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Abstract. Symbolic model checking has demonstrated more scalabilityand re-
liability than explicit model checking,and is used frequently for industrial verifi-
cation. Yet, the issue of efficient construction of symbolicautomata for LTL for-
mulas has been largely neglected, while explicit translation of LTL to automata
has been studied extensively. We show that algorithmic ideas from explicit-state
LTL-to-automata translators, as well as translations for other logics, are applica-
ble to the symbolic domain. We propose a new algorithmic-portfolio approach for
improved translation from LTL to symbolic automata. We provide experimental
results comparing our implementation with the front-end translators built into Ca-
denceSMV and NuSMV and demonstrate that we can consistentlyachieve better
performance, even with a very simple heuristic for choosinga symbolic encoding.

1 Introduction

In model checking, the negation of the specification is translated into a Büchi automa-
ton, combined with the system model, and then checked for non-emptiness [31]. A
fair path found in this combined model represents a counterexample: a trace where the
system violates its specification. For a system of sizen and a Linear Temporal Logic
(LTL) specification of sizem, LTL model checking takes timen2O(m) [19]. As LTL
model checking is PSPACE-complete [27], the exponential blow-up in the size of the
specification seems inherent, posing an algorithmic challenge for implementors. This
motivated extensive research on dealing with this exponential blow-up [30]. Many re-
searchers focused on optimizing the construction of automata from LTL formulas. An
extensive survey of different automata construction algorithms is provided in [25]. The
main focus of this research area has been on explicit construction of automata from
LTL formulas, where the goal of optimization is to reduce thesize of the constructed
automata. It is shown in [25] that the difference in performance between the different
translators can be quite dramatic, having a major impact on the performance of explicit-
state model checking. One major finding in [25] is that among all LTL-to-automata
translators, SPOT [10] is the only one that proved to be an industrial-strength tool.

Symbolic model checkers describe both the system model and property automaton
symbolically: states are viewed as truth assignments to Boolean state variables and the
transition relation is defined as a conjunction of Boolean constraints on pairs of current
and next states [4]. The model checker uses a BDD-based fixpoint algorithm to find a
fair path in the model-automaton product [11]. CadenceSMV1 [20] and NuSMV2 [5]
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both evolved from the original Symbolic Model Verifier developed at CMU [21]. These
tools, or similar industrial tools (e.g., RuleBase [1]), are widely used in industrial hard-
ware verification. Both tools support LTL model checking viaa symbolic translation of
LTL to automata, and then use CTL model checking (in a very simple way) to check
the existence of a fair path in the product [4]. In symbolic model checking, a typical
optimization heuristic is to reduce the number of state variables. An optimized transla-
tion from LTL formulas to symbolicgeneralized B̈uchi automata(GBAs), improving
on the construction described in [4], was given in [7]. We refer to this construction as
CGH. CGH is essentially the standard today, and is the basis for the implementations of
LTL model checking in both CadenceSMV and NuSMV. Modern symbolic translations
of industrial specification languages, cf. [6], are also based on the CGH translation.
Surprisingly, there has been practically no follow-up research on this topic since [7].

Another major finding in [25] is that in the context of LTL satisfiability checking
(see below), symbolic model checking dramatically outperforms explicit model check-
ing. This motivated us to revisit the issue of symbolic translation of LTL to automata.

In this paper, we improve upon the performance of the CGH algorithm. We bring
new symbolic LTL translation techniques from two sources. First, we show that tech-
niques from explicit LTL translation are applicable to symbolic LTL translation. Specif-
ically, we show that formula rewriting techniques, cf. [28], are significant in symbolic
LTL translation. In particular, usingnegation-normal form(NNF), may be better than
usingBoolean-normal form(BNF). Also, we show that usingtransition-based general-
ized B̈uchi automata(TGBAs) rather than GBAs [8], which is the technique underlying
SPOT [10], brings an advantage in symbolic LTL translation.Second, borrowing from
symbolic modal satisfiability solving [22], we show that “sloppy” encoding (essentially,
corresponding to dual-rail encoding) can be superior to “fussy” encoding (correspond-
ing to single-rail encoding). Finally, as the importance ofvariable ordering in BDD-
based symbolic model checking is well known [16], we show that tailoring variable
ordering to LTL formulas also yields performance improvements.

We focus our experimental evaluation on LTL satisfiability checking. We showed
in [25] that LTL satisfiability checking is a special case of LTL model checking which
provides a source of challenging model-checkingproblems.We also argued there for the
importance of LTL satisfiability checking as a form of sanitychecking. The importance
of sanity checksin model checking has been argued in many papers, see [17]. Clearly,
if a formal property is valid, then this is certainly due to anerror. Similarly, if a formal
property isunsatisfiable, that is, true inno model, then this is also certainly due to
an error. Even if each individual property written by the specifier is satisfiable, their
conjunction may very well be unsatisfiable, which also indicates an error. Recall that
a logical formulaϕ is valid iff its negation¬ϕ is not satisfiable. Thus, as a necessary
sanity check for debugging a specification, model-checkingtools should ensure that
both the specificationϕ and its negation¬ϕ are satisfiable.

Our experimental evaluation, across a spectrum of challenging LTL formulas, in-
dicates that no symbolic translation technique is superioracross the whole spectrum.
We do present, however, a successful algorithmic portfolioapproach (cf. [18]) to sym-
bolic LTL translation. We suggest a simple heuristic for selecting a symbolic translation
technique based on the structure of the given LTL formula. Our experiments with this
simple heuristic demonstrate that its performance significantly dominates the native
translation of CadenceSMV. (We cannot compare our translation to NuSMV’s due to
technical reasons explained in the paper.)

The structure of this paper is as follows. We review the CGH algorithm of [7] in
§2, and uncover some semantic subtleties in the syntax of CadenceSMV and NuSMV



in §3. Next, in §4, we describe the TGBA encoding. We discuss our various symbolic
translation techniques. in §5. After covering our experimental methods in §6, we present
our results in §7, followed by a discussion (§8).

2 Preliminaries

Support for LTL specifications was added to previously CTL-only symbolic model
checkers after CGH demonstrated an efficient encoding of LTLformulas as symbolic
automata. Essentially, CGH reduces LTL model checking to checking for the nonempti-
ness of a Kripke structure with fairness constraints, whichcan be checked by a CTL
model checker. Our definition of a TGBA-based symbolic automaton is derived from
their method for creating a GBA-based automaton.

2.1 Another Look at LTL Model Checking [7]: Basic Algorithm O verview

Input: An LTL formula containing only atomic propositions,¬, ∨, X , andU .

1. Negatef and form the setAPf of atomic propositions off .
2. Build el list, the list of elementary formulas inf :

el(p) = {p} if p∈ AP. el(¬g) = el(g).
el(g∨h) = el(g)∪el(h). el(X g) = {X g}∪el(g).
el(gU h) = {X (gU h)}∪el(g)∪el(h).

3. Declare a new variableELXg for each formulaX g in the listel list.
4. Add fairness constraints to the SMV input model:

{sat(¬(gU h)∨h)|gU h occurs inf}
5. Construct the characteristic functionSh for each subformulah in ¬ f :

Sh = p if p is an atomic proposition.
Sh = ELh if h is elementary formulaX g in el list.
Sh =!Sg if h = ¬g
Sh = Sg1|Sg2 if h = g1∨g2
Sh = Sg2|(Sg1&SX (g1 U g2)

) if h = g1 U g2

6. Print the SMV program:

MODULE main
VAR /*declare a boolean variable for each atomic propositio n in f*/

a: boolean;
b: boolean;

/*and declare a new variable EL_X_g for each formula (X g) in e l_list*/
EL_X_g: boolean;

DEFINE /*for each S_h in the characteristic function, put a l ine here*/
S_a := a;
S_b := b;
S_g1 := ...
S_g2 := ...

TRANS /*for each (X g) in el_list, generate a line here*/
( S_X_g1 = next(S_g1) ) &

...
( S_X_gn = next(S_gn) )

/*for each (g U h) in the parse tree, generate a line like this: */
FAIRNESS ! S_gUh | S_h
/*end with a SPEC statement*/
SPEC !(S_f & EG true)



3 Semantic Subtleties

All symbolic model checkers use the CGH translation and the analysis algorithm of
[11], though some add further optimizations, including CadenceSMV and VIS [2].
However, the precise semantics of symbolic automata are notexplicitly documented
and there are some subtle differences between the implementations of CadenceSMV
and NuSMV. Therefore, several subtleties arise when checking nonemptiness of fair
Kripke structures. With help from the creators of these tools, we have compiled the
following rule-set for creation of symbolic automata from LTL formulas:

There must be at least one initial state.For both NuSMV and CadenceSMV, there
is an implicit universal quantifier over all initial states.If there are no initial states, then
the formula is automatically “true.” Declaring an initial state is not enough to satisfy
this condition. For example,INIT (a&(!a)) specifies that there is no initial state.

Symbolic automata must always have a FAIR statement, even ifit is “FAIR
true.” CadenceSMV considers terminal paths to be fair when there are no fairness con-
straints. The semantics with a fairness constraint is the ”infinite paths” semantics where
states without infinite paths are discarded. Therefore, we must have at least one fairness
constraint to prevent the possibility of a model with one initial state and no legal transi-
tions from model checking as “false.” Rather than the classical algorithm of implicitly
universally quantifying over all initial states, NuSMV restricts itself to all fair initial
states.If there are no fair initial states, the formula is automatically “true.”

The SPEC should be (! (ϕ ∧ EG true)). Both CadenceSMV and NuSMV consider
a CTL formulaϕ to hold in a modelM if ϕ holds inall initial states ofM. If M has no
initial states, then everyϕ holds inM. UsingSPEC (!( ϕ ∧ EG true)) , if the model
is not empty, the counterexample returned is a trace of the model.

INIT ϕ SPEC !(EG true) is not equivalent toSPEC (!(ϕ ∧ EG true)).
For example, ifϕ is simply f alseand we checkSPEC (!( f alse ∧ EG true)) over an
empty model, a failure means that( f alse ∧ EG true) is true in some state. However,
if we check insteadINIT f alseandSPEC !(EG true) , we actually get a counterex-
ample. Similarly, checking for a finite counterexample using SPEC!(Sf ) may produce
spurious results.

4 Transition-Based Generalized B̈uchi Automata (TGBA)

In [25] we demonstrated that SPOT [10], which optimizes LTL-to-automata techniques
of other translators (eg [14], [12]), is the only publicly available explicit-state model-
checking tool that is somewhat competitive with symbolic tools. We borrow the idea
of creating TGBAs from SPOT, where the size of the automaton is reduced by placing
the labels on the transitions instead of the states.By pushing the acceptance conditions
to each accepting states’ outgoing transitions, we can reduce state-based acceptance to
transition-based acceptance with a resulting automaton ofless than or equal to the orig-
inal size. There is, of course, a trade-off: symbolic representations of TGBAs may re-
quire more variables than for GBAs. While both representations require the declaration
of all of the boolean variables present in the input formulaf plus a variable associated
with each temporal subformula, transition-based representations also require a variable
for f andpromise variablesto assure fairness ofU - andF -operators.

The TGBA construction [8] implemented in SPOT is based on symbolic compu-
tation over the following set of boolean variables comprised of atomic propositions,
subformula variables (r f ), and promise variables (af ):



rp = p if p is an atomic proposition
r¬g =!g
rg∨h = rg|rh
rg∧h = rg& rh
rg U h = rh|(rg&ag U h& rX (g U h)

)

rg R h = rh&(rg|rX (g R h)
) = (rh& rg)|(rg& rX (g R h)

)

We extend the explicit-state construction of [8] in terms ofthe CGH symbolic trans-
lation, resulting in the following algorithm.

Input: LTL formula f with operators ˜ ,|, &, → X , U , R , G , F .

1. Convert the formula into Negation Normal Form. Boolean Normal Form
is not allowed here.A symbolic TGBA can only be created for formulas in
NNF because the model checker tries to guess a sequence of values for each of
the promise variables. This works for positiveU -formulas, but not for negative
U -formulas. As an example, consider the formulaϕ = ¬(aU b) and the trace
a=1,b=0, a=1,b=1, ... Clearly,(aU b) holds in the trace, soϕ fails in the
trace. If, however, we choseP aUb to be false at time 0, thenEL aUb will be
false at time 0, which will mean thatϕ holds at time 0.

2. Declare a variableELg for each elementary subformulaX g. In other words,
create a variable for every subformula occurring after anX -operator.3There is
also a variableELf for the whole formulaf .

3. Declare a variable for eachU -, R -, F -, andG - subformula. This represents
a significant deviation from the variables declared for suchsubformulas in [7]
in two ways:
(a) The variable is for the subformula, not the next-time of the subformula.

For example, for each subformulag U h, we declareELg U h instead of
ELX (g U h).

(b) There is a special optimization described in [8] for the commonG F jux-
taposition, which we treat as a single operator.

4. Define the acceptance conditions.Declare a promise variablePg U h for every
subformulagU h, PF g for F g, andPG F g for G F g.

5. Construct the characteristic function Sh for each subformulah in ¬ f . This
step is similar to the [7] algorithm for Boolean operator-rooted subformulas
and different for temporal subformulas.4

Sh = p if p∈ AP
Sh =!Sg if h = ¬g
Sh = Sg1|Sg2 if h = g1∨g2
Sh = Sg1&Sg2 if h = g1∧g2
Sh = next(ELg) if h = X g
Sh = Sg2|(Sg1&P(g1 U g2)&(next(EL(g1 U g2)))) if h = g1 U g2
Sh = Sg2&(Sg1|(next(EL(g1 R g2)))) if h = g1 R g2
Sh = Sg&(next(EL(G g))) if h = G g
Sh = Sg|(PF g&next(EL(F g))) if h = F g
Sh = (next(EL(G F g)))&(Sg|PG F g) if h = G F g

6. Declare the transitions.In contrast with [7], ourTRANSstatements associate
anEL-var with its matchingS-var like this:

TRANS ( EL g = (S g) ) for fussy encoding



TRANS ( EL g -> (S g) ) for sloppy encoding (see §5)
7. Declare fairness constraints as the negations of the promise variables.

FAIRNESS (!P g) for every promise variableP g
FAIRNESS TRUEif there are no promise variables.

8. Add the specificationSPEC !(EL f & EG true).
9. Use CadenceSMV to check the resulting symbolic automaton.In Ca-

denceSMV, next() statements may not be nested or present inINIT ,
FAIRNESS, or SPECstatements. Our solution is to useEL-variables inINIT
andSPECstatements and use Promise vars inFAIRNESS statements. TGBA-
formatted symbolic automata cannot be checked using NuSMV because vari-
able definitions (ieDEFINE-statements) may only assign simple expressions
composed of state variables[23]. Therefore, NuSMV cannot parse thenext()
operators in ourDEFINE section. While NuSMVASSIGN-statements do allow
next() operators, they must occur alone on the left-hand-side of the assign-
ment, which still excludes our TGBA construction.

Theorem 1 Let ϕ be an LTL formula. Let Aϕ be the symbolic TGBA that representsϕ.
Then Aϕ accepts exactly the infinite words over the alphabet2AP that satisfyϕ.

The correctness of our construction follows directly from the proof of Theorem 1 in
[8], and can also be adapted from the proof in [7], both of which are based on induction
on the structure of the formula. Our construction changes the set constructions of the
proof in [7] because we are now reasoning over transitions instead of states. For exam-
ple, instead of defining the functionsat(g) that describes the set of states that satisfyg
for every subformulag in f , such thatsat(gU h) = sat(h)∪(sat(g)∩sat(X (gU h))) and
adding the fairness constraintsat(¬(g U h)∨h), we definesat(g) over transitions and
let sat(gU h) = sat(h)∪ (sat(g)∩ sat(next(gU h))∩ sat(PgU h)) where, as [8] shows,
PgU h resolves to(gU h)∧¬h. In this case, the fairness constraint is¬PgU h which is
equivalent to the GBA fairness constraint since¬(gU h∧¬h) = ¬(gU h)∨h.

5 Symbolic Automaton Encoding Issues

In addition to defining a TGBA translation, we adapted three other optimizations for
creating symbolic automata. CGH describes creating GBAs from LTL formulas in
Boolean Normal Form (BNF). We compare BNF-based automata toautomata created
from Negation Normal Form (NNF) formulas. We borrow sloppy encoding as a method
for describing the transition relation from PSV [22], who found it preferable to fussy
encoding for the modal logicK . Furthermore, we explore a small collection of BDD
variable ordering schemes and measured their effect on the model checking step.

Definition 1 Boolean Normal Form (BNF) Traverse the parse tree forϕ in order,
changing the operators ofϕ to only¬, ∨, X , U , andF . In other words, replace∧, →,
R , andG with their equivalents:

7 Note that there may also be a variable forELX g itself if nestedX -operators occur in the
formula since CadenceSMV syntax forbids nestingnext() calls.

8 In practice, this step can be optimized considerably for non-temporally-rooted subformulas.
For example, we avoid declaringSa and just usea.



MODULE main
VAR

/*declare a boolean variable for each atomic proposition in f*/
a : boolean;
b : boolean;
...

VAR
/*and declare a new variable for each EL_var in el_list*/

EL_f : boolean; /*f is the input LTL formula*/
EL_g1 : boolean;
EL_g2 : boolean;
...
EL_gn : boolean;

DEFINE
/*for each S_h in the characteristic function, put a line her e*/
S_g = ...
S_h = ...

...
/*for each Promise variable, put a line here*/

P_g_U_h := r_g_U_h & ! S_h
P_F_g := r_F_g & ! S_g
P_GF_g := r_GF_g & ! S_g
...

TRANS
/*for each EL-var in el_list, generate a line here*/
/*Basically, for every X, U, R, G, or F in the parse tree, gener ate a line*/

( EL_g1 = S_g1 ) &
...
( EL_gn = S_gn )

FAIRNESS (!P_g1)
...
FAIRNESS (!P_gn)
SPEC !(EL_f & EG TRUE)

Fig. 1.TGBA symbolic automaton for SMV
MODULE main
/*formula: ((X (a ))& ((b )U (!(a ))))*/
VAR

/*declare a boolean variable
for each atomic proposition in f*/

a : boolean;
b : boolean;
VAR

/*and declare a new variable EL_X_g
for each formula (X g) in el_list
generated by a primary operator
X, U, R, G, or F*/

EL_X_a : boolean;
EL_X__b_U_NOT_a : boolean;
DEFINE

/*for each S_h in the characteristic
function, put a line here*/

S__X_a__AND__b_U_NOT_a :=
(EL_X_a) & (S__b_U_NOT_a);

S__b_U_NOT_a :=
(!(a )) | (b & EL_X__b_U_NOT_a);

TRANS
/*for each (X g) in el_list,

generate a line here*/
( EL_X_a = (next(a) ) ) &
( EL_X__b_U_NOT_a =

(next(S__b_U_NOT_a) ))

FAIRNESS (!S__b_U_NOT_a | (!(a )))
SPEC !(S__X_a__AND__b_U_NOT_a & EG TRUE)

Fig. 2.CadenceSMV symbolic GBA with fussy encoding

MODULE main
/*formula: ((X (a ))& ((b )U (!(a ))))*/
VAR

/*declare a boolean variable
for each atomic proposition in f*/

a : boolean;
b : boolean;
VAR

/*and declare a new variable
for each EL_var in el_list*/

EL__X_a__AND__b_U_NOT_a : boolean;
P__b_U_NOT_a: boolean;
EL__b_U_NOT_a : boolean;

DEFINE
/*for each S_h in the characteristic

function, put a line here*/
S__X_a__AND__b_U_NOT_a :=

(S_X_a) & (EL__b_U_NOT_a);
S_X_a := (next(a));
S__b_U_NOT_a :=

( ((!(a ))) | (b& P__b_U_NOT_a
& (next(EL__b_U_NOT_a))));

TRANS
/*for each EL_var in el_list,

generate a line here*/
( EL__X_a__AND__b_U_NOT_a =

(S__X_a__AND__b_U_NOT_a) ) &
( EL__b_U_NOT_a = (S__b_U_NOT_a) )
FAIRNESS (!P__b_U_NOT_a)
SPEC !(EL__X_a__AND__b_U_NOT_a & EG TRUE)

Fig. 3.CadenceSMV symbolic TGBA with fussy encoding

Here are two symbolic automata encodings for the sample specification ϕ = ((X a)∧ (bU ¬a)).
Figure 2 matches the GBA-based encoding defined by CGH [7]. Figure 3 follows our TGBA-
based encoding, declaring a promise variable for theU -subformula, specifying an elementary
variable for the whole formula, and pushing the labels from the states to the transitions.



g1∧g2 ≡ ¬(¬g1∨¬g2) g1 R g2 ≡ ¬(¬g1 U ¬g2)
g1 → g2 ≡ ¬g1∨g G g1 ≡ ¬F ¬g1

Definition 2 Negation Normal Form (NNF) Traverse the parse tree in a pre-order
fashion, using DeMorgan’s laws to push the negations inϕ inwards until only variables
are negated. For LTL formulas, we using the following equivalence rules:

¬¬g ≡ g

¬(g1∧g2) ≡ (¬g1)∨ (¬g2)

¬(g1∨g2) ≡ (¬g1)∧ (¬g2)

(g1 → g2) ≡ (¬g1)∨g2

¬(X g) ≡ X (¬g)

¬(g1U g2) ≡ (¬g1R ¬g2)

¬(g1R g2) ≡ (¬g1U¬g2)

¬(�g) ≡ ♦(¬g)

¬(♦g) ≡ �(¬g)

Transition Encoding MethodsOnce a formula is in Negation Normal Form, we can
use sloppy encoding instead of fussy encoding. (NNF is necessary due to the way neg-
ativeU -formulas are checked by the fixpoint algorithm.) Here is a list describing the
differences between the two:

fussy sloppy
* symbolic automaton has iff-transitions* symbolic automaton has if-transitions
* TRANS ( EL g = (S g) ) * TRANS ( EL g -> (S g) )
* describes anon-deterministicautomaton
with trap-states for the negations ofX -
transitions

* describes a smaller, usually morenon-
deterministicautomaton

Variable Ordering CadenceSMV and NuSMV search for a fair path in the model-
automaton product using a BDD-based fixpoint algorithm, a process whose efficacy is
highly sensitive to variable ordering.[3] Finding an optimal BDD variable ordering is
NP-complete and, for any constantc > 1, it is NP-Hard to compute a variable order-
ing to make a BDD at mostc times larger than optimal. [26] Therefore, finding good
heuristics is key. We experiment three heuristics defined byKoster et al [15] and Tarjan
and Yannakakis [29], comparing them to the default heuristics of CadenceSMV, and a
simple ordering resulting from a pre-order, depth-first traversal of the variable graph.

We form the variable graph from the parse tree of the input formula by identifying
nodes in the parse tree corresponding to the roots of the subformulas for which we
declare variables. We connect each variable-labeled vertex to its closest ancestor and
descendant(s). Unary operator rooted subformula variables are connected to only one
closest descendant while binary operator rooted subformula variables are connected to
their closest left and right descendants. Figure 4 displaysthe variable graph for our
example formula. We implemented the four variable orderingschemes listed in Table
1, all of which take the variable graph as input.

Algorithm: Form variable graph from parse tree.

1. Each variable is a vertex in the graph. Vertices are either:
* propositions∈ AP * Elementary (EL) variables * Promise variables

2. Each vertex has a self-loop.
3. Each vertex, except the root, is connected to its closest ancestor.
4. Each non-leaf vertex is connected to its closest descendant(s).



Fig. 4. Variable graph formed from parse tree forϕ = ((X a)∧ (bU ¬a))

Table 1: Variable Ordering Schemes
Pre-order, Depth First Search naı̈ve formed directly from a pre-order, depth first traversal of

the syntax DAG of the input LTL formula
Lexicographic Breadth First
Search, Variant Perfect

LEX P Koster et al’s [15] variant of [24] which triangulates the
variable graph focusing on either perfection or minimal-
ity, labels vertices with their already ordered neighbors
in decreasing order by position, and chooses the highest
lexicographically-labeled vertex next.

Lexicographic Breadth First
Search, Variant Minimal

LEX M

Maximum Cardinality Search MCS Koster et al’s [15] variant of [29] which also triangulates
the variable graph but selects the vertex adjacent to the
highest number of ordered vertices next. We seed MCS
with an initial vertex, chosen either to have the maximum
or minimum degree.

6 Experimental Methods

Test MethodsEach test was performed in two steps. First, we applied our LTL-to-
symbolic automaton translation to the negation of the inputformula. Second, each out-
put automaton and variable ordering file pair was checked by CadenceSMV or NuSMV.
When we did not specify a specific variable order, we let the tools use their default vari-
able ordering heuristics to try to find an optimal one. To check whether a LTL formula
ϕ is satisfiable, we model check¬ϕ against a universal SMV model. For example, if
ϕ = ((X a)∧ (bU ¬a)), we provide the following input to CadenceSMV:

module main () {
a : boolean;
b : boolean;

assert ˜(((X a) & (b U (˜ a))));
FAIRNESS TRUE; }

SMV negates the specification,¬ϕ, symbolically compilesϕ into A¬ϕ, and conjoins
A¬ϕ with the universal modelM. If AM, ¬ϕ is not empty, then SMV finds a fair path that
satisfiesϕ. In this way, SMV acts as both a symbolic compiler and a searchengine.

Platform We ran all tests on Shared University Grid at Rice (SUG@R), anIntel Xeon
compute cluster.5 SUG@R is comprised of 134 SunFire x4150 nodes, each with two
quad-core Intel Xeon processors running at 2.83GHz and 16GBof RAM per processor.
The OS is Red Hat Enterprise 5 Linux with the 2.6.18 kernel. Each test was run with
exclusive access to one node. Times were measured using the Unix time command.

Input FormulasUtilizing the benchmarks established by [25], we tested thealgorithms
using three types of scalable formulas: random formulas, counter formulas, and pattern
formulas. Definitions for these formulas are repeated for convenience in Appendix A.
5 http://rcsg.rice.edu/sugar/



7 Experimental Results

Our experiments demonstrate that the novel encoding methods we have introduced sig-
nificantly improve the translation of LTL formulas to symbolic automata, as measured
in time to check the resulting automata for satisfiability. However, no one encoding
method consistently dominates for all types of formulas. Instead, we find that different
combinations of encoding methods are better suited to different formulas. Therefore,
we recommend using a portfolio approach to algorithm selection [18] where different
translations are used depending on the structure of the input formula. We call our tool
PANDA for “Portfolio Approach to Navigate the Design of Automata.”

NNF encodings outperform BNF encodings.The one exception to our portfolio ap-
proach is the normal form we use for the input formula. We found that symbolic au-
tomata generated from NNF formulas consistently dominatedthose created from BNF
formulas. Figure 7 provides one example of this. Using NNF has the added benefit
that it allows us to also employ sloppy encoding and generateTGBAs. Therefore, we
recommend a portfolio approach which always generates NNF-based automata.
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Fig. 6. NuSMV
Performance Results:R(n) =

Vn
i=1(�♦pi ∨♦�pi+1)

Sloppy encoding shows promise for temporally-heavy formulas. While we did not see a
significant improvement in model analysis time for Boolean formulas, sloppy encoding
dramatically improved the performance of both CadenceSMV and NuSMV in many of
our tests of temporal formulas. Figure 7 demonstrates that for both GBAs and (in the
case of CadenceSMV) TGBAs, using sloppy encoding can shorten model analysis time.

TGBAs translate smaller automata into smaller model analysis times. We found that
the automata encoding optimizations used for TGBAs, such asthe special treatment
of theG F operator and use of promise variables, translated into better performance.
Figure 7 shows the dramatic improvement we saw when encodingU -heavy formulas
while 8 demonstrates optimizing forG F operators. From here on, we compare our tool
using CadenceSMV as a back-end checker to using CadenceSMV alone. We found our
automata with NuSMV as a back end produced different timing results than the same
automata with CadenceSMV as a back end. As our objective is tocompare LTL-to-
automata algorithms and not model checking software, and NuSMV cannot check all
of our automata, we focus on CadenceSMV.
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Fig. 8.C1(n) =
Wn
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Fig. 9.3-Variable Counters

Also, we found TGBAs faired well
when model size was a problem. For ex-
ample, the state space for our counter for-
mulas grows exponentially with the num-
ber of bits in the counter. Figure 9 shows
that when CadenceSMV and GBA-based
encodings fail to create a symbolic au-
tomata/model check due to the large size
of the state space, the smaller TGBA en-
codings were able to stay in the game.

LEXP variable ordering benefits TGBA
encodings. While several of the vari-
able orderings we tested matched or even
slightly exceeded CadenceSMV’s build-in variable ordering heuristics, none of them
ever bested CadenceSMV significantly or consistently on a symbolic GBA. Figure 7
shows a fairly typical example of the results we obtained using our variable orderings
with symbolic GBA. Frequently, either the LEXP, as in this case, or naı̈ve variable or-
derings would perform very similarly to our GBA encoding with the CadenceSMV de-
fault ordering. The other variable orderings nearly alwaysperformed worse. This graph
is continued to the right. (Observe the line representing the NNF, fussy, GBA encoding
in the upper left-hand corner of Figure 7.) Here we observe a typical spread caused
by varying the variable ordering on symbolic TGBAs. All of the variable orderings we
tested performed similar to, or worse than, the default CadenceSMV heuristic except
for LEXP, which improves performance slightly.

Though CadenceSMV appears to have good ordering heuristicsfor GBAs, the per-
formance of our symbolic TGBAs was frequently improved by using LEXP variable or-
dering. Figure 13 demonstrates the most dramatic display wefound of this phenomenon
using ourR2 pattern formulas. Since CadenceSMV does not acceptR operators, we
eliminated them from ourLTLSPECs using the conversion(g1R g2) ≡ ¬(¬g1U¬g2).
Our symbolic TGBAs grew to 923 variables before triggering the messagetoken too
large, exceeds YYLMAX Command exited with non-zero status 2 .

7.1 Objective Function
From our pattern formula experiments, we devised a very simple objective function to
choose an encoding based on the operators present in the input formula. We make no
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claim that this heuristic is optimal; in fact we are sure it isnot. However, our aim here
is simply to demonstrate that our novel encodings translateto a significant performance
improvement in the symbolic domain as they did in the domainsfrom which we derived
them. It costs us nothing to count the operators in the input specification as we parse
it. Therefore, we get a very simple heuristic which bests theaverage model analysis
time of CadenceSMV without incurring any overhead for the kind of deep structural
analysis required for ensuring an optimal encoding choice every time. We employ a
portfolio approach to selecting an encoding based on the following guidelines:

Operator Count Shows We Choose
Boolean operator dominated NNF, fussy, GBA, default ordering

MoreU ’s andR ’s NNF, sloppy, TGBA, LEXP ordering
ManyF ’s, G , combined withU ’s or R ’s NNF, sloppy, GBA, default ordering

MoreG F ’s in combination NNF, sloppy, TGBA, default ordering
Otherwise NNF, fussy, GBA, default ordering

Our basic approach is to use sloppy encoding on more temporally difficult formulas
and fussy encoding on temporally easier ones. We always convert our input formulas
to NNF since that consistently dominated encodings derivedfrom BNF formulas and
gives us the option to use sloppy or TGBA encodings. We construct a TGBA when the
formula is dominated by binary temporal operators or combinations (ieG F ) and con-
struct a GBA otherwise. We use the LEXP variable ordering with our TGBA encodings
to improve performance over the default ordering heuristics for those formulas heavy
with binary temporal operators. Figures 11 and 12 show that even with our overly sim-
plistic objective function to guide our portfolio approach, we significantly decrease the
CadenceSMV model analysis time for both random and counter formulas.

8 Discussion
Too little attention has been paid to the issue of efficient construction of symbolic au-
tomata for LTL formulas. We defined new algorithms for accomplishing this task. Our
experiments showed that no one symbolic translation was superior. Thus, we proposed
a new algorithmic-portfolio approach. The effectiveness of this approach is evident:
even when we use a very simple heuristic for choosing encodings we can significantly
dominate the native translation of CadenceSMV. We demonstrated that the increased
non-determinism of sloppy encoding can outperform the traditional fussy encoding and
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that the smaller size of TGBAs can translate to shorter analysis time. We found NNF
specifications translate to symbolic automata more efficiently than BNF. Finally, we
demonstrated that variable ordering schemes derived from the structure of the specifi-
cation can also improve performance.
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By defining and showing the effective-
ness of new symbolic automata encoding
techniques, we have only scratched the
surface of the possible uses for our tool
set. Our simple operator-count heuristic
leaves room for a comprehensive study
of the relationship between formula struc-
ture, symbolic automaton size, and the
efficiency of different symbolic automa-
ton encoding techniques, perhaps culmi-
nating in a set of formula classes to
match specifications with their optimal
symbolic automaton encodings with mini-
mal overhead. This kind of in-depth struc-
tural analysis would certainly be benefi-
cial, though it was beyond the scope of the experiments in this paper, where the aim of
our experiments was simply to support our claim that our novel encoding techniques are
useful. Due to the complexity of LTL model checking, which isexponential in the size
of the specification, algorithmic advancements, includingour better conversion of LTL
to automata, can make the difference between whether LTL model checking is practical
for the verification of industrial systems or not.
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Appendix A: Input Formulas
Utilizing the benchmarks established by [25], we tested thealgorithms using three types
of scalable formulas: random formulas, counter formulas, and pattern formulas. All
tools were applied to the same formulas and the timing results were compared. Unlike
in [25], correctness of the SAT/UNSAT answers was not an issue. The only cases where
the tools disagreed were attributable to the semantic subtleties covered in §3.

Random FormulasIn order to cover as much of the problem space as possible, we gen-
erated random formulas as in [9]. We created sets of 500 formulas varying the number
of variables,N, from 1 to 3, and the length of the formula,L, from 5 to 200. We chose
from the operator set{¬,∨,∧,X ,U ,R ,G ,F ,G F }. (We included the combinationG F
as a single operator because that combination occurs so frequently in industrial safety
properties.) To create formulas with both a nontrivial temporal structure and a nontrivial
Boolean structure, the probability of choosing a temporal operator wasP = 0.5. Other
choices were decided uniformly. All formulas were generated prior to testing, so each
tool was run on thesameformulas.

Counter FormulasTo measure performance on scalable, temporally complex formulas
with large state spaces, we tested our algorithms on formulas that describen-bit binary
counters with increasing values ofn. We know precisely the unique counterexample for
each counter formula and the requisite number of states for the automaton. We tested
four constructions of binary counter formulas, varying twofactors: number of variables
and nesting ofX ’s. These formulas were originally defined in [25].

We can represent a binary counter using two variables: a counter variable and a
marker variable to designate the beginning of each new counter value. Alternatively, we
can use 3 variables, adding a variable to encode carry bits, which eliminates the need
for U -connectives in the formula. We can nestX ’s to provide more succinct formulas
or express the formulas using a conjunction of un-nestedX -sub-formulas.

Let b be an atomic proposition. Then a computationπ overb is a word in(2{0,1})ω.
By dividing π into blocks of lengthn, we can viewπ as a sequence ofn-bit values, de-
noting the sequence of values assumed by ann-bit counter starting at 0, and increment-
ing successively by 1. To simplify the formulas, we represent each blockb0,b1, . . . ,bn−1
as having the most significant bit on the right and the least significant bit on the left.
For example, forn = 2 theb blocks cycle through the values 00, 10, 01, and 11. For
technical convenience, we use an atomic propositionm to mark the blocks. That is, we
intendm to hold at pointi precisely wheni = 0 modn.

Forπ to represent ann-bit counter, the following properties need to hold:

1) The marker consists of a repeated pattern of a 1 followed by n-1 0’s.
2) The first n bits are 0’s.
3) If the least significant bit is 0, then it is 1 n steps later

and the other bits do not change.
4) All of the bits before and including the first 0 in an n-bit b lock flip

their values in the next block; the other bits do not change.

Forn = 4, these properties are captured by the conjunction of the following formulas:

1. (m) && ( [](m -> ((X(!m)) && (X(X(!m))) && (X(X(X(!m))))
&& X(X(X(X(m)))))))

2. (!b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))
3. []( (m && !b) ->

( X(X(X(X(b)))) &&



X ( ( (!m) &&
(b -> X(X(X(X(b))))) &&
(!b -> X(X(X(X(!b))))) ) U m ) ) )

4. [] ( (m && b) ->
(X(X(X(X(!b)))) &&

(X ( (b && !m && X(X(X(X(!b))))) U
(m || (!m && !b && X(X(X(X(b)))) &&

X( ( !m && (b -> X(X(X(X(b))))) &&
(!b -> X(X(X(X(!b))))) ) U m ) ) ) ) ) ) )

Note that this encoding creates formulas of lengthO(n2). A more compact encoding
results in formulas of lengthO(n). For example, we can replace formula (2) above with:

2. ((!b) && X((!b) && X((!b) && X(!b))))

We can eliminate the use ofU -connectives in the formula by adding an atomic
propositionc representing the carry bit. The required properties of ann-bit counter with
carry are as follows:

1) The marker consists of a repeated pattern of a 1 followed by n-1 0’s.
2) The first n bits are 0’s.
3) If m is 1 and b is 0 then c is 0 and n steps later b is 1.
4) If m is 1 and b is 1 then c is 1 and n steps later b is 0.
5) If there is no carry, then the next bit stays the same n steps later.
6) If there is a carry, flip the next bit n steps later and adjus t the carry.

Forn = 4, these properties are captured by the conjunction of the following formulas.

1. (m) && ( [](m -> ((X(!m)) && (X(X(!m))) && (X(X(X(!m))))
&& (X(X(X(X(m))))))))

2. (!b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))
3. [] ( (m && !b) -> (!c && X(X(X(X(b))))) )
4. [] ( (m && b) -> (c && X(X(X(X(!b))))) )
5. [] (!c && X(!m)) ->

( X(!c) && (X(b) -> X(X(X(X(X(b)))))) &&
(X(!b) -> X(X(X(X(X(!b)))))) )

6. [] (c -> ( ( X(!b) -> ( X(!c) && X(X(X(X(X(!b))))) ) ) &&
( X(c) && X(X(X(X(X(b))))) ) ))

Pattern Formulas We evaluated the efficacy of each encoding algorithm on specific
temporal operators using the eight classes of scalable formulas defined by [13] plus one
we defined and callR2.

E(n) =
n̂

i=1

♦pi , U(n) = (. . .(p1 U p2) U . . .) U pn, R(n) =
n̂
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(�♦pi ∨♦�pi+1).
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