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Wiring Diagnostics via
ℓ1-Regularized Least Squares

Stefan Schuet,Member, IEEE

Abstract—A new method for detecting and locating wiring
damage using time domain reflectometry is presented. This
method employs existingℓ1 regularization techniques from con-
vex optimization and compressed sensing to exploit sparsity in
the distribution of faults along the length of a wire, while further
generalizing commonly used fault detection techniques based on
correlation and peak detection. The method’s effectiveness is
demonstrated using a simulated example, and it is shown how
Monte Carlo techniques are used to tune it to achieve specific
detection goals, like a certain false positive error rate. In addition,
this method is easily implemented by adapting readily available
optimization algorithms to quickly solve large, high resolution,
versions of this estimation problem. Finally, the technique is
applied to a real data set, which reveals its impressive ability
to identify a subtle type of chaffing damage on real wire.

Index Terms—diagnostics, fault detection, inverse scattering,
lossless media, sparsity, time domain reflectometry, TDR, wiring

I. I NTRODUCTION

T HIS paper considers the specific problem of detecting
faults in wiring systems using time domain reflectometry.

Generally, this is performed by launching a known signal into
a wire, and examining the signal reflected back for potential
issues (Figure 1 below). An important aspect of this technique
is that one can detect and locate wiring problems before hard
short or open conditions occur. One specific application is to
aircraft wiring systems that are hard to inspect visually, and
where it is critical to identify problems before components
start to fail. Wiring diagnostics aside, the general idea is
related to inverse scattering, which appears in many other
areas, including the identification of layered earth systems in
geology, and vocal tract area reconstruction in acoustics [1],
[2]. This problem is certainly not new, and has been studied
in various forms for more than half a century.

The setup is presented in Figure 1. A Time Domain Reflec-
tometer (TDR) is connected to the transmission line we want to
check, and is used to send a signal down the wire. The reflected
signal is then measured, and checked for anomalies that might
indicate possible wiring problems along the line. For example,
consider a simple case where the original transmission lineis
perfect (and has matched source and load impedance). In this
case, we will see the incident signal pass right through the line
without receiving any reflected signal back. Now imagine that
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during the course of its lifetime, the outer shielding alonga
section of the wire is damaged, a common problem with aging
aircraft caused by decades of wires rubbing together, among
other things. This sort of damage will cause the incident
voltage wave to reflect and travel back along the line where it
will be measured by the TDR.

Existing methods for detecting wiring problems often fall
into one of two categories. The first category contains tech-
niques that solve the transmission line partial differential equa-
tions, using discrete or continuous methods, and then simply
invert the solution process without incorporating the effects
of measurement noise [2], [3]. The second category consists
of methods that use simple linear models, which account
for noise, and apply various least-squares based techniques,
such as Kalman filtering [1]. Furthermore, some current de-
velopments in this field are focused on using specific spread
spectrum TDR (SSTDR) input signals that can interrogate a
wire for faults in live systems [4]. For these systems, fault
sensing is typically performed by using a standard correlation
technique, which is optimal in some sense when no other
information is available to improve detection capability.

In this paper, we develop an improved method that also uses
a linear model, but in addition to noise, directly accounts for
the prior information that wiring faults are generally sparsely
populated along the line. This method is extremely effective,
and seems to be new to the field of time domain reflectometry.
Furthermore, the application of this technique is described
in general terms that are readily applicable to any particular
input interrogation signal, which should hopefully allow the
technique to find immediate practice in existing systems.

This paper is organized as follows. First we present a
linear model for the TDR setup and measurement process just
described. Next, the problem of detecting the location and
severity of wiring damage is posed as an estimation problem,
and a heuristic is introduced to find effective solutions to the
original problem, by solving a convex optimization problem.
Finally, we will show how the Fast Fourier Transform (FFT)
makes it possible to efficiently solve large-scale problems.
Numerical examples are presented along the way, including
one that uses real TDR data.

II. A L INEAR TDR MODEL

We assume the transmission line or just wire is lossless
(and hence also distortionless), that any voltage wave traveling
through it moves at constant velocity, and that the line is
initially quiescent. To simplify the conceptual discussion, we
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Fig. 1. Basic TDR Setup. The TDR interrogates the wire with input signalVi(t), which propagates along the wire and reflects off of impedancediscontinuities
caused by damage. The reflected signal,Vr(t), is measured at the input of the wire and used to determine the location and severity of the damage.

also assume that the load and source impedance are matched
to prevent significant reflection from the ends of the line.

We consider the following discrete convolution model for
the TDR measurement process:

Vr(k) =

n−1
∑

j=0

µ(j)Vi(k − j) + η(k), (1)

where for k = 0, 1, 2, . . . , n − 1, Vr(k) is the measured
response,µ(k) is a series of impulse responsereflection
coefficientsthat characterize the damaged wire,Vi(k) is the
known incident wave launched into the transmission line, and
η(k) is random measurement noise. This model has a simple
interpretation: the measured signal is the sum of time shifted
and scaled replicas of the input signalVi(k), plus noise.

The model can represent either causal or circular (periodic)
convolution. For circular convolution we putVi(−k) = Vi(n−
k). For causal convolution, we simply defineVi(k) = 0 for
all k < 0. Obviously, for either caseVr(k) must get the same
treatment.

It is both instructive and notationally convenient to rewrite
(1) in an equivalent matrix vector form:

vr = V µ + η (2)

where,

vr = [Vr(0), . . . , Vr(n − 1)]T

µ = [µ(0), . . . , µ(n − 1)]T

η = [η(0), . . . , η(n − 1)]T

and,

V =













Vi(0) Vi(−1) . . . Vi(1 − n)

Vi(1) Vi(0)
. ..

...
...

...
. .. Vi(−1)

Vi(n − 1) Vi(n − 2) . . . Vi(0)













.

So,vr, µ, andη ∈ Rn. V is a Toeplitz matrix inRn×n entirely
determined by the input signalVi(k).

III. REFLECTION COEFFICIENTESTIMATION

Nonzero values ofµ(k) indicate the location and severity
of faults along the wire. Given the prior information that

wires are typically undamaged for most of their length, except
perhaps at a few locations, the reflection coefficient vectorµ
should contain only a few nonzero values. In other words, we
expectµ to be sparse. Thus, we are interested in solving the
optimization problem:

minimize f0(µ)
subject to µ sparse,

(3)

where,

f0(µ) =
1

2σ2
‖V µ − vr‖

2 (4)

is the objective representing the negative log-likelihoodof
observing the signalVr given µ, under the assumption that
the noiseη(k) is IID N(0, σ2).

One heuristic to handle the rather vague sparsity constraint
in (3), is to add anℓ1-norm penalty to the objective. This
regularization technique is well known to produce sparse
solutions (see [5]–[8] and [9]§6.3.2). To this end, we consider
solving the convexℓ1-regularized least squares problem (LSP):

minimize f0(µ) + λ‖µ‖1, (5)

with ℓ1-norm defined as‖µ‖1 =
∑n−1

j=0
|µ(j)|. Intuitively, the

solution is sparse because in the process of finding an optimal
solution, the solver will routinely reduce a small coefficient
identically to zero at the cost of increasing the associated
squared errorf0(µ) by a smaller amount. The key observation
is perhaps that square error measured byf0 stays relatively
flat near a minimum, while absolute error measured by|µ(k)|
decreases to zero at a constant rate and does not level off (it
is also not differentiable atµ(k) = 0 for eachk). Please see
the references just cited for more examples and discussion.

The parameterλ ≥ 0 adjusts the trade-off between sub-
optimality in the likelihood of the measured response, and
the sparsity ofµ. Since effective values ofλ for a given
problem depend on the measurement noise varianceσ2, we
will frequently specify the productλσ2 (rather than justλ) to
highlight the interdependence between these two constants.

The fact that (5) is a convex optimization problem is an
important feature for practical applications. Primarily,it means
the optimal solution can be computedglobally, in a robust and
efficient manner [9].
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A. Relation to Least-Squares and Correlation Detectors

To see that (5) is a generalization of the least-squares
problem we need only setλ = 0. In this case, the optimal
solution is well known:µ⋆ = (V T V )−1V T vr, assuming
(V T V )−1 exists. From here we observe two things.

The first is that for our problemV ∈ Rn×n, so in the best
case scenarioV is full rank, and the optimal least-squares
solution simplifies toµ⋆ = V −1vr (and f0(µ

⋆) = 0). Un-
fortunately with this approach, we are makingn observations
corrupted byn independent noise terms (i.e., η(k)), which
leaves us with no “redundancy” for obtaining a robust estimate
and places it at the mercy of the measurement noise. What’s
worse is that sometimes in practice, when the actualVi(k)
generated by the TDR hardware is measured,V becomes
ill-conditioned or not even full rank, which makes reliably
estimatingµ extremely problematic if not impossible. In fact,
this approach is no better than inversion techniques that do
not at all account for noise in the measurement and modeling
process (e.g., theµ that minimizesf0, which accounts for the
presence of noise, is the sameµ one gets by removing the
noise termη from (2) and solving forµ directly).

The second observation is that if the columns ofV are
orthogonal (so thatV T V = I), then the least-squares estimate
reduces toµ⋆ = V T vr, which when written out becomes the
familiar discrete equation for the correlation between theinput
and output signals:

µ⋆(k) =

n−1
∑

j=0

Vi(j − k)Vr(j), (6)

This is a common detection technique employed in practice.
For example, by selecting a pseudo-noise sequence forVi(k),
one can satisfy the orthogonality condition (but only approx-
imately in the finite causal discrete case), and we have the
beginnings of the SSTDR systems that can detect faults on
live wires, see [4].

With these observations in mind, it becomes apparent that
for this application least-squares estimates do not enhance im-
munity to the effects of system noise, and that things might be
improved if we can incorporate additional prior information.
One straightforward approach would be to regularize the least-
squares objective by anℓ2 penalization as in:

minimize f0(µ) + λ‖µ‖2 (7)

This well known technique, sometimes calledTikhonov reg-
ularization, is designed to tradeoff “closeness of fit” to the
observed data and the size of the reflection coefficients. This
is a reasonable approach, since one is often interested in
detecting small reflections. However, by solving (5) we can
simultaneously obtain estimates that are both small and sparse,
which is a more desirable goal for fault detection in many
wiring systems.

B. Example

To simulate the TDR measurement process, we begin by
generating a sparse vector of reflection coefficientsµ ∈ Rn as
follows:

1) Randomly pick an integerN between0 and 10 (with
equal probability).N is the number of faults on the wire.

2) Draw N random reflection coefficients from a uniform
distribution on[−0.5, 0.5].

3) Assign the coefficients toN randomly chosen (equally
probable) locations inµ, and set all other elements to
zero.

Next, n measurements of the reflected signalVr(k), for k =
0, 1, 2, . . . , n−1, are obtained by using the TDR measurement
model (1), with some specified input signalVi(k). This method
is used to generate simulated TDR data for the rest of the
paper.

Consider an example withn = 200. The above procedure
was used to generate a sparse reflection coefficient vectorµ ∈
R200, and a measurement of the reflected signalVr(k), from
a unit step input signalVi(k), and measurement noiseσ =
0.02. The ℓ1-regularized LSP (5) was then solved for several
different values ofλ usingCVX, a package for specifying and
solving convex programs [10], [11]. The results are plottedin
Figure 2.

C. Polishing

The previous example shows that for larger values ofλ, the
estimated reflection coefficients appear in the correct location,
but typically have reduced amplitude (see Figure 2). This can
be viewed as an artifact of theℓ1-norm penalty function, since
it favors smaller elements inµ.

A simple technique calledpolishingalleviates this problem,
simply by solving the original problem (3) with the spar-
sity pattern obtained from the solution to theℓ1-regularized
heuristic (5). Of course, when problem (3) has a fixed sparsity
pattern, it becomes a simple least-squares problem.

Figure 3 shows the effect of polishing on the previous
example (for the largest value ofλ considered). Note, at least
in this case, the technique almost always does the right thing:
µest(k) is brought closer to the actual value (even when the
actual value is0).
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Fig. 3. Polishing example. The plot shows how the polished reflection
coefficientsµest, are significantly closer to the actual values than the original
set of estimated coefficients.

D. The No-Fault Condition

This section presents how the selection ofλ determines the
no-fault condition (i.e., all estimated reflection coefficients are
zero).
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Fig. 2. A reflection coefficient estimation example. The estimation results for different values ofλσ2 are shown on the plot to the right. Note, that in all
cases most of the reflection coefficientsµ(k) are zero as desired.

We begin by defining the correlation signaly(k) as,

y(k) =
n−1
∑

j=0

Vi(j − k)Vr(j), (8)

For each value ofk, this signal measures the correlation
between the measured response, and the input signal shifted
k units in time.

Using subgradient calculus it is readily shown the optimal
solution to (5) isµ = 0, if and only if

‖∇f0(0)‖∞ = max
k=0....,n−1

{∣

∣

∣

∣

∂f0(0)

∂µk

∣

∣

∣

∣

}

≤ λ. (9)

For our problem this implies:
∣

∣

∣

∣

y(k)

σ2

∣

∣

∣

∣

≤ λ for all k = 0, 1, ..., n − 1. (10)

This sensitivity condition simply states that if the best case
correlationy(k) to noise ratio is less thanλ, then the optimal
solution to (5) will indicate no faults on the line (of course
in reality faults may still be present). The condition couldbe
important for designing sensors that are less prone to acciden-
tal tripping, but only if one can afford decreased sensitivity
(and more false negative readings for smaller faults). Thisis
further explored in the next section.

E. Estimation Performance Example

In this section Monte Carlo simulation is used to investigate
how the selection ofλ affects our ability to correctly identify
the reflection coefficient profile.

To do this we will continue to build on the previous
example withn = 200. First, a set of10 random reflection
coefficient profiles, and corresponding TDR response data,
were generated via the same process described earlier in§III-B
(again with fixed noise standard deviationσ = 0.02, and an
input step voltage wave). For each measured response, the
estimation problem (5) was solved for a series of valuesλ. The
number of false positives (detected reflections that are notreal)
and false negatives (real reflections not detected) were counted.
Figure 4 shows the Receiver Operating Characteristic (ROC)
curve for these results. As one might expect, larger values of
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Fig. 4. ROC performance curve. The� corresponds toλσ2 = 0, and the
♦ corresponds toλσ2 ≃ 75, which is the value that causes the method to
report no faults along the wire (see§III-D).

λ lead to fewer false positives (because we are encouraging
sparsity) and as a consequence, more false negatives.

Figure 4 also provides us with a way to make decisions
about which value ofλ we want to use. For example, if we
require a false positive rate of less than5% (and consequently
a true negative rate greater than95%), we might select
λσ2 = 0.5. With this setting now fixed, we evaluated the
estimation performance on a newtest setof 50 more random
coefficient profiles and TDR response data. For this set of
10000 test points the false positive rate was2.34%, with a
corresponding true negative error rate of97.6%. Figure 3
already presented an example comparing the actual, estimated,
and polished reflection coefficients achieved with this value of
λσ2.

IV. SOLVING LARGE SCALE PROBLEMS

The ℓ1-regularized LSP (5) is readily solved for small to
medium sized problems through any one of a variety of
existing solvers (most of which are available online under
the GNU Public License):CVX [10], [11], MOSEK [12],
l1-magic [7], and LASSO [13], [14] to name a few. For
exampleCVX can handle problems with up to a few thousand
reflection coefficients.

Here we consider using yet another solver,l1_ls [6]. This
Matlab based solver uses a truncated Newton interior-point
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method that computes search directions with a preconditioned
conjugate gradient algorithm [5]. Through these techniques,
l1_ls allows us to solve our particular estimation problem
for a large number of reflection coefficients (n = 100000
or more) by taking advantage of algorithms that efficiently
compute convolution.

A. Implementation

Thel1_ls algorithm solves the generalℓ1-regularized LSP
problem:

minimize ‖Ax − y‖2

2
+ λ̂‖x‖1, (11)

with variable x ∈ Rn, given the observationsy ∈ Rm, and
data matrixA ∈ Rm×n. Clearly, this handles the estimation
problem (5) we are interested in withx = µ, y = Vr, λ̂ =
2λσ2, andA = V . Note thatA is ann×n convolution matrix
entirely determined by the input interrogation signalVi(k).

Conveniently, thel1_ls routine allows one to overload
matrix multiplication by A and AT (by creating a new
Matlab object), when there is a more efficient way of
performing the calculation. This is important because the cost
of solving (11), via l1_ls, is dominated by the cost of
performing matrix vector multiplies byA and AT , which
is up to ordern2 floating point operations (flops). However,
it is often possible to achieve a substantial improvement by
exploiting the structure inA. For our estimation problem,
multiplication byA computes convolution, and multiplication
by AT computes correlation. As we will review in the next
section, both of these operations are performed efficientlywith
the FFT in ordern log(n) flops.

B. Fast Convolution

This section reviews how the FFT algorithm is used to
efficiently compute the convolution needed for our problem.

We start by defining thecirculant Toeplitzmatrix C(r) as:

C(r) =















r0 r−1 r−2 . . . r1−n

r1 r0 r−1 . . . r2−n

r2 r1 r0 . . . r3−n

...
...

...
. . .

...
rn−1 rn−2 rn−3 . . . r0















, (12)

wherer−k = rn−k. With this definition it is not hard to see
that Cx computes the circular convolution betweenr ∈ Rn

(the first column ofC) and a vectorx ∈ Rn in ordern2 flops.
We can, however, use the FFT to compute the same product

in order3n log(n) flops, which is significantly less thann2 for
any appreciable value ofn. Let F ∈ Cn×n be the matrix that
computes the discrete Fourier transform of a vector inRn, with
inverseFH , the complex conjugate transpose ofF . Using the
fact that the Fourier transform converts convolution in thetime
domain into multiplication in the frequency domain, we have:

y = Cx = FH diag(Fr)Fx. (13)

Thus, circular convolution is efficiently calculated via the
following steps:

1) Use the FFT to computeu = Fx and v = Fr (order
2n log(n)).

2) Perform an element by element multiply betweenu and
v (ordern).

3) Computey by taking the inverse FFT of the result from
step 2 (ordern log(n)).

Note that we never actually form the matricesF or diag(Fr)
in this process. Furthermore, we also get an efficient method
for computingCT x, by simply noting that from equation (13)
we haveC = FH diag(Fr)F . Thus,

CH = CT = FH diag(Fr)F. (14)

Therefore, to computeCT x, the same process enumerated
above is used, except in step 2 we multiply by the complex
conjugate ofv.

To implement the causal (rather than circular) convolution
version of our problem we simply use zero padding. Specif-
ically, we constructC(r) ∈ R2n×2n by settingr = (Vi,0),
where0 ∈ Rn is a vector with all zero elements. Thus, the
causal part of the convolution (this isAx with respect to the
l1_ls algorithm) is just the firstn elements ofCx̂, where
x̂ = (x,0). The same idea holds forCT x̂.

Finally, we note for some specific input signalsVi, it is
even possible to implement faster convolution than with the
FFT. A trivial example isVi(k) = δ(k), where δ(k) is the
discrete delta function. In this case, we do not have to perform
a convolution at all. Another example isVi(k) = u(k), where
u(k) is a discrete step function. It is not hard to see that
convolution with this function can be computed in ordern
flops.

C. Performance Example

In this section we compare the performance betweenCVX
andl1_ls (using efficient FFT convolution). To do this we
solved our estimation problem (5) for increasing values of the
problem sizen, and clocked the time taken to find the optimal
solution (on a 1.8GHz Intel Core Duo processor under 64-bit
Linux).

The measurement data was generated by the same method
presented in§III-B. This data was then used to estimate the
reflection coefficientsµ, with λσ2 = 1/2, for the different
solvers. Figure 5 shows the dramatic improvement obtained by
thel1_ls solver for increasing values ofn. We note that the
solution time for thel1_ls solver tends to vary, depending
on Vi, and the actual number of nonzero reflection coefficients
(this behavior is not expected ofCVX). For the test cases we
tried, this variance was on the order of minutes for the larger
values ofn. However, in general, thel1_ls method always
performed much better thanCVX.

D. Real TDR Data Example

This section presents one final example using real TDR
data, collected from a one meter long sample of aircraft
cable with and without chaffing damage (a one centimeter
section of the cable where the shielding is rubbed away). The
goal, obviously, is to use the reflected TDR signal to detect
the presence of the chaff. Note, in this example the initial
assumptions we started with generally do not hold (i.e., the
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Fig. 5. Comparison betweenCVX and l1_ls for solving large-scale
reflection coefficient estimation problems.

cable is not distortionless, and the source and load impedance
are not even close to matched). Nevertheless, the reflection
coefficient estimation method works, allowing us to detect and
locate a very subtle type of damage. The detection succeeds
without using any additional processing or baseline informa-
tion (e.g., like subtracting the TDR response of the undamaged
wire). That is important because in many applications baseline
information is unreliable. Our efficientl1_ls based solver
was used to find the optimal reflection coefficient estimate.
The results are plotted in Figure 6, along with an example
that uses Tikhonov regularization (as explained in§III-A) for
comparison.

V. CONCLUSION

In this paper we have described a method for detecting and
locating wiring damage using TDR measurement data. Unlike
some other (more general) methods, this one uniquely takes
advantage of the fact that faults are often sparsely located
along the length of the wire. We demonstrated the effectiveness
of our method on a simulated example, and showed how
Monte Carlo simulation might be used to tune it (by selecting
λ) to achieve specific detection goals (like a certain false posi-
tive error rate). In addition, we saw that preexisting algorithms,
like l1_ls, can be adapted to efficiently solve large-scale
(high resolution) versions of our estimation problem. Finally,
we applied the method to actual TDR data and revealed its
impressive ability to identify a very subtle type of damage.It
is hoped the fault detection method presented here will serve
as a straightforward improvement to existing techniques that
is readily put into practice.

FUTURE WORK

The largest improvements in the domain of TDR based
wire fault detection will perhaps come through more refined
physics based models for signal propagation through general
wire types (not just the lossless kind considered here). This
important research is being actively pursued by at least a
couple of communities, and is expected to yield increasingly
effective fault detection methods, some of which are quite
different from the one presented here.

For this work, physical models accounting for both prop-
agation loss and the fact that faults in real systems tend to

reflect derivatives of the input signal can be derived from
first principles (Maxwell’s Equations), and readily incorpo-
rated in to the approach described here. This is expected
to significantly improve the performance of this method. In
addition, there are processing techniques that further extend
the one presented here, to yield optimal estimates with even
better sparsity characteristics, while simultaneously finding an
effectiveλσ2 product (rather than requiring it to be specified
or tuned ahead of time) [8], [15].
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Fig. 6. (Top) Measured input, and reflected voltage waves, recorded with a digital TDR unit (Agilent 54754A). (Middle) Reflection coefficientµ(k) estimation
results usingℓ1-regularized least squares, withn = 1024, λσ2 = 0.005, and∆t = 0.04 ns (the entire recorded signal is not shown). The large reflection
coefficients to the left and right of the chaffing fault are caused by the mismatched load and source impedance of the wire connectors. (Bottom) Reflection
coefficient µ(k) estimation results using Tikhonov regularized least squares as presented in§III-A. Note, in this case the faulted region is not nearly as
apparent.
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