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In the presence of large uncertainties, a control system nes to be able to adapt rapidly to regain per-
formance. Fast adaptation is referred to the implementatio of adaptive control with a large adaptive gain to
reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which
can adversely affect robustness of an adaptive control lawA new adaptive control modification is presented
that can achieve robust adaptation with a large adaptive gai without incurring high-frequency oscillations as
with the standard model-reference adaptive control. The mdification is based on the minimization of the.%
norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is
used to derive the modification using the gradient method. Tl optimal control modification results in a stable
adaptation and allows a large adaptive gain to be used for begr tracking while providing sufficient stability
robustness. Simulations were conducted for a damaged gernietransport aircraft with both standard adaptive
control and the adaptive optimal control modification techrique. The results demonstrate the effectiveness of
the proposed modification in tracking a reference model whi¢ maintaining a sufficient time delay margin.

[. Introduction

Adaptive control is a potentially promising technologyttiban improve performance and stability of a conven-
tional fixed-gain controller. In recent years, adaptivetogrhas been receiving a significant amount of attention. In
aerospace applications, adaptive control has been deratatstn a number of flight vehicles. For example, NASA
has recently conducted a flight test of a neural net inteiligiight control system on board a modified F-15 test
aircraft! The U.S. Air Force and Boeing have successfully developedzampleted numerous flight tests of direct
adaptive control on Joint Direct Attack Munitions (JDANIY.he ability to accommodate system uncertainties and to
improve fault tolerance of a control system is a major sglfinint of adaptive control since traditional gain-schéuyl
or fixed-gain control methods are viewed as being less capdliiandling off-nominal operating conditions outside
of a normal operating envelope. Nonetheless, these waditcontrol methods tend to be robust to disturbances and
unmodeled dynamics when operated as intended.

In spite of the advances made in the field of adaptive continere are several challenges related to the imple-
mentation of adaptive control technology in aerospaceegyst These challenges include but are not limited to: 1)
robustness in the presence of unmodeled dynanaied exogenous disturbances; 2) stability metrics of adaptin-
trol as related to adaptive gain and input signals; 3) adiaptén the presence of actuator dynamic constraints; 4)
on-line reconfiguration and control reallocation using+ti@ditional control effectors; and 5) time-scale separein
actuator systems with different time latency.

The absence of the verification and validation methods optagacontrol systems remain a major hurdle to the
implementation of adaptive control in safety-critical ®ms*® This hurdle can be traced to the lack of performance
and stability metrics for adaptive control which poses aanahallenge that prevents adaptive control from being
implemented in safety critical systems. The developmewngdfiable metrics for adaptive control will be importantin
order to mature adaptive control technology for use in amral safety-critical systems. Of these, stability netiof
adaptive control are an important consideration for agsgsystem robustness to unmodeled dynamics and exogenous
disturbances. In one aspect of verification and validatiazgntrol system is usually certified by demonstrating that i
meets an acceptable set of requirements or specificatioatatuility margins, among other things. Herein lies a major
challenge for verification and validation as there is notaxgsstandard tool for stability margin analysis of nonkne
adaptive control. The lack of stability metrics for adaptzontrol is viewed as a technology barrier to developing
certifiable adaptive control for safety-critical systefrs.

*Research Scientist, Intelligent Systems Division, Mail5269-1, AIAA Associate Fellow
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Over the past several years, various model-referenceigdaphtrol (MRAC) methods have been investigatet®.

The majority of MRAC methods may be classified as direct,rgatj or a combination thereof. Indirect adaptive
control methods are based on identification of unknown ptanémeters and certainty-equivalence control schemes
derived from the parameter estimates which are assumedtteivérue values® Parameter identification techniques
such as recursive least-squares and neural networks haweulsed in indirect adaptive control methdd#n con-
trast, direct adaptive control methods directly adjusttadmparameters to account for system uncertainties withou
identifying unknown plant parameters explicitly. MRAC rhetls based on neural networks have been a topic of great
research intere$t:1° Feedforward neural networks are capable of approximatienaric class of nonlinear functions
on a compact domain within arbitrary tolerariéehus making them suitable for adaptive control applicatidn par-
ticular, Rysdyk and Calise described a neural net diregbtadacontrol method for improving tracking performance
based on a model inversion control architecifighis method is the basis for the intelligent flight contraétgm that

has been developed for the F-15 test aircraft by NASA. Jaesal. introduced a pseudo-control hedging approach
for dealing with control input characteristics such as atiusaturation, rate limit, and linear input dynamido-
vakimyan et al. developed an output feedback adaptive aotatraddress issues with parametric uncertainties and
unmodeled dynamic¥. Cao and Hovakimyan developed & adaptive control method to address high-gain con-
trol.13 Nguyen et al. developed a hybrid direct-indirect adaptivetol to also deal with high-gain control issues
during adaptation.

While adaptive control has been used with success in a nuofilbeplications, the possibility of high-gain control
due to fast adaptation can be an issue. In certain applicatfast adaptation is needed in order to improve tracking
performance when a system is subject to a large source oftairdées such as structural damage to an aircraft that
could cause large changes in system dynamics. In theséiaitsiza large adaptive gains can be used in the adaptation
in order to reduce the tracking error rapidly. However, ¢htgpically exists a balance between stability and adaptati
It is well known that high-gain control or fast adaptatiomaasult in high-frequency oscillations which can excite
unmodeled dynamics that could adversely affect the stalifi an MRAC lawl® Recognizing this, some recent
adaptive control methods have begun to address high-gainotosuch as thez; adaptive contrdf and the hybrid
direct-indirect adaptive contrdf. In the former approach, the use of a low-pass filter effeltipeevents any high
frequency oscillation that may occur due to fast adaptatioso doing, the reference model is no longer preserved and
instead must be reconstructed using a predictor model.eltatter approach, direct and indirect adaptive control are
blended together within the same control architecture. imtlieect adaptive law is based on a recursive least-squares
parameter estimation that is used to adjust parameters @fiénal controller to reduce the modeling error, and any
remaining tracking error signal could then be handled byectiadaptive law with a smaller adaptive gain.

Various modifications were developed to increase robustoEMRAC by adding damping to the adaptive law.
Two well-known modifications in adaptive control are tienodificatior® ande;- modification!® These modifica-
tions have been used extensively in adaptive control. Tagepintroduces a new adaptive law based on an optimal
control formulation to minimize thez, norm of the tracking error. The optimality condition resulh a damping
term proportional to the persistent excitation. The analghows that the adaptive optimal control modification can
allow fast adaptation with a large adaptive gain withoutsitag high-frequency oscillations and can provide improved
stability robustness while preserving the tracking pemiance.

This paper is organized in two major sections. The first eads devoted entirely to the theoretical development
of the new adaptive optimal control law which includes a Lyagv stability proof and a derivation of an upper bound
of the tracking error. The second section demonstratesaigabimplementation of the optimal control modification
in a neural net adaptive flight control architecture for a dged generic transport aircraft. Simulation results are
presented to demonstrate potential benefits of the newiadaointrol law.

20f20

American Institute of Aeronautics and Astronautics



[I.  Theory of Optimal Control Modification

—— | Reference Model

e ,
( )—» C/ontraler Plant

Controller Gain

Direct MRAC

Fig. 1 - Direct MRAC

A direct MRAC problem is posed as follows:
Given a nonlinear plant as
X=Ax+Bu+ f ()] Q)

wherex(t) : [0,0) — R" is a state vectoy(t) : [0,0) — RP is a control vectorA € R"™" andB € R™P are known
such that the paifA, B) is controllable, and (x) : R" — RP is a bounded unstructured uncertainty.
Assumption 1: The uncertaintyf (x) can be approximated using a feedforward neural networkeridhm

(0= 3 @00+ £~ 0000 +£(0 @

where®* € R™P is an unknown constant weight matrix that represents a petranuncertainty® (x) : R" — R™is
a vector of known bounded basis functions with Lipschitzlimaarity, ands (x) : R" — RP is an approximation error.
Since® () is Lipschitz, then

[P (X) = ® (x0)[| < Cx—Xol| ®)
for some constar® > 0, which implies a bounded partial derivative
0P (x)
— <
222

for some constarit > 0.

The set of basis function® (x) is chosen such that the approximation eg@x) becomes small on a compact
domainx € R". The universal approximation theorem for sigmoidal neunetivorks by Cybenko can be used for
selecting a good set of basis functioh$x).” Alternatively, the Micchelli’s theorem provides theoceti basis for a
neural net design @® " @ (x) using radial basis functions to keep the approximationrerta) small°

Assumption 2: The set of basis function(x) satisfies the persistent excitation (PE) condition for samer;, To >

0
1 t+To

al > = ®(x(1))®T (x(1))dT > aol, ¥t >0 (5)
0t

wherel is an identity matrix.
The objective is to design a controller that enables thetpéafollow a reference model

Xm - Ame + er (6)

whereAn € R™"is Hurwitz and knownBp, € R™P is also known, and(t) : [0,») — RP € %, is a command vector
with f € Z.
Defining the tracking error as= xn — X, then the controlleu (t) is specified by

U= KX+ KT — Usg (7)
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whereKy € RP*" andK; € RP*P are known nominal gain matrices, ang € RP is a direct adaptive signal.
Then, the tracking error equation becomes

&= %n— X = Ane+ (Am— A— BKy) X+ (Bm— BK)r +B [uad — 0T (x) - e(x)] 8)

We choose the gain matric&g andK; to satisfy the model matching conditioAst BKyx = Ay, andBK; = By,
The adaptive signalyq is an estimator of the parametric uncertainty in the planhghat

Uag = @' ®(X) 9)

where® € R™P is an estimate of the parametric uncertaiéty
Let © = © — ©* be an estimation error of the parametric uncertainty. Thenttacking error equation can be
expressed as

ezAme+B(éTq>—e) (10)
Proposition 1: The following adaptive law provides an update law that mi|2|'ﬂf1s1||e||$2

O=—To (eTP— VCDTG)BTPA(nl) B (11)

wherel =TT > 0 € R™™M is an adaptive gain matrix, > 0 € R is a weighting constant, arl= P" > 0 € R™"
solves

PAn+ALP=—-Q (12)

whereQ=Q" >0 R™",
Proof: The adaptive law seeks to minimize the cost function

1

ts T
3:5/0 (e—A) Q(e—A)dt (13)

subject to Eqg. (10) wher& represents the tracking errortat t;.
Jis convex and represents the distance measured from thehsunface of a balB; with a radiusA.

0‘ e (to)

e(t)

Fig. 2 - Tracking Error Bound

This optimal control problem can be formulated by the Paadig’s Minimum Principle. Defining a Hamiltonian

H(e0) = % (e—A)'Q(e—A)+p' (Ame+ BO'd— Be) (14)

wherep(t) : [0,0) — R" is an adjoint variable, then the necessary condition gives
p=-0He =-Q(e~2)—Ayp (15)
with the transversality conditiop (tf) = 0 sincee(0) is known. The optimality condition is obtained by

OHgr = ®OHgr, = Pp' B (16)
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The adaptive law is formulated by the gradient method as
O=-TOHgr = —Tdp'B (17)

The solution ofp can be obtained using a “sweeping” metkoily letting p = Pe+ SO ®. Then

: : dOTe
Pe+ P(Ame+ BO'®—BO* d— Be) 1o+ s% = Qe—0)—Al (Pe+ S@TCD) (18)
which yields the following equations _
P+PAL+ALP+Q=0 (19)
S+PB+ALS=0 (20)
d@ o
QA— s% +PB (e*Tq>+ e) -0 (1)

subject to the transversality conditioRgt;) = 0 andS(t;) = 0.

The existence and uniqueness of the solution of the Lyapdiftarential equation (19) is well-established. It
follows that Eq. (20) also has a stable, unique solutionmretto-gor =ty —t.

Sincer € %, ® is bounded and Lipschitz, armi(tf) = 0 from the transversality condition, then gs— oo,
lim, .o |d (©" @) /dt]| exists, where

Jim, _t!iinm‘—BTp(tf)CDTqu—l-eTZ—i) [xm—B(éch—s)H

dt

d(©'o) |

< lim ‘@TLf [—A;nler _B (éTqa _ e)} ‘ —a (22
f—
for some constant vectag > 0 € R", and.# € R™" is a matrix whose elements are all equal to one.
Consider an infinite time-horizon problemtas— o, thenP(t) — P(0) andS(t) — S(0). The constant solutions
of P andSare determined by their steady state values from Eqgs. (1Dj20) that give

PAm+ALP=—-Q (23)
S=-A,'PB (24)

The adjointp is then obtained as
p=Pe— VA, PBO'® (25)

wherev is introduced as a weighting constant to allow for adjustimenthe second term in the adaptive law. Since
©* is constant, then the adaptive law (11) is obtained from E&8).and (25).
Definingd; = sup €| and¢ = sup |©* " ®|, then forv = 1 the unknown tracking errdx att = t; — « is bounded

by
Amax (P) [|B]| i }
Al < ———F— + %)+ ——F—— 26
whereA ando denote the eigenvalue and singular value, respectively.
[

Theorem 1: The adaptive law (11) results in stable and uniformly bouhtdacking error outside a compact set

W= {e,éaneR”:/\m-n(Q) [(||e|\ —Al)z—Aﬂ +v)\m(BTA,;TQA,;lB) [(HéTq:H —Az)z—Ag} < o} @27)

where Amax (P) [|BJ| |9l
Mm@ -
Tpa—1
, O (BTPAGB) 9] (29)
)\m’n (BTAE‘ITQAFnlB)
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Proof: Choose a Lyapunov candidate function
V=e'Pe+ trace(c:)Tl'*lc:)) (30)
EvaluatingV yields
V =€ (AnP+PAy) e+2e' PB (éTcD - e) - 2trace[c?fq> (eT PB — VCDT@BTPA,#B)} (31)
Using the trace identity tradé" B) = BA', V can be written as
V =—e'Qe+2e'PB (éan - e) —2e'PBO @+ 2vd OB PA-IBO (32)
The sign-definiteness of the terPA;! is now considered. We recall that a general real magiis positive
(negative) definite if and only if its symmetric padt= % (G+ GT) is also positive (negative) definite. Then, by pre-

and post-multiplication of Eq. (12) b4, andA;!, respectivelyPA,! can be decomposed into a symmetric part
and anti-symmetric pal as

PALL=M+N (33)

where ! (A;nTPJr PA;nl) B —}AFnTQArBl (34)
~2 ~ 2

N = % (PA,;l—Ar;TP) : (35)

Since the symmetric paM < 0, we conclude tha@A! < 0. ThenV becomes
V=-e'Qe—2e"PBe — v OB'A; QA IBO d+ 2vd OB NBO ' d + 2vdTO*'BTPAIBOT®  (36)
Lettingy = BO'® and using the property’ Ny = 0 for an anti-symmetric matriX, V is reduced to
V=—e'Qe—2e"PBe—vd'OB'A, QA BO'®+2vd ©*BTPA'BO ® (37)
which is bounded by
V < Arin (@) 6] + 2] e (P) [B] 4]~ vAwin (B7 A QA 1B) |67
+2vome (BTPAL'B) [0 70| |60 (38)

By completing the squares, an upper bount ¢ obtained as

V < —Anin(Q) [(Hen —Al)z—Aﬂ ~ VAmin (BTA,;TQA;ﬂls) {(Hé%” —AZ)Z—A%: (39)

If # is a compact set defined in Eq. (27), then the time rate of ahahghe Lyapunov candidate function is
strictly semi-negative in the complementary %€t and positive in the compact s¢t. Thus, the Lyapunov candidate
functionV decreases everywhere in the complementary/$gtbut increases in the compact $twhich contains
the origin ate=0 and® = 0. Any trajectory ofe and® starting in% will remain in % for all t. Therefore, the
compact se¥ is an invariant set® Then, any trajectorg and® starting in the complementary sét¢ will approach
the largest invariant se¢” ast — .21 |t follows by the LaSalle’s Invariance Principle thaand® are ultimately
uniformly bounded. Thus, the adaptive optimal control nfiodtion is stable.

Remark: The effect of the optimal control modification is to add dangpio the weight update law so as to reduce
high-frequency oscillations in the weights. The dampimgtelepends on the persistent excitation (PE) condition.
With persistent excitation, the weigBtis exponentially stable and bounded. This scheme is caattas the well-
known o-1 ande;-® modification methods and other variances which also add otaterms to prevent parameter
drift in the absence of the persistent excitatl§These adaptive laws are compared as follows:
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Modification Adaptive Law ‘

o- O=-T (Pe'PB+00),0 >0
&1 ©=-T (Pe'PB+p|e"PB|©), u>0
Optimal | ©=—T (Pe' PB—vo® OBTPA,!B), v >0

Table 1 - Modifications to MRAC Law

Theorem 2: In the presence of fast adaptation, i%&in (7) > 1, the adaptive law (11) is robustly stable for= 1
with all closed-loop poles having negative real values.
Proof: The adaptive law (11) can be written as

-
Q?T—r% _— (eTP— vaneBTPA;nl) B (40)

If I > 1is large and the input is PE, then in the limit@Sr® — o
BO'd — %PflAInPe (41)

Hence, the closed-loop tracking error equation becomes
. 1+v 1-v
_ _p-1 -rv N el _ * T
e= P K - >Q < = >S}e B(0®+e) (42)
whereS= Al P — PAq,

For v = 1, the closed-loop poles are all real, negative values wifs|R= —A (P*lQ). The system transfer
function matrixH (s) = (sl +P71Q)71 is strictly positive real (SPR) sindd (jw) +H' (—jw) > 0, and thus the
system is minimum phase and dissipatvelhe Nyquist plot of a strictly stable transfer function foBEO system

is strictly in the right half plane with a phase shift lessrtloa equal toZ % corresponding to a phase margin of at least
7. For a MIMO system, the diagonal elements of the systemfeafisnction matrix exhibit a similar behavior.

[
Lemma 1: The equilibrium statg = 0 of the differential equation
y=-0" (Ore(b)y (43)

wherey(t) : [0,00) — R, d(t) € %% :[0,00) — R" is a piecewise continuous and bounded function,fandd € R™",
is uniformly asymptotically stable, if there exists a camt > 0 such that

1 t+To

= o (T)ro(r)dr >y (44)
To /i

which implies that is locally bounded by the solution of a linear differentigb@tion

7= —yz (45)

fort € [ti,t + To], wheret; =t_1+ Toandi = 1,2,...,n — oo.
Proof: Choose a Lyapunov candidate function and evaluate its tengative

V= }yz (46)
2
V=-0"()Fot)y>=-20" (t)Iot)V (47)
Then, there existg > 0 for whichV is uniformly asymptotically stable since
t+To

VT =ven(-2 [ o7 mremdr) <viye 7 (48)

t
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This implies that

t+To
exp(—z/ dJT(r)FCD(r)dr) <e M (49)
t
Thus, the equilibriuny = 0 is uniformly asymptotically stable if
1 t+To
= o' (n)ro(r)dr>y (50)
To Jt
provided® (t) € %, is bounded.
Theny(t) € %N %, since
V (t — 00) -V (0) < —2y/ yz(t)dt:>2y/ Y2 (t)dt <V (0) =V (t — ») < oo (51)
0 0
It follows that .
V<2V =< -y (52)

which implies that the solution of Eq. (43) is bounded fromabif y > 0 and from below ify < 0 by the local solution

of

fort € [ti,ti + To], wheretg =0,t =t;_1+ To, andi = 1,2,...,n — oo.
Now, suppose tha® = ®(y), Eq. (53) still applies. The conditio® (y(t)) € .#> is identically satisfied since
y € % N%.. To show this, we first evaluaté as

V=-0(y)Fo(y)y’ = 20" () (y)V (54)

Expressing/ (t) asV (y) yields

..V dv
V=y—=-0" (y)Fo(y)y—=-20" (y)ro(y)V (55)
dy dy
Thus & q
_ L0y
v =2 y (56)
Suppose we can findsuch that
d7y <yt (57)

Then multiplying both sides of Eq57) by y? and dividing bydt result in the same equation as Eq. (52). Thus,
is uniformly asymptotically stable andis bounded by the same equation as Eq. (53). Thergfayiwen by Eq. (44)
satisfies Eq. (57).

Lemma 1 is a version of the well-known Comparison Lenfha different version of the proof is also provided
by Nadrenda and Annaswarfy.

[
Lemma 2: The solution of a linear differential equation
y=Ay+g(t) (58)

wherey(t) : [0,0) — R", A€ R™" is a Hurwitz matrix, andy(t) : [0,) — R" € %, is a piecewise continuous,
bounded function, is asymptotically stable and semi-dlglidounded from above by the solution of a differential

equation
z=A(z—alA | (59)

wherea > 1€ R andc = sugp|g(t)|.
Proof: For matching initial conditiong(0) = z(0), the solutions of andz are

y=ey(0)+ /O t ft-Ig(r)dr (60)
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t
z=ey(0)— / S Daa|A | dr (61)
0
If A=1c > 0, then
t t t
y=2z+ / S Dacdr + / Ay (1)dr = 2+ / fUAalaA e+ A g(1)] dT (62)
0 0 0

a > 1 can be made large enough feA1c+ A~'g(1) > 0 becauséA'c > 0 andg is bounded, and since
[ eAt-TAdT <0, then

t
/ ADA[aA e+ A Ig(1)]dT <0 (63)
0
Thereforey < z
If A~1c <0, then
t t t
y:z—/ eA(t’T)acdH—/ eA(t’”g(r)dr:z—/ fTUAlaA - A g(1)]dr (64)
0 0 0

a can be made large enough imA—1c— A1g(1) < 0 becausé1c < 0 andg is bounded, therefone< z Thus,
y<zforallt € [0,0) and somex > 1.

[
Theorem 3: The steady state tracking error is bounded by

Amex (P) [[B|
Omin (A;Trlp—i— VPAnO

[vio1+v il At 11+ | (37an7Pe) el o9

tIgrgosgpllel\ =

if there exists a constapt> 0 such thay = inf; (T—lo ftt”o qJTI'CDdr) > 0 € R and a constant vectf > 0 € R" where
B=sup|OTd|.
Proof: Since® is bounded by the adaptive law (11) anddim. |d (©®) /dt| < ot exists which impliesl (O ®) /dt

is bounded, thep = sup |7 ®| € %, is bounded.
Sincee € %, x € %, and sod (x) € %, then using Lemma 1, the adaptive law (11) can be written as

% (éan) —0'0+® d< —yB"Pet ywB'A.TPB <éch— ¢ ‘ (wBTAmTPB)lﬁD (66)

fort € [ti,t + To], wheret; =t_1+ Toandi = 1,2,...,n — oo.
Using Lemma 2 witha = 1 for simplicity, we write

e< An(e—|A;'BS|) +BO @ (67)

Differentiating Eq. (67) and upon substitution yields

& (Am+ vaBTA;nTP) et (yBBTP+ vaBTAr;TPAm) e< —yvBB'A.'PB [:p + ‘ (vaTA;nTPB) lBH
+yvBB A, "PARL|AL'BS|  (68)

whose steady state solution is
-1
(A,LPJr vPAm) lim e < —vPB [q) + ’ (vaTA;nTPB) B H + VPAG | AL1BS: | (69)

which leads to Eq. (65). B
The steady state upper bound on the nor®ofb is also obtained as

Amex (P) [[Am||
Omin (A;Trlp—i— VPAnO

im sup|&7 o - 1011+ Al g 13+ (87 P) | 1ei] o

|
t—oo t
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Thus fory — o, the last term on the RHS of Eq. (65) goes to zero, |&flds only dependent on. If, in addition,
v — 0, then|le]| — 0O, but if v — o, e € %, is finite and does not tend to zero. Thushas to be selected small
enough to provide a desired tracking performance, but kangegh to provide sufficient robustness against time delay
or unmodeled dynamics. With= 1 as the optimal value, further increase the value béyond the optimal value will
actually reduce robustness as well as tracking performdrues, a practical bound faris 0< v < 1. Both Theorems
2 and 3 provide a guidance in a trade-off design process fectigg a suitable value of to meet performance and
robustness requirements.

[ll.  Application to Neural Net Adaptive Flight Control

r Model Xy X S X
— —2»()—2= Pl Controller +——=(O—

Reference

Dynamic u . x
B Aircraft
Inversion

u
.4

X, u
w

Fig. 3 - Direct Neural Network Adaptive Flight Control

Consider the following inner loop adaptive flight controtlaitecture as shown in Fig. 3. The control architecture
comprises: 1) a reference model that translates rate codsmato desired acceleration commands, 2) a proportional-
integral (PI) feedback control for rate stabilization analcking, 3) a dynamic inversion controller that computes
actuator commands using desired acceleration commandig)anneural net direct MRAC with the optimal control
modification.

Damage adaptive flight control can be used to provide cardisiandling qualities and restore stability of aircraft
under off-nominal flight conditions such as those due taifaé or damage. The linearized equations of motion are
expressed as

X = A11X+Apz+Bu+ 1 (X, Z) (71)
2= Ao1X+ Agoz+ Bou+ f2(X,2) (72)
T
whereA;j andBj, i =1,2, j = 1,2 are knownx = [ p g r } is a vector of roll, pitch, and yaw rateg,=

-
[ Ap Aa AB AV Ah A6 } is a vector of perturbation in the bank andie, angle of attacl\a, sideslip

-
angleAB, airspeed\V, altitudeAh, and pitch anglé\0; u = [ ANy DO AN } is a vector of additional aileron,
elevator, and rudder deflections; afidx,z), i = 1,2 is an uncertainty due to damage which can be approximated as

fi(x,2) =0,/ d(x,2)+¢ (73)

®(x,2) is a basis function for a sigma-pi neural network with i = 1,...,4, as inputs consisting of control
commands, sensor feedback, and bias terms; defined asgollow

CL= %p(h)vz[ X' axT BxT } (74)
CZ:%p(h)VZ[ 1 ¢ 6 a B a? p2 aB} (75)
Cs= :—le(h)Vz[ ux2)" aux2' Buxz)’ } (76)

Cs= %p(h)vz[ px" ox" rx" } (77)
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wherep = 9+Ap, a =a+Aa, B=B+AB,V =V +AV, h=h+Ah, andd = 6 + AB; and the overbar symbol
denotes a trim state.

These inputs are designed to model the unknown nonlingagtyexists in the damaged aircraft plant dynamics.
For example, the aerodynamic force in thaxis for an aircraft is given by

pb rb

1 c
FX_T+th_S(CLO+CLaa+CLBB+CLpW+CquW +CLrW+CLaa5a+CLae5e+CLar5r) a

1_ b C rb
_ EqS(CDO-i-CDO,G-i-CDppﬁ +CquW +Cp, = +CD535a+CD585e+CD5, 5r) (78)

Thus,Cy, Cy, andC; are designed to model the product termg,af andu in the aerodynamic forces and moments
equations; an@€, models the gyroscopic cross-coupling terms af the moment equations.

The inner loop rate feedback control is designed to impranezadt rate response characteristics such as the short
period mode and the dutch roll mode. A second-order referamatel is specified to provide desired handling qualities
with good damping and natural frequency characteristi¢olsvs:

(S + 2Zpeps+ 6h) @ = Gpdiat (79)
(5 + 2Zqys+ wf) Bm = Ygdion (80)
(32 + 2w s+ wrz) 'm = OrSud (81)

wheregn, 6m, andym are reference bank, pitch, and heading angigs;wy, andw are the natural frequencies for
desired handling qualities in the roll, pitch, and yaw axgsi{q, and{; are the desired damping rati@s;, don, and
drug are the lateral stick input, longitudinal stick input, andider pedal input; angp, gq, andgr are input gains.

Let pm = @n, 9m = 6m, andry, = @y, be the reference roll, pitch, and yaw rates. Then the refererodel can be
represented as

t
X = —KpXm— K; / XmdT 4 Gr (82)
0

-

wherexy = [ Pm Om Tm } , Kp = diag(2Zpwp, 2{qay, 24 ax ), Ki = diag(w?, w§, wf), G = diag(gp, g, 9 ), and
T

(=] da Bon G | -

Assuming the paifA;1,B1) is controllable ana is stabilizable, an angular rate feedback dynamic invarsan-
troller is computed as

K.
e =Byt [— (Kp+ é) X+ Gr — Ap1X — Apoz— O] @ (83)

whereuc is a control surface deflection command vector as an inpufligra control actuator system which can be
modeled as a first-order system
u=—-A(u—u) (84)

whereA = diag(Aa, Ae, Ar) > 0 is a vector of actuator rates for aileron, elevator, andead
When the actuator dynamics are fast relative to the referemadel, i.e.Amin (A) > Omin (Am), then the actuator
output follows the input closely so that= uc.

=
Lete= L xm—X)dT xm—x | be the tracking error, then the tracking error equationismgby
o (Xm—X) m

é=Ane+B (ech - fl) (85)
where
[ o
An= [ K Ky ] (86)
B:[?l (87)
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Let Q = 2I, then the solution of Eq. (12) yields

K Kp + KoL (Ki 41 K1
p=| " P j’l( -+ | >0 (88)
K; Kot (1 +K )
A;lis computed to be
Amlzl K'I Ko *é' ] (89)

Evaluating the ternB" PA'B yields
B'PAB= K 2<0 (90)

Applying the adaptive optimal control modification (11)etiveight update law is then given by

0= -ro (eTPB+ vanelK;Z) (91)

V. Simulation Results

To evaluate the adaptive optimal control modification, adation was conducted using a generic transport model
(GTM) which represents a notational twin-engine transpodraft as shown in Fig. 4* An aerodynamic model of
the damaged aircraft is created using a vortex lattice nteth@stimate aerodynamic coefficients, and stability and
control derivatives. For the simulation, a damage configomas modeled corresponding to a 28% loss of the left
wing. The damage causes an estimated C.G. shift mostly dlenpgitch axis withAy = 0.038& and an estimated
mass loss of 1.2%. The principal moment of inertia aboutdfiexis is reduced by 12%, while changes in the inertia
values in the other two axes are not as significant. Sincedhgaded aircraft is asymmetric, the inertia tensor has
all six non-zero elements. This means that all the thregpatth, and yaw axes are coupled together throughout the

flight regime.

Fig. 4 - Left Wing Damaged Generic Transport Model

A level flight condition of Mach 0.6 at 15,000 ft is selectedpdsh damage, the aircraft is re-trimmed with=
13,951 Ib, a = 5.86°, ¢ = —3.16°, 0, = 27.32°, & = —0.53°, & = —1.26°. The remaining right aileron is the
only roll control effector available. In practice, someca&ft can control a roll motion with spoilers, which are not
modeled in this study. The reference model is specifietbpy= 2.0 rad/secey = 1.5 rad/secwr = 1.0 rad/sec, and

Zp:Zq:Zrzl/\/z

12 of 20

American Institute of Aeronautics and Astronautics



The state space model of the damaged aircraft is given by

Ao
Adr
AB
AN )N
Ah/h
AB

~1.3623 -0.2649 05470 p
—0.0659 -0.8949 00151 q
0.0835 —0.00417 —05130 | | r
C ao ]
Aa
0 109768 —9.2449 —0.6380 00004 O AB
+| -0.0007 -27042 00120 -0.1409 -0.0004 O || I
0 01845 28755 —0.0149 0 0 *
Ah/h
L Ae J
32225 —0.0449 14887 A3,
+| 03393 -34650 00258 NS, | (92)
~0.0123 Q0007 -22949 | | AS
o1 0 01024 |
~0.0059 Q9722 Q0004
00978 —0.0001 —0.9849 | | P
0.0001 —0.0014 —0.0006 ?
0 0 0
o 1 00551 |
[0 0 0 0 0 o |[ ap ]
0.0028 —0.4802 00238 —0.0648 00304 0 Aa
, | 00507 00016 -01751 -0.1850 00028 -0.0017 A8
0 -00453 00044 -00082 0 —0.0507 | | AV/V
0  —0.0423 0 0 0 0423 Ah/h
o 0 0 0 0 o || ne |
[0 0 0 |
00241 —0.0704 00012 | 1\
0.0053 0 00604
+ AS. | (93)
0.0018 -0.0048 00028 | | -
0 0 0
o0 0 0

The actuator dynamics are modeled with= A¢ = A; = 50 /sec with position limits of-35° for the aileron and

elevator andt10° for the rudder.
The pilot pitch rate command is simulated with a series ofgranput longitudinal stick command doublets,
corresponding to the reference pitch ang@81° from trim. The tracking performance of the baseline flighticol
with no adaptation is compared against the neural net dl&AC, theg; modification withy = 0.1, and the present
adaptive optimal control modification with = 0.1. The adaptive gains are selected as large as possiblen i
numerical stability limit of the adaptive laws. This resuti " = 60 for direct MRAC,I” = 800 for theg; modification,
andl" = 2580 for the adaptive optimal control modification. Thuggah be seen that the optimal control modification
can tolerate a much larger adaptive gain than the standarddMRhis large adaptive gain allows the adaptive optimal
control modification to better adapt to uncertainties thenstandard direct MRAC.
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Fig. 5 - Pitch Rate
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The aircraft angular rate responses are shown in Figs. SE@@8re 5 illustrates the pitch rate response due to the
four controllers. With no adaptation, the baseline flighttrol system cannot follow the reference pitch rate veryl wel
as there is a significant overshoot. Both the direct MRAC &edt modification improves the tracking by about the
same amount. However, the adaptive optimal control modificappears to provide better tracking than the MRAC

and theg; modification.

Since the damage occurs to one of the wings, the roll axis s affected. With no adaptation, there is a significant
roll rate as high as Zsec as shown in Fig. 6. Both the direct MRAC afidmodification reduce to maximum
amplitude of the roll rate to about #8ec. The adaptive optimal control modification furtherueeks the roll rate to a

maximum value of about®sec.
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Fig. 6 - Roll Rate
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Figure 7 is the yaw rate response of the damaged aircrafthélhree adaptive controllers significantly reduce the
roll rate to a reasonably low level. Thg modification performs slightly better than the MRAC and adegoptimal

control modification.
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Fig. 7 - Yaw Rate

Figure 8 is the plot of the tracking errc#, norm for all the three aircraft angular rates that compdreverall
performance of the four controllers collectively in thegdbaxes. When there is no adaptation, the tracking error norm
appears to grow considerably in the first 10 sec. Thenodification actually results in higher tracking error than
the direct MRAC. This could be explained by the fact that¢henodification trades performance for robustness, so
the tracking performance is expected to be worse. The adapitimal control modification results in the smallest
tracking error norm as compared to the MRAC amadmodification. Thus, overall, the adaptive optimal control
modification performs significantly better than the MRAC aadnodification.
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Fig. 8 - Tracking Error Norm

The attitude responses of the damaged aircraft are showigsn &to 12. When there is no adaptation, the pitch
attitude could not be followed accurately as seen in Fig. BhAtaptation on, the tracking is much improved and the
adaptive optimal control modification follows the pitch cavand better than the direct MRAC and themodification.
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Fig. 9 - Pitch Angle

Figure 10 is the plot of the bank angle. Without adaptatibe, damaged aircraft exhibits a rather severe roll
behavior with the bank angle ranging fror80° to 2(°. Both the direct MRAC and; modification improve the
situation significantly. The adaptive optimal control slscavdrastic improvement in the arrest of the roll motion with

the bank angle maintained closed to the trim value.
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Fig. 10 - Bank Angle

Figure 11 is a plot of the angle of attack. All the adaptivetooliers produce similar angle of attack responses.
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Figure 12 shows a plot of the sideslip angle. In general, diyiith sideslip angle is not a common practice
since a large sideslip angle can cause an increase in drag@edmportantly a decrease in the yaw damping. With
the adaptive optimal control modification, the sideslip larig reduced to near zero, while the direct MRAC aad

10

No Adaptation

o

t, sec

10 20 30 40

2 g,-Mod., 1=0.1

o

t, sec

10 20 30 40

a, deg

a, deg

— MRAC

10 20 30 40
t, sec

— Optimal, v=0.1

0 10 20 30 40

t, sec

Fig. 11 - Angle of Attack

modification still show some sideslip angle responses.

B, deg

=

B, deg

%

The control surface deflections are plotted in Figs. 10 tdBEtause of the wing damage, the damaged aircraft has
to be trimmed with a rather large aileron deflection. Thissemuthe roll control authority to severely decrease. Any
pitch maneuver can potentially run into a control saturatiothe roll axis due to the pitch-roll coupling that exigts i
a wing damage scenario. With the maximum aileron deflecti@%3 it can be seen clearly from Fig. 13 that a roll
control saturation is present in all cases. The range afoaildeflection when there is no adaptation is quite large. As
the aileron deflection hits the maximum position limit, ihtis to over-compensate in the down swing because of the
large pitch rate error produced by the control saturation.
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Fig. 12 - Sideslip Angle
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Fig. 13 - Aileron Deflection

Figure 14 is a plot of the elevator deflection which is showbeawithin a range of few degrees for all the four
controllers and well within the control authority of theed¢or. This implies that the roll control contributes mygsd

the overall response of the wing-damaged aircraft.
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Fig. 14 - Elevator Deflection

The rudder deflection is shown in Fig. 15. With no adaptatiba,rudder deflection is quite active, going from
almost—7° to 2°. While this appears small, it should be compared relativehéorudder position limit, which is
usually reduced as the airspeed and altitude increase. Bidwduge rudder position limit is=10° but in practice the
actual rudder position limit may be less. Therefore, it inally desired to keep the rudder deflection as small as
possible. Both the direct MRAC argd modification improve the situation somewhat, but the adepiptimal control

is able to keep the rudder deflection quite small and viadhost at trim.
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Fig. 15 - Rudder Deflection

To demonstrate stability robustness of the adaptive opthmatrol modification, the time delay margin (TDM)
is computed numerically in the simulations as a functionhef parametev. A time delay is introduced between
the actuators and the damaged aircraft plant model and isstadj until the adaptive optimal control modification
algorithm is on the verge of instability. The results aretfgid in Fig. 16 for an adaptive gaih= 60. Asv increases,
the time delay margin also increases. This results in a nodmest controller that can tolerate a larger time delay which
acts as a destabilizing disturbance to the controller. Hewéor the same adaptive gain, increasintgnds to degrade
the tracking performance. Therefore, in genevak selected to balance the competing requirements for pasdoce
and stability robustness that usually exist in a controigies

0.55 T T T T

0.5

0.45

0.4

0.35
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Fig. 16 - Estimated Time Delay Margin

V. Conclusions

This study presents a new modification to the standard medetence adaptive control based on an optimal
control formulation of minimizing theZ, norm of the tracking error. The adaptive optimal control ffiodtion adds
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a damping term to the adaptive law that is proportional togbesistent excitation. The modification enables fast
adaptation without sacrificing robustness. The modificatian be tuned using a parameteto provide a trade-off
between tracking performance and stability robustnesste&singv results in better stability margins but reduced
tracking performance. When approaches unity, the system is robustly stable with aedeloop poles having
negative real values. Simulations of a damaged generisgmabaircraft were conducted. The results demonstrate the
effectiveness of the adaptive optimal modification, whikbws that tracking performance can be achieved at a much
larger adaptive gain than the standard direct model-reteradaptive control. As a result, significant improvements
in performance can be attained with the adaptive optimairobmodification.
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