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Abstract—A new method for detecting and locating wiring during the course of its lifetime, the outer shielding alang
damage using time domain reflectometry is presented. This section of the wire is damaged, a common problem with aging
method employs existing/; regularization techniques from con- aircraft caused by decades of wires rubbing together, among
vex optimization and compressed sensing to exploit sparsity in . ; . Vo
the distribution of faults along the length of a wire, while further other things. This sort of damage will cause the |nC|den_t
generalizing commonly used fault detection techniques based on Voltage wave to reflect and travel back along the line where it
correlation and peak detection. The method's effectiveness is will be measured by the TDR.
demonstrated using a simulated example, and it is shown how  Existing methods for detecting wiring problems often fall
Monte Carlo techniques are used to tune it to achieve specific into one of two categories. The first category contains tech-

detection goals, like a certain false positive error rate. In addition . h | h ission i ial differaira
this method is easily implemented by adapting readily available NQUES that solve the transmission line partial differ@rgqua-

optimization algorithms to quickly solve large, high resolution, tions, using discrete or continuous methods, and then gimpl
versions of this estimation problem. Finally, the technique is invert the solution process without incorporating the effe

applied to a real data set, which reveals its impressive ability of measurement noise [2], [3]. The second category consists
to identify a subtle type of chaffing damage on real wire. of methods that use simple linear models, which account
Index Terms—diagnostics, fault detection, inverse scattering, for noise, and apply various least-squares based techsjique
lossless media, sparsity, time domain reflectometry, TDR, wiring gych as Kalman filtering [1]. Furthermore, some current de-
velopments in this field are focused on using specific spread

spectrum TDR (SSTDR) input signals that can interrogate a

I. INTRODUCTION wire for faults in live systems [4]. For these systems, fault

HIS paper considers the specific problem of detectirgf"SiNg is typically performed by using a standard cortat
T faults in wiring systems using time domain reflectometry€chnique, which is optimal in some sense when no other
Generally, this is performed by launching a known signad)intmform"?‘t'on is available to improve detection capability.

a wire, and examining the signal reflected back for potential I this paper, we develop an improved method that also uses
issues (Figure 1 below). An important aspect of this teahaiq 2 lineéar model, but in addition to noise, directly accourts f
is that one can detect and locate wiring problems before hdftg Prior information that wiring faults are generally spely
short or open conditions occur. One specific applicatiorois PoPulated along the line. This method is extremely effegtiv
aircraft wiring systems that are hard to inspect visuallyd a 2nd seems to be new to the field of time domam r.eflectom'etry.
where it is critical to identify problems before component§urthermore, the application of this technique is describe
start to fail. Wiring diagnostics aside, the general idea [§ 9éneral terms that are readily applicable to any pawicul
related toinverse scatteringwhich appears in many otherinPut interrogation signal, which should hopefully allowet
areas, including the identification of layered earth system technique to find immediate practice in existing systems.
geology, and vocal tract area reconstruction in acousfigs [ 1hiS paper is organized as follows. First we present a
[2]. This problem is certainly not new, and has been studidgear model for the TDR setup and measurement process just
in various forms for more than half a century. described. Next, the problem of detecting the location and
The setup is presented in Figure 1. A Time Domain Refle8gVerity of wiring damage is posed as an estimation problem,
tometer (TDR) is connected to the transmission line we want@nd a heuristic is introduced to find effective solutionstte t
check, and is used to send a signal down the wire. The reflecféi@inal problem, by solving a convex optimization problem
signal is then measured, and checked for anomalies that:mi§Hally, we will show how the Fast Fourier Transform (FFT)
indicate possible wiring problems along the line. For eximnp makes. it possible to efficiently solve large-scale problenjs
consider a simple case where the original transmissionigineNumerical examples are presented along the way, including
perfect (and has matched source and load impedance). In #fi§ that uses real TDR data.
case, we will see the incident signal pass right throughitiee |
without receiving any reflected signal back. Now imaginé tha 1. ALINEAR TDR MODEL
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Fig. 1. Basic TDR Setup. The TDR interrogates the wire wituirnsignalV; (¢), which propagates along the wire and reflects off of impedalim®ntinuities
caused by damage. The reflected sigh&l(t), is measured at the input of the wire and used to determine taidm and severity of the damage.

also assume that the load and source impedance are matahieels are typically undamaged for most of their length, gxce
to prevent significant reflection from the ends of the line. perhaps at a few locations, the reflection coefficient vegtor

We consider the following discrete convolution model foshould contain only a few nonzero values. In other words, we
the TDR measurement process: expectu to be sparse. Thus, we are interested in solving the
optimization problem:

n—1
Velk) =D p(i)Vilk = ) + (k). (1) winimize  fo(p)
7=0 subjectto  u sparse, (3)
where fork = 0,1,2,...,n — 1, V,.(k) is the measured
response,u(k) is a series of impulse respongeflection where,
coefficientsthat characterize the damaged wifé(k) is the folp) = LHV# — P (4)
known incident wave launched into the transmission lingl an 202

n(k) is random measurement noise. This model has a simpleyhe opjective representing the negative log-likelihoafd
interpretation: the measured signal is the sum of time m'ftobserving the signal/, given 1, under the assumption that
and scaled replicas of the input sigrigl k), plus noise. the noisen(k) is IID N(0,02).

The model can represent either causal or circular (perjodic
convolution. For circular convolution we plif(—k) = V;(n—
k). For causal convolution, we simply defing(k) = 0 for
all £ < 0. Obviously, for either cas®,. (k) must get the same

One heuristic to handle the rather vague sparsity constrain
in (3), is to add an/;-norm penalty to the objective. This
regularization technique is well known to produce sparse
solutions (see [5]-[8] and [9]6.3.2). To this end, we consider

treatment. . . . . solving the convex; -regularized least squares problem (LSP):
It is both instructive and notationally convenient to reeri
(1) in an equivalent matrix vector form: minimize fo(u) + M|zl (5)

Uy = VM +n (2) with ¢1-norm defined aﬁqu = Z;L;Ol ‘,U/(j)| Intuitively, the

where, solution is sparse because in the process of finding an dptima
solution, the solver will routinely reduce a small coeffitie

v o= [Ve(0),..., Vi(n—D)]" identically to zero at the cost of increasing the associated
po= [w0),...,u(n—1)]" squared errofy (1) by a smaller amount. The key observation
n = m0),....,n(n—1)" is perhaps that square error measured fpystays relatively
flat near a minimum, while absolute error measured ky:)|
and, decreases to zero at a constant rate and does not level off (it
Vi(0) Vi(-1) ... Vi(l—n) is also not differentiable gt(k) = 0 for eachk). Please see
. the references just cited for more examples and discussion.
V= vi(1) vi(0) . The parametern > 0 adjusts the trade-off between sub-
: ; - V(-1 optimality in the likelihood of the measured response, and
Viln—1) Vi(n—2) ... V;(0) the sparsity ofu. Since effective values of for a given

problem depend on the measurement noise variarfceve
will frequently specify the producks? (rather than jusi) to
highlight the interdependence between these two constants
The fact that (5) is a convex optimization problem is an
IIl. REFLECTION COEFFICIENTESTIMATION important feature for practical applications. Primarityneans
Nonzero values of:(k) indicate the location and severitythe optimal solution can be computgtbbally, in a robust and
of faults along the wire. Given the prior information thatefficient manner [9].

So,v,, i, andn € R™. V is a Toeplitz matrix inR™*"™ entirely
determined by the input sign&; (k).



A. Relation to Least-Squares and Correlation Detectors 1) Randomly pick an integeN between0 and 10 (with

To see that (5) is a generalization of the least-squares equal probability). N is the number of faults on the wire.
problem we need only set = 0. In this case, the optimal 2) Draw N random reflection coefficients from a uniform

solution is well known:p* = (VTV)='V7Ty,, assuming distribution on[—0.5,0.5].
(VTV)~! exists. From here we observe two things. 3) Assign the coefﬁuents to&v randomly chosen (equally

The first is that for our probler € R, so in the best probable) locations in:, and set all other elements to
case scenarid’ is full rank, and the optimal least-squares €0
solution simplifies toy* = V~lv,. (and fo(u*) = 0). Un- Next, n measurements of the reflected sighalk), for k& =
fortunately with this approach, we are makingbservations 0,1,2,...,n—1, are obtained by using the TDR measurement
corrupted byn independent noise terms., n(k)), which model (1), with some specified input sigiial%). This method
leaves us with no “redundancy” for obtaining a robust estémais used to generate simulated TDR data for the rest of the
and places it at the mercy of the measurement noise. Whataper.
worse is that sometimes in practice, when the acljék) Consider an example with = 200. The above procedure
generated by the TDR hardware is measur&dbecomes was used to generate a sparse reflection coefficient veator
ill-conditioned or not even full rank, which makes reliablyR*"’, and a measurement of the reflected sigridlk), from
estimatingu extremely problematic if not impossible. In facta unit step input signal/;(k), and measurement noige =
this approach is no better than inversion techniques that dd2. The ¢;-regularized LSP (5) was then solved for several
not at all account for noise in the measurement and modelingferent values of\ usingCvX, a package for specifying and
process €.g, the ;. that minimizesf,, which accounts for the solving convex programs [10], [11]. The results are ploited
presence of noise, is the sameone gets by removing the Figure 2.
noise termn from (2) and solving foru directly). o

The second observation is that if the columnsiofare C. Polishing
orthogonal (so that 7V = I), then the least-squares estimate The previous example shows that for larger values ahe
reduces tq.* = V7v,, which when written out becomes theestimated reflection coefficients appear in the correcttiosa
familiar discrete equation for the correlation betweenitiput  but typically have reduced amplitude (see Figure 2). This ca

and output signals: be viewed as an artifact of thig-norm penalty function, since
o it favors smaller elements in.
(k) = Z Vi(j — k)Vi(j) 6 A simple technique calledolishingalleviates this problem,

simply by solving the original problem (3) with the spar-
o ) . ) _sity pattern obtained from the solution to tlie-regularized
This is a common detection technique employed in practiqgeristic (5). Of course, when problem (3) has a fixed sparsit
For example, by selecting a pseudo-noise sequenceité), pattern, it becomes a simple least-squares problem.

one can satisfy the orthogonality condition (but only appro Figure 3 shows the effect of polishing on the previous
imately in the finite causal discrete case), and we have Bgample (for the largest value afconsidered). Note, at least
beginnings of the SSTDR systems that can detect faults @nthis case, the technique almost always does the righgthin

live YVireS, see [4]. . S test (k) is brought closer to the actual value (even when the
With these observations in mind, it becomes apparent thatya| value ig).

for this application least-squares estimates do not erhane

J=0

Actual, ¢;-Regularized, and Polished. ,;

munity to the effects of system noise, and that things might b o
improved if we can incorporate additional prior informatio ol o 1
One straightforward approach would be to regularize thstiea op N
squares objective by afy penalization as in: T ‘ J ' E > 1
4& 0.1 N B
minimize fo(j1) + A O : 1
3 o
This well known technique, sometimes call&dkhonov reg- E
ularization is designed to tradeoff “closeness of fit” to the osr
observed data and the size of the reflection coefficientss Thi
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is a reasonable approach, since one is often interested it A

detecting small reflections. However, by solving (5) we can
simultaneously obtain estimates that are both small arld;epaFig. 3. Polishing example. The plot shows how the polishecectifin

which is a more desirable goal for fault detection in manysefficients..:, are significantly closer to the actual values than the oaigi
wiring systems. set of estimated coefficients.

B. Example D. The No-Fault Condition

To simulate the TDR measurement process, we begin byThis section presents how the selection\adetermines the
generating a sparse vector of reflection coefficignts R™ as no-fault condition i.e., all estimated reflection coefficients are
follows: zero).
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Fig. 2. A reflection coefficient estimation example. The estiomatesults for different values oko? are shown on the plot to the right. Note, that in all
cases most of the reflection coefficientgk) are zero as desired.

ROC Curve
We begin by defining the correlation signglk) as, 1 ‘ —————— B
n—1 0.9 o 7 - X///
Q sl 7 -7
k) = Vilg — k)Vi(9), 8 =l -7
y(k) E:: (G = k)Va () ® B s
=0 gf 0.6 4 -
> osf P >
For each value ofk, this signal measures the correlation G ,sl|
between the measured response, and the input signal shift & 0]
k units in time. L oafl
Using subgradient calculus it is readily shown the optima = o2}
solution to (5) isu = 0, if and only if oaly .7
0 fa(0 %f 01 02 03 04 05 06 07 08 09 1
IVfo(O)lloe = _max {' gjf )’} <A\ ) false positive rate
=0....,n— k

i inae Fig. 4. ROC performance curve. Tté corresponds to\oc? = 0, and the
For our prOblem this |mpI|es. ¢ corresponds to\o2 ~ 75, which is the value that causes the method to

y(k) report no faults along the wire (sé#ll-D).
CT2
This sensitivity condition simply states that if the bessea A 1€ad to fewer false positives (because we are encouraging

correlationy(k) to noise ratio is less thah, then the optimal SParsity) and as a consequence, more false negatives.
solution to (5) will indicate no faults on the line (of course Figure 4 also provides us with a way to make decisions

in reality faults may still be present). The condition cotlel about which value of\ we want to use. For example, if we
important for designing sensors that are less prone to ageid@quire a false positive rate of less thali (and consequently
tal tripping, but only if one can afford decreased sengitivi 2 {fué negative rate greater tha@s%), we might select

(and more false negative readings for smaller faults). This Ao~ = 0.5. With this setting now fixed, we evaluated the
further explored in the next section. estimation performance on a neast setof 50 more random

coefficient profiles and TDR response data. For this set of
10000 test points the false positive rate was34%, with a
E. Estimation Performance Example corresponding true negative error rate @f.6%. Figure 3

In this section Monte Carlo simulation is used to investiga@lready presented an example comparing the actual, estimat
how the selection oh affects our ability to correctly identify and polished reflection coefficients achieved with this eadii

the reflection coefficient profile. Ao?.

To do this we will continue to build on the previous
example withn = 200. First, a set ofl0 random reflection IV. SOLVING LARGE SCALE PROBLEMS
coefficient profiles, and corresponding TDR response data,The ¢;-regularized LSP (5) is readily solved for small to
were generated via the same process described earlji-B medium sized problems through any one of a variety of
(again with fixed noise standard deviatien= 0.02, and an existing solvers (most of which are available online under
input step voltage wave). For each measured response, te GNU Public License):.CvX [10], [11], MOSEK [12],
estimation problem (5) was solved for a series of valueBhe | 1- magi c [7], and LASSO [13], [14] to name a few. For
number of false positives (detected reflections that areead} exampleCVvX can handle problems with up to a few thousand
and false negatives (real reflections not detected) wenetedu reflection coefficients.
Figure 4 shows the Receiver Operating Characteristic (ROC)Here we consider using yet another solVet, | s [6]. This
curve for these results. As one might expect, larger valdes Mt | ab based solver uses a truncated Newton interior-point

<A forallk=0,1,....,.n—1. (10)




method that computes search directions with a precondition 2) Perform an element by element multiply betweeand
conjugate gradient algorithm [5]. Through these techrsque v (ordern).

I 1_I s allows us to solve our particular estimation problem 3) Computey by taking the inverse FFT of the result from
for a large number of reflection coefficienta (= 100000 step 2 (ordemlog(n)).

or more) by taking advantage of algorithms that efficientl

: Kiote that we never actually form the matricEsor diag(F'r)
compute convolution.

in this process. Furthermore, we also get an efficient method
for computingC” z, by simply noting that from equation (13)

A. Implementation we haveC = FH diag(Fr)F. Thus,
Thel 1_| s algorithm solves the generél-regularized LSP p—
problem: A cf =T = FH diag(Fr)F. (14)
minimize [|Az — y|3 + Allz||1, (11) Therefore, to computes”z, the same process enumerated

above is used, except in step 2 we multiply by the complex
rconjugate ofv.

To implement the causal (rather than circular) convolution
version of our problem we simply use zero padding. Specif-

with variablex € R™, given the observationg € R™, and
data matrixA € R™*". Clearly, this handles the estimatio
problem (5) we are interested in with = p, y = V,, A=
2)\c2, andA = V. Note thatA is ann x n convolution matrix

i 2nx2n : _
entirely determined by the input interrogation sigialk).  ically, we COQS.”UC'[C(T) € R by settingr = (V,0),
Conveniently, thel 1_| s routine allows one to overload where0 € R" is a vector with all zero elements. Thus, the

matrix multiplication by A and A7 (by creating a new causal part of the convolution (this iz with respect to the

Mat | ab object), when there is a more efficient way of 1_I s algorithm) is jl_Jst the firsth eITements ofCz, where
performing the calculation. This is important because thet ¢ © = (¢0). The same idea holds fa@r” . _ .
of solving (11), vial 1_I's, is dominated by the cost of Finally, we note for some specific input signdl, it is
performing matrix vector multiplies byd and AT, which €Vven possible to implement faster convolution than with the
is up to ordern? floating point operations (flops). However,FFT- A trivial example isVi(k) = d(k), whered(k) is the
it is often possible to achieve a substantial improvement 1yscrete delta function. In this case, we do not have to perfo
exploiting the structure inA. For our estimation problem, & convolution at all. Another example 15(k) = u(k), where
multiplication by A computes convolution, and multiplication®(¥) iS @ discrete step function. It is not hard to see that
by A7 computes correlation. As we will review in the nexiconvolution with this function can be computed in order
section, both of these operations are performed efficianitly  IOPS-
the FFT in ordemlog(n) flops.

C. Performance Example

B. Fast Convolution In this section we compare the performance betw&eX
This section reviews how the FFT algorithm is used tandl 1_I s (using efficient FFT convolution). To do this we
efficiently compute the convolution needed for our problemsolved our estimation problem (5) for increasing valueshef t

We start by defining theirculant Toeplitzmatrix C(r) as: problem sizen, and clocked the time taken to find the optimal
solution (on a 1.8GHz Intel Core Duo processor under 64-bit

To r—1 r—2 ... Ti—n Linux).
" [ e The measurement data was generated by the same method
C(r) = 2T 7o e T3en 0 (12)  presented ir§lll-B. This data was then used to estimate the
: : R : reflection coefficientsu, with A\o? = 1/2, for the different
Tnel Tn—2 Tn—3 ... To solvers. Figure 5 shows the dramatic improvement obtaiyed b

thel 1_I s solver for increasing values of. We note that the
solution time for thel 1_| s solver tends to vary, depending
onV;, and the actual number of nonzero reflection coefficients
t@{'s behavior is not expected @VvX). For the test cases we
ried, this variance was on the order of minutes for the large
values ofn. However, in general, the1l_| s method always
performed much better tha@vX.

wherer_; = r,,_;. With this definition it is not hard to see
that Cx computes the circular convolution betweere R™
(the first column ofC) and a vector: € R™ in ordern? flops.
We can, however, use the FFT to compute the same prod
in order3n log(n) flops, which is significantly less thaw? for
any appreciable value of. Let F € C™*" be the matrix that
computes the discrete Fourier transform of a vectd®in with
inverse ', the complex conjugate transposefof Using the
fact that the Fourier transform converts convolution intinee D. Real TDR Data Example

domain into multiplication in the frequency domain, we have This section presents one final examp|e using real TDR

y = Cz = F! diag(Fr)Fz. (13) data, cqllected frc_>m a one meter long sample of ajrcraft

cable with and without chaffing damage (a one centimeter

Thus, circular convolution is efficiently calculated viaeth section of the cable where the shielding is rubbed away). The

following steps: goal, obviously, is to use the reflected TDR signal to detect

1) Use the FFT to compute = Fz andv = Fr (order the presence of the chaff. Note, in this example the initial
2nlog(n)). assumptions we started with generally do not hald, (the



CvXandl 1_| s Solve Time
—— reflect derivatives of the input signal can be derived from
ol | 7 first principles (Maxwell's Equations), and readily incorp
‘ rated in to the approach described here. This is expected
= ] to significantly improve the performance of this method. In
2 | | addition, there are processing techniques that furtheznekt
| | the one presented here, to yield optimal estimates with even
J better sparsity characteristics, while simultaneouslgifig an
I ] effective \o? product (rather than requiring it to be specified

st | 1 or tuned ahead of time) [8], [15].

minutes
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A Real Chaffing Fault Detection Example
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Fig. 6. (Top) Measured input, and reflected voltage wavesrded with a digital TDR unit (Agilent 54754A). (Middle) Rection coefficienu(k) estimation
results using/ -regularized least squares, with= 1024, Ao? = 0.005, and At = 0.04 ns (the entire recorded signal is not shown). The large tidiec
coefficients to the left and right of the chaffing fault are sdi by the mismatched load and source impedance of the wire ctorme(Bottom) Reflection
coefficient 4(k) estimation results using Tikhonov regularized least squa® presented ifllI-A. Note, in this case the faulted region is not nearly as
apparent.
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