);
 }
 whennot(DO_CLOSE implies
 eventually(20)CLOSED){
 Report(“System did not close”);

 }
}

aspect CheckRequirements{
 when(CLOSED and not previously DO_CLOSE){
 Report(“System closed by itself”);
 }
 whennot(DO_CLOSE implies
 eventually(20)CLOSED){
 Report(“System did not close”);

 }
}

CloseSystem(); // repair

63

Explore Scheduling

v Simple example: assume that all variable
accesses are protected with locks.

v Insert a call of a randomized yield statement in
front of all synchronization statements and calls
of synchronized methods.

v This will cause the scheduler to randomly make a
context switch whenever a lock is taken. This
may be used, for example, to reveal deadlocks.

64

Readings
v OIF

– Robert E. Filman, Stu Barrett, Diana D. Lee, and Ted Linden.
Inserting Ilities by Controlling Communications.
Communications of the ACM, Vol. 45, No. 1, January, 2002,
pp. 116-122.

– http://ic.arc.nasa.gov/~filman/text/oif/cacm-oif.pdf
v AOP Is

– Robert E. Filman and Daniel P. Friedman. Aspect-Oriented
Programming is Quantification and Obliviousness. Workshop
on Advanced Separation of Concerns, OOPSLA 2000,
Minneapolis, October 2000.

– http://ic.arc.nasa.gov/~filman/text/oif/aop-is.pdf
v Event-based AOP

– Robert E. Filman and Klaus Havelund. Source-Code
Instrumentation and Quantification of Events. AOSD 2002
Workshop on Foundations Of Aspect-Oriented Languages
(FOAL), Twente, Netherlands, April 2002.

– http://ic.arc.nasa.gov/~filman/text/oif/aop-events.pdf

65

Related work on transformations

v De Volder et al. metaprogramming
v AOP through program transformation

– Colcumbet, Fradet and Sudholt
– Schonger et al. XML transformation
– Skipper ku

v Nelson et al. concern-level foundational
composition operators: correspondence,
behavioral semantics and binding

v Walker and Murphy on events as join points

Concluding remarks

Presented
AOP
OIF, an AOP system
The nature of AOP
Event-based quantification

