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Abstract. Symbolic model checking has demonstrated more scalahitityre-

liability than explicit model checking,and is used freqtheffior industrial verifi-

cation. Yet, the issue of efficient construction of symbalitomata for LTL for-

mulas has been largely neglected, while explicit transtadf LTL to automata
has been studied extensively. We show that algorithmicsidieen explicit-state
LTL-to-automata translators, as well as translations fbepologics, are applica-
ble to the symbolic domain. We propose a new algorithmidfplio approach for
improved translation from LTL to symbolic automata. We pdavexperimental
results comparing our implementation with the front-emah&lators built into Ca-
denceSMV and NuSMV and demonstrate that we can consistacttigve better
performance, even with a very simple heuristic for choosisgmbolic encoding.

1 Introduction

In model checking, the negation of the specification is tetad into a Buchi automa-
ton, combined with the system model, and then checked foremoptiness [31]. A
fair path found in this combined model represents a couxdenple: a trace where the
system violates its specification. For a system of sizand a Linear Temporal Logic
(LTL) specification of sizem, LTL model checking takes tima2°(™ [19]. As LTL
model checking is PSPACE-complete [27], the exponent@lblp in the size of the
specification seems inherent, posing an algorithmic chg#ifor implementors. This
motivated extensive research on dealing with this expaéaldsibw-up [30]. Many re-
searchers focused on optimizing the construction of autafnam LTL formulas. An
extensive survey of different automata construction ailyors is provided in [25]. The
main focus of this research area has been on explicit carigtruof automata from
LTL formulas, where the goal of optimization is to reduce #iiwe of the constructed
automata. It is shown in [25] that the difference in perfontmbetween the different
translators can be quite dramatic, having a major impadteperformance of explicit-
state model checking. One major finding in [25] is that amolhd BL-to-automata
translators, SPOT [10] is the only one that proved to be anstrahl-strength tool.
Symbolic model checkers describe both the system model mpbfy automaton
symbolically: states are viewed as truth assignments tdeBocstate variables and the
transition relation is defined as a conjunction of Booleamsti@ints on pairs of current
and next states [4]. The model checker uses a BDD-based riixglgiorithm to find a
fair path in the model-automaton product [11]. Cadence$NP0] and NuSM\V? [5]
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both evolved from the original Symbolic Model Verifier devpéd at CMU [21]. These
tools, or similar industrial tools (e.g., RuleBase [1]k &ridely used in industrial hard-
ware verification. Both tools support LTL model checking aisymbolic translation of
LTL to automata, and then use CTL model checking (in a verypimvay) to check
the existence of a fair path in the product [4]. In symbolicd®lochecking, a typical
optimization heuristic is to reduce the number of statealdeis. An optimized transla-
tion from LTL formulas to symboligeneralized Bchi automatg GBAS), improving
on the construction described in [4], was given in [7]. Weerdb this construction as
CGH. CGH is essentially the standard today, and is the basibédnplementations of
LTL model checking in both CadenceSMV and NuSMV. Modern sgliatiranslations
of industrial specification languages, cf. [6], are alsoellasn the CGH translation.
Surprisingly, there has been practically no follow-up egs on this topic since [7].

Another major finding in [25] is that in the context of LTL ssftability checking
(see below), symbolic model checking dramatically outpenfs explicit model check-
ing. This motivated us to revisit the issue of symbolic ttatisn of LTL to automata.

In this paper, we improve upon the performance of the CGHralgun. We bring
new symbolic LTL translation techniques from two sourcesstFwe show that tech-
niques from explicit LTL translation are applicable to syshib LTL translation. Specif-
ically, we show that formula rewriting techniques, cf. [28te significant in symbolic
LTL translation. In particular, usingegation-normal forn{fNNF), may be better than
usingBoolean-normal forniBNF). Also, we show that usingansition-based general-
ized Bichi automatd TGBAS) rather than GBAs [8], which is the technique undieidy
SPOT [10], brings an advantage in symbolic LTL translat®®acond, borrowing from
symbolic modal satisfiability solving [22], we show thatdpby” encoding (essentially,
corresponding to dual-rail encoding) can be superior tgsfti encoding (correspond-
ing to single-rail encoding). Finally, as the importancevafiable ordering in BDD-
based symbolic model checking is well known [16], we showt thdoring variable
ordering to LTL formulas also yields performance improveise

We focus our experimental evaluation on LTL satisfiabilibecking. We showed
in [25] that LTL satisfiability checking is a special case dfilLmodel checking which
provides a source of challenging model-checking probl&vesalso argued there for the
importance of LTL satisfiability checking as a form of sarihecking. The importance
of sanity checkén model checking has been argued in many papers, see [EgrIEI
if a formal property is valid, then this is certainly due toemor. Similarly, if a formal
property isunsatisfiable that is, true inno model, then this is also certainly due to
an error. Even if each individual property written by the cfier is satisfiable, their
conjunction may very well be unsatisfiable, which also iatés an error. Recall that
a logical formulad is valid iff its negation—¢ is not satisfiable. Thus, as a necessary
sanity check for debugging a specification, model-checkimdgs should ensure that
both the specificatiof and its negatiom are satisfiable.

Our experimental evaluation, across a spectrum of chatengrL formulas, in-
dicates that no symbolic translation technique is supexooss the whole spectrum.
We do present, however, a successful algorithmic portyiproach (cf. [18]) to sym-
bolic LTL translation. We suggest a simple heuristic foeséhg a symbolic translation
technique based on the structure of the given LTL formula. @&periments with this
simple heuristic demonstrate that its performance signifly dominates the native
translation of CadenceSMV. (We cannot compare our transléa NuSMV's due to
technical reasons explained in the paper.)

The structure of this paper is as follows. We review the CGgbathm of [7] in
§2, and uncover some semantic subtleties in the syntax cérg@$MV and NuSMV



in 83. Next, in 84, we describe the TGBA encoding. We discussvarious symbolic
translation techniques. in 85. After covering our experitabmethods in §6, we present
our results in 87, followed by a discussion (88).

2 Preliminaries

Support for LTL specifications was added to previously CTlyosymbolic model
checkers after CGH demonstrated an efficient encoding offofinulas as symbolic
automata. Essentially, CGH reduces LTL model checking ézkimg for the nonempti-
ness of a Kripke structure with fairness constraints, witiah be checked by a CTL
model checker. Our definition of a TGBA-based symbolic awttom is derived from
their method for creating a GBA-based automaton.

2.1 Another Look at LTL Model Checking [7]: Basic Algorithm O verview
Input: An LTL formula containing only atomic propositions, Vv, x, andd.

1. Negatef and form the sef\P; of atomic propositions of .
2. Build el list, the list of elementary formulas ift
el(p) = {p} if pc AP. el(-g) = el(g).
el(gvh) =el(g)Uel(h). el(xg) = {xg}uUel(g).
el(gu h)={x(gu h)}uUel(g)Uel(h).
3. Declare a new variableL,, for each formulax g in the listel_list.
4. Add fairness constraints to the SMV input model:
{sat(—(g u h)vh)|g u hoccursinf}
5. Construct the characteristic functiGpfor each subformulain —f:

S=p if pis an atomic proposition.

S =ELy if his elementary formula g in el_list.
S =15 if h=-g

S = Sn|Sp2 ifh=g1Vag

S = S2|(S1&Syy ) Th=01 U G2
6. Printthe SMV program:

MODULE main
VAR /*declare a boolean variable for each atomic propositio n in f/
a: boolean;
b: boolean;
[*and declare a new variable EL_X_g for each formula (X g) in e |_list*/
EL_X_g: boolean;
DEFINE /*or each S_h in the characteristic function, put a | ine here*/
Sa:=ag
Sbh =
Sgl:=..
S g2 = ..
TRANS  /*for each (X @) in el_list, generate a line here*/
(S_ X gl = next(S_gl) ) &

( S_X_gn = next(S_gn) )
[*for each (g U h) in the parse tree, generate a line like this: */
FAIRNESS ! S_guh | S_h
*end with a SPEC statement*/
SPEC (S_f & EG true)



3 Semantic Subtleties

All symbolic model checkers use the CGH translation and teyais algorithm of
[11], though some add further optimizations, including &ackSMV and VIS [2].
However, the precise semantics of symbolic automata arexpicitly documented
and there are some subtle differences between the implatimg of CadenceSMV
and NuSMV. Therefore, several subtleties arise when chgckbonemptiness of fair
Kripke structures. With help from the creators of these dpale have compiled the
following rule-set for creation of symbolic automata froMlLLformulas:

There must be at least one initial stateFor both NuSMV and CadenceSMYV, there
is an implicit universal quantifier over all initial statékthere are no initial states, then
the formula is automatically “true.” Declaring an initigb$e is not enough to satisfy
this condition. For examplé\IT (a&('a)) specifies that there is no initial state.

Symbolic automata must always have a FAIR statement, even if is “FAIR
true.” CadenceSMYV considers terminal paths to be fair when there@fairness con-
straints. The semantics with a fairness constraint is thi&ilte paths” semantics where
states without infinite paths are discarded. Therefore, wst tmave at least one fairness
constraint to prevent the possibility of a model with ondiaistate and no legal transi-
tions from model checking as “false.” Rather than the ctagsilgorithm of implicitly
universally quantifying over all initial states, NuSMV tasts itself to allfair initial
states.|f there are no fair initial states, the formula i®aatically “true.”

The SPEC should be (! ¢ A EG true)). Both CadenceSMV and NuSMV consider
a CTL formulad to hold in a modeM if ¢ holds inall initial states ofM. If M has no
initial states, then every holds inM. UsingSPEC (I( ¢ A EG true)) , if the model
is not empty, the counterexample returned is a trace of thiemo

INIT ¢ SPEC ! (EG true) isnotequivalenttoSPEC (! (¢ A EG true)).
For example, ifh is simply falseand we checlSPEC (/( false A EG true)) overan
empty model, a failure means tHatalse A EG true) is true in some state. However,
if we check insteadNIT falseandSPEC !(EG true) , we actually get a counterex-
ample. Similarly, checking for a finite counterexample gsS®EC!(Sf) may produce
spurious results.

4 Transition-Based Generalized Bichi Automata (TGBA)

In [25] we demonstrated that SPOT [10], which optimizes Lfbkautomata techniques
of other translators (eg [14], [12]), is the only publiclya@lable explicit-state model-
checking tool that is somewhat competitive with symbolicl$o We borrow the idea
of creating TGBAs from SPOT, where the size of the automatorduced by placing
the labels on the transitions instead of the states.By pgshie acceptance conditions
to each accepting states’ outgoing transitions, we cancesgiate-based acceptance to
transition-based acceptance with a resulting automatt@ssfthan or equal to the orig-
inal size. There is, of course, a trade-off: symbolic repn¢ations of TGBAs may re-
quire more variables than for GBAs. While both represeatatrequire the declaration
of all of the boolean variables present in the input formufglus a variable associated
with each temporal subformula, transition-based repttetiens also require a variable
for f andpromise variable$o assure fairness af - and ¥ -operators.

The TGBA construction [8] implemented in SPOT is based ontsylin compu-
tation over the following set of boolean variables comptisé atomic propositions,
subformula variables (), and promise variablesy):



ro = p if pisan atomic proposition

r-g='g
Fgvh = Ig|rh
Fgah = g&T'h

rguh="rn|(re&ag u n&rxg , )
Fgx h="n&(rglrxg, ) = (M&rg)[(rg&ry, y)

We extend the explicit-state construction of [8] in term#af CGH symboalic trans-
lation, resulting in the following algorithm.

Input: LTL formula f with operators ™|, &, — x, U, R, G, ¥.

1. Convert the formula into Negation Normal Form. Boolean Normal Form
is not allowed here.A symbolic TGBA can only be created for formulas i
NNF because the model checker tries to guess a sequencee$vaf each of
the promise variables. This works for positiueformulas, but not for negative
u-formulas. As an example, consider the formila —(a ¢ b) and the trace
a=1,b=0, a=1,b=1, .. Clearly,(a ¢ b) holds in the trace, sé fails in the
trace. If, however, we choggaUb to be false at time 0, theL_aUb will be
false at time 0, which will mean thgtholds at time O.

2. Declare a variableE L for each elementary subformulax g. In other words,

create a variable for every subformula occurring aftexaoperatofThere is

also a variabl€& Lt for the whole formulaf.

3. Declare a variable for eachu -, ® -, ¥ -, and g - subformula. This represents
a significant deviation from the variables declared for ssudbformulas in [7]
in two ways:

(&) The variable is for the subformula, not the next-timehef subformula.
For example, for each subformujau h, we declareELg o 1 instead of
ELx(gu h)-

(b) There is a special optimization described in [8] for tbenecnong 7 jux-
taposition, which we treat as a single operator.

4. Define the acceptance condition®eclare a promise variabR ., n for every
subformulag « h, Py ¢for 7 g, andP; ; g for g 7 g.

5. Construct the characteristic function S, for each subformulahin —=f. This
step is similar to the [7] algorithm for Boolean operatooted subformulas
and different for temporal subformulés.

-

S$H=p if pe AP
Si=I5 if h= g
Sh= Su1lSe ifh=g1Vg
S =Sn&Sp ifh=g1A0
Sh = next(ELy) if h=xg

Sh = Sp2|(S1&Pg1 w g2) & (NeXU(ELg1 o g)))) if h=01 U G2
Sh = S2& (S| (NeXt(EL1 « g2)))) ifh=01 % g
S = SE&(Next(ELy, o)) ith=—2g g

S = Sl(Py g&nextEL; o)) !f h=#%g
Sh=(nex{EL; s g)))&(S$|Ps 7 g) ifh=g7g

6. Declare the transitions.In contrast with [7], ouTRANSstatements associate
anEL-var with its matchings-var like this:
TRANS ( ELg = (S_g) ) forfussy encoding




TRANS ( ELg -> (S _g) ) for sloppy encoding (see 85)

7. Declare fairness constraints as the negations of the pronesvariables.
FAIRNESS (IP _g) for every promise variable_g
FAIRNESS TRUEf there are no promise variables.

8. Add the specificationSPEC ! (ELf & EG true).

9. Use CadenceSMV to check the resulting symbolic automatorin Ca-
denceSMV, next() statements may not be nested or presentNiT ,
FAIRNESS or SPEC statements. Our solution is to uge-variables inINIT
and SPECstatements and use Promise var§MRNESS statements. TGBA-
formatted symbolic automata cannot be checked using NuS&tduse vari-
able definitions (ieDEFINE-statements) may only assign simple expressigns
composed of state variables[23]. Therefore, NuSMV canactgthenext()
operators in oubEFINE section. While NuUSMVASSIGN-statements do allow
next() operators, they must occur alone on the left-hand-sideeftisign-
ment, which still excludes our TGBA construction.

Theorem 1 Let¢ be an LTL formula. Let fbe the symbolic TGBA that represeits
Then A accepts exactly the infinite words over the alpha$&tthat satisfyp.

The correctness of our construction follows directly frdra proof of Theorem 1 in
[8], and can also be adapted from the proof in [7], both of wlaite based on induction
on the structure of the formula. Our construction changess#t constructions of the
proof in [7] because we are now reasoning over transitiostead of states. For exam-
ple, instead of defining the functiarat(g) that describes the set of states that satisfy
for every subformulgin f, such thasat(gu h) = sat(h) U (sat(g) Nsat(x (guh))) and
adding the fairness constrast(—(g « h) v h), we definesat(g) over transitions and
let sat(gu h) = sat(h) U (sat(g) N sat(next(gu h)) N sat(Py,n)) Where, as [8] shows,
Pgun resolves to(guh) A =h. In this case, the fairness constraint-iBy,n which is
equivalent to the GBA fairness constraint sing@u h A —h) = =(g « h) Vh.

5 Symbolic Automaton Encoding Issues

In addition to defining a TGBA translation, we adapted thrédeepoptimizations for
creating symbolic automata. CGH describes creating GBAmfELTL formulas in
Boolean Normal Form (BNF). We compare BNF-based automasaitomata created
from Negation Normal Form (NNF) formulas. We borrow sloppgeding as a method
for describing the transition relation from PSV [22], whaufal it preferable to fussy
encoding for the modal logig . Furthermore, we explore a small collection of BDD
variable ordering schemes and measured their effect on dldelnchecking step.

Definition 1 Boolean Normal Form (BNF) Traverse the parse tree far in order,
changing the operators d@f to only—, v, x, ¢, and 7 . In other words, replace,, —,
R, andg with their equivalents:

7 Note that there may also be a variable ok g itself if nestedx -operators occur in the
formula since CadenceSMYV syntax forbids nestiagt() calls.

8 |n practice, this step can be optimized considerably for-temnporally-rooted subformulas.
For example, we avoid declarirg and just use.



MODULE main
VAR

[*declare a boolean variable for each atomic proposition in f*/

a : boolean;
b : boolean;

VAR

[*and declare a new variable for each EL_var in el_list*/

EL_f : boolean; [ is the input LTL formula*/
EL_g1 : boolean;
EL_g2 : boolean;
EL _gn : boolean;
DEFINE
[*for each S_h in the characteristic function, put a line her e*/
Sg-=..
S h=..

[¥for each Promise variable, put a line here*/
PgUh:=rguUh&!s
PFg=rFgé&!Sg
PGFg:=rGFg&lSg

TRANS
[*for each EL-var in el_list, generate a line here*/

[*Basically, for every X, U, R, G, or F in the parse tree, gener

(ELgl=S091)&

'(”EL_gn =Sggn)
FARNESS  (P_gl)
FAIRNESS  (P_gn)

SPEC l(EL_f & EG TRUE)

ate a line¥/

Fig. 1. TGBA symbolic automaton for SMV

MODULE main
Formula: (X (a ))& ((b )U (@ )))*/
VAR
[*declare a boolean variable
for each atomic proposition in f*/
a : boolean;
b : boolean;
VAR
[*and declare a new variable EL_X_g
for each formula (X g) in el_l list
generated by a primary operator
X, U, R, G, or F*/
EL_X a : boolean;
EL_X_b_U_NOT_a : boolean;
DEFINE
[¥for each S_h in the characteristic
function, put a line here*/
S_X a_ AND_ b _U_NOT a :=
(EL_X_a) & (S_b_U_NOT a);
S b UNOTa =
(@) T (b & EL_X_b_U_NOT_a);

TRANS
[*for each (X g) in el_list,
generate a line here*/
( EL_X_a = (next(a) ) ) &
( ELLX_b_U_NOT_a =
(next(S__b_U_NOT _a) ))

FAIRNESS
SPEC

(S_b_U_NOT a | ((a ))
i(S_Xa_ AND_b U NOT a & EG TRUE)

MODULE main
Formula: (X (a ))& ((b U ((a )))*/
VAR
[*declare a boolean variable
for each atomic proposition in ¥/

[*and declare a new variable
for each EL_var in el_list*/
EL_X a_ AND_b U NOT a: hoolean;

P_"b_U_NOT_a: boolean;
EL_b U NOT a: boolean

DEFINE
[¥for each S_h in the characteristic
function, put a line here*/
S_X_a_AND_b U NOT a :=
(S Xa)& (EL_b_U_NOT_a);
S Xa:= (next(a))

a))) | (b& P. b_U NOT_a
& (next(EL__b_U_NOT_a))));
TRANS
[¥for each EL_var in el_list,

generate a line here*/
( EL_X_a_AND_b U NOT a =

(S_X a_ AND_b UNOT a)) &
(EL_bUNOT a=(5_b_UNOTa))
FAIRNESS ('P b_U_NOT_a)

SPEC I(EL_X_a_AND_b U_NOT a & EG TRUE)

Fig. 2. CadenceSMV symbolic GBA with fussy encoding Fig. 3. CadenceSMV symbolic TGBA with fussy encoding

Here are two symbolic automata encodings for the sampléfeion ¢ = ((xa) A

(bu —a)).

Figure 2 matches the GBA-based encoding defined by CGH [gurEi3 follows our TGBA-
based encoding, declaring a promise variable fordtieubformula, specifying an elementary
variable for the whole formula, and pushing the labels fromdtates to the transitions.
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Definition 2 Negation Normal Form (NNF) Traverse the parse tree in a pre-order
fashion, using DeMorgan'’s laws to push the negatiorgsimwards until only variables
are negated. For LTL formulas, we using the following egl@meae rules:

——g=g —(xg) = x(—-0)
(01 G2) = (—91) V (—02) (01U Q) = (—01R —Q2)
~(01V2) = (—91) A (—092) ~(01R.92) = (—01U —Q2)
(91— G2) = (—91) VG2 —(0g) = 0(-9)

~(0g) = 0(-9)

Transition Encoding Method®©nce a formula is in Negation Normal Form, we can
use sloppy encoding instead of fussy encoding. (NNF is sacgslue to the way neg-
ative ¢ -formulas are checked by the fixpoint algorithm.) Here issadiescribing the
differences between the two:

| fussy | sloppy |

* symbolic automaton has iff-transitions* symbolic automaton has if-transitions
Yy Yy

* TRANS ( ELg = (Sg) ) * TRANS ( ELg > (S 9) )

* describes anon-deterministi@utomatort describes a smaller, usually mon®n-
with trap-states for the negations of-|deterministicautomaton
transitions

Variable Ordering CadenceSMV and NuSMV search for a fair path in the model-
automaton product using a BDD-based fixpoint algorithm,acess whose efficacy is
highly sensitive to variable ordering.[3] Finding an opsinBDD variable ordering is
NP-complete and, for any constant> 1, it is NP-Hard to compute a variable order-
ing to make a BDD at most times larger than optimal. [26] Therefore, finding good
heuristics is key. We experiment three heuristics definelddster et al [15] and Tarjan
and Yannakakis [29], comparing them to the default hegdsif CadenceSMV, and a
simple ordering resulting from a pre-order, depth-firstéraal of the variable graph.

We form the variable graph from the parse tree of the inpuhtda by identifying
nodes in the parse tree corresponding to the roots of thesuhbfas for which we
declare variables. We connect each variable-labeledwestés closest ancestor and
descendant(s). Unary operator rooted subformula vagadie connected to only one
closest descendant while binary operator rooted subf@wariables are connected to
their closest left and right descendants. Figure 4 displagsvariable graph for our
example formula. We implemented the four variable ordesiclgemes listed in Table
1, all of which take the variable graph as input.

Algorithm:; Form variable graph from parse tree.

1. Each variable is a vertex in the graph. Vertices are either
* propositionse AP * Elementary (EL) variables  * Promise variables
Each vertex has a self-loop.

Each vertex, except the root, is connected to its closestistor.
Each non-leaf vertex is connected to its closest desog(®la

rwbd




Fig. 4. Variable graph formed from parse tree o= ((xa) A (b u —a))

Table 1: Variable Ordering Schemes
Pre-order, Depth First Search|naive [formed directly from a pre-order, depth first traversdl of
the syntax DAG of the input LTL formula
Lexicographic Breadth First [LEX_P [Koster et al's [15] variant of [24] which triangulates the
Search, Variant Perfect variable graph focusing on either perfection or minimal-
ity, labels vertices with their already ordered neighbors
Lexicographic Breadth First |LEX_M|in decreasing order by position, and chooses the highest
Search, Variant Minimal lexicographically-labeled vertex next.
Maximum Cardinality Search |[MCS |Koster et al's [15] variant of [29] which also triangulates
the variable graph but selects the vertex adjacent tp the
highest number of ordered vertices next. We seed MCS
with an initial vertex, chosen either to have the maximpum
or minimum degree.

6 Experimental Methods

Test MethodsEach test was performed in two steps. First, we applied olrtbF
symbolic automaton translation to the negation of the ifipuhula. Second, each out-
put automaton and variable ordering file pair was checkedddeGceSMV or NUSMV.
When we did not specify a specific variable order, we let tioéstase their default vari-
able ordering heuristics to try to find an optimal one. To éh&hether a LTL formula
¢ is satisfiable, we model checkd against a universal SMV model. For example, if
¢ = ((xa) A (b u —a)), we provide the following input to CadenceSMV:
module main () {
a : boolean;
b : boolean;
assert (X a) & (b U (" @),
FAIRNESS TRUE; }
SMV negates the specificatiord, symbolically compilesp into Ay, and conjoins
Ay with the universal mode¥l. If Ay, -y is not empty, then SMV finds a fair path that
satisfiesp. In this way, SMV acts as both a symbolic compiler and a seangjfine.

Platform We ran all tests on Shared University Grid at Rice (SUG@R)ntel Xeon
compute clustet.SUG@R is comprised of 134 SunFire x4150 nodes, each with two
quad-core Intel Xeon processors running at 2.83GHz and 1&fGR#\M per processor.
The OS is Red Hat Enterprise 5 Linux with the 2.6.18 kernethBast was run with
exclusive access to one node. Times were measured usingitkérie command.

Input FormulasUtilizing the benchmarks established by [25], we testedatgerithms
using three types of scalable formulas: random formulasyter formulas, and pattern
formulas. Definitions for these formulas are repeated foweaience in Appendix A.

5 http:/Ircsg.rice.edu/sugar/



7 Experimental Results

Our experiments demonstrate that the novel encoding methiedhave introduced sig-
nificantly improve the translation of LTL formulas to symhlmautomata, as measured
in time to check the resulting automata for satisfiabilitpwéver, no one encoding
method consistently dominates for all types of formulastdad, we find that different
combinations of encoding methods are better suited tordifteformulas. Therefore,
we recommend using a portfolio approach to algorithm sigle¢t.8] where different
translations are used depending on the structure of the fopuaula. We call our tool
PANDA for “Portfolio Approach to Navigate the Design of Autata.”

NNF encodings outperform BNF encodingBhe one exception to our portfolio ap-
proach is the normal form we use for the input formula. We fbthmat symbolic au-
tomata generated from NNF formulas consistently domintitese created from BNF
formulas. Figure 7 provides one example of this. Using NNE tee added benefit
that it allows us to also employ sloppy encoding and gené&r&BAs. Therefore, we
recommend a portfolio approach which always generates Naded automata.

Model Analysis Time: R-class Pattern Formulas Model Analysis Time: R-class Pattern Formulas
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Performance ResultR®(n) = AlL1(00pi VOO pi+1)

Sloppy encoding shows promise for temporally-heavy famwhile we did not see a
significant improvement in model analysis time for Booleamfulas, sloppy encoding
dramatically improved the performance of both CadenceSkiY/NMuSMV in many of

our tests of temporal formulas. Figure 7 demonstrates tirabdth GBAs and (in the
case of CadenceSMV) TGBAs, using sloppy encoding can shortelel analysis time.

TGBAs translate smaller automata into smaller model analises. We found that
the automata encoding optimizations used for TGBAs, suctheaspecial treatment
of the ¢ ¥ operator and use of promise variables, translated intetbp#rformance.
Figure 7 shows the dramatic improvement we saw when encadihgavy formulas
while 8 demonstrates optimizing fgr# operators. From here on, we compare our tool
using CadenceSMV as a back-end checker to using Cadence &/ &Ve found our
automata with NuSMV as a back end produced different timesgits than the same
automata with CadenceSMV as a back end. As our objective ¢oitapare LTL-to-
automata algorithms and not model checking software, arBMNcannot check all

of our automata, we focus on CadenceSMV.
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LEXP variable ordering benefits TGBA 0: v S
encodings. While several of the vari- P Sumberorers | T P
able orderings we tested matched or even Fig. 9. 3-Variable Counters

slightly exceeded CadenceSMV’s build-in variable ordgrireuristics, none of them
ever bested CadenceSMV significantly or consistently onnabsjic GBA. Figure 7
shows a fairly typical example of the results we obtainedgisiur variable orderings
with symbolic GBA. Frequently, either the LEXP, as in thiseaor naive variable or-
derings would perform very similarly to our GBA encoding lvthe CadenceSMV de-
fault ordering. The other variable orderings nearly alwagdormed worse. This graph
is continued to the right. (Observe the line representieg\hF, fussy, GBA encoding
in the upper left-hand corner of Figure 7.) Here we observwgpial spread caused
by varying the variable ordering on symbolic TGBAs. All oktkariable orderings we
tested performed similar to, or worse than, the default Gee@8MV heuristic except
for LEXP, which improves performance slightly.

Though CadenceSMYV appears to have good ordering heurfistiGBAs, the per-
formance of our symbolic TGBAs was frequently improved bingd. EXP variable or-
dering. Figure 13 demonstrates the most dramatic displapwed of this phenomenon
using ourR; pattern formulas. Since CadenceSMV does not acgepperators, we
eliminated them from outTLSPEGs using the conversio(@i® g2) = —(—01U Q).
Our symbolic TGBAs grew to 923 variables before triggering messagt®ken too
large, exceeds YYLMAX Command exited with non-zero status 2 .

7.1 Obijective Function ) . o )
From our pattern formula experiments, we devised a very Isimipjective function to

choose an encoding based on the operators present in theanpula. We make no
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claim that this heuristic is optimal; in fact we are sure ihig. However, our aim here
is simply to demonstrate that our novel encodings transtedissignificant performance
improvementin the symbolic domain as they did in the domfioma which we derived
them. It costs us nothing to count the operators in the inpeti§ication as we parse
it. Therefore, we get a very simple heuristic which bestsaberage model analysis
time of CadenceSMV without incurring any overhead for thedkof deep structural
analysis required for ensuring an optimal encoding choi@yetime. We employ a
portfolio approach to selecting an encoding based on thewolg guidelines:

Operator Count Shows We Choose
Boolean operator dominated NNF, fussy, GBA, default ordering
More u’s andg_’s NNF, sloppy, TGBA, LEXP ordering
Many 7's, G, combined withu’s or £ 's| NNF, sloppy, GBA, default ordering
More g #'s in combination NNF, sloppy, TGBA, default ordering
Otherwise NNF, fussy, GBA, default ordering

Our basic approach is to use sloppy encoding on more tentpditiicult formulas
and fussy encoding on temporally easier ones. We alwaysecbour input formulas
to NNF since that consistently dominated encodings derik@td BNF formulas and
gives us the option to use sloppy or TGBA encodings. We coosér TGBA when the
formula is dominated by binary temporal operators or comtiims (ieg 7 ) and con-
struct a GBA otherwise. We use the LEXP variable orderingpwiir TGBA encodings
to improve performance over the default ordering heusshic those formulas heavy
with binary temporal operators. Figures 11 and 12 show thext gith our overly sim-
plistic objective function to guide our portfolio approaee significantly decrease the
CadenceSMV model analysis time for both random and couaterdlas.

8 Discussion

Too little attention has been paid to the issue of efficiemstction of symbolic au-
tomata for LTL formulas. We defined new algorithms for acctighing this task. Our
experiments showed that no one symbolic translation wasrsupThus, we proposed
a new algorithmic-portfolio approach. The effectivenebshis approach is evident:
even when we use a very simple heuristic for choosing engsdire can significantly
dominate the native translation of CadenceSMV. We dematesirthat the increased
non-determinism of sloppy encoding can outperform theticadhl fussy encoding and
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that the smaller size of TGBASs can translate to shorter amtyme. We found NNF
specifications translate to symbolic automata more effiigighan BNF. Finally, we
demonstrated that variable ordering schemes derived fnersttucture of the specifi-
cation can also improve performance.
By defining and showing the effective: Model Analysis Time: R2-class Pattern Formulas
ness of new symbolic automata encoding f"
techniques, we have only scratched the*sf
surface of the possible uses for our took:sf
set. Our simple operator-count heuristics :+}
leaves room for a comprehensive study .|
of the relationship between formula strug
ture, symbolic automaton size, and th
efficiency of different symbolic automa-
ton encoding techniques, perhaps culm
nating in a set of formula classes to )
match specifications with their optimal |/ ...
symbolic automaton encodings with miniz =~ © 10 200 300 40 S aianes . o0 90 1000
mal overhead. This kind of in-depth struc —
tural analysis would certainly be benefiFlg' 13.Re(n) = (-(P1 R P2) R ) R Pn
cial, though it was beyond the scope of the experiments syghper, where the aim of
our experiments was simply to support our claim that our heweoding techniques are
useful. Due to the complexity of LTL model checking, whickeigonential in the size
of the specification, algorithmic advancements, includingbetter conversion of LTL
to automata, can make the difference between whether LTLlehubecking is practical
for the verification of industrial systems or not.
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Appendix A: Input Formulas

Utilizing the benchmarks established by [25], we testedatherithms using three types
of scalable formulas: random formulas, counter formulas] pattern formulas. All
tools were applied to the same formulas and the timing resdre compared. Unlike
in [25], correctness of the SAT/UNSAT answers was not areis§he only cases where
the tools disagreed were attributable to the semanticetigsicovered in 8§3.

Random Formuladn order to cover as much of the problem space as possiblegwe g
erated random formulas as in [9]. We created sets of 500 fiasnarying the number
of variablesN, from 1 to 3, and the length of the formula,from 5 to 200. We chose
from the operator sdt-,V,A, x,u,® ,G,¥ ,6 ¥ }. (We included the combinatian ¥

as a single operator because that combination occurs seefnély in industrial safety
properties.) To create formulas with both a nontrivial temgbstructure and a nontrivial
Boolean structure, the probability of choosing a tempoparator was® = 0.5. Other
choices were decided uniformly. All formulas were genetgtgor to testing, so each
tool was run on theameformulas.

Counter FormulasTo measure performance on scalable, temporally complexdtas
with large state spaces, we tested our algorithms on fosribl describe-bit binary
counters with increasing valuesmmf\We know precisely the unique counterexample for
each counter formula and the requisite number of stateh&attomaton. We tested
four constructions of binary counter formulas, varying factors: number of variables
and nesting ofc’s. These formulas were originally defined in [25].

We can represent a binary counter using two variables: ateowariable and a
marker variable to designate the beginning of each new eowatue. Alternatively, we
can use 3 variables, adding a variable to encode carry Hitighveliminates the need
for w-connectives in the formula. We can ness$ to provide more succinct formulas
or express the formulas using a conjunction of un-nestedib-formulas.

Let b be an atomic proposition. Then a computatiooverb is a word in(2{°’1})“’.
By dividing tinto blocks of lengtin, we can viewrtas a sequence ofbit values, de-
noting the sequence of values assumed bg-bit counter starting at 0, and increment-
ing successively by 1. To simplify the formulas, we représach blocky, by, ..., by_1
as having the most significant bit on the right and the leagtifitant bit on the left.
For example, fon = 2 theb blocks cycle through the values 00, 10, 01, and 11. For
technical convenience, we use an atomic propositida mark the blocks. That is, we
intendmto hold at poini precisely when = 0 modn.

ForTtto represent an-bit counter, the following properties need to hold:

1) The marker consists of a repeated pattern of a 1 followed by n-1 0's.
2) The first n bits are 0's.
3) If the least significant bit is 0, then it is 1 n steps later
and the other bits do not change.
4) All of the bhits before and including the first 0 in an n-bit b lock flip
their values in the next block; the other bits do not change.

Forn = 4, these properties are captured by the conjunction of thaxfimg formulas:
1 (m) && ( [I(m -> ((X('m)) && (X(X('m))) && (X(X(X(‘m))))

&& XX(X(X(m)))))
2. (Ib) && (X(Ib)) && (X(X(1b))) && (X(X(X('b)))
3.1 >
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X(X(1b))))) U

X(X(X(X(b) &

' (b -> X(X(X(X(b ))))) &&

(b -> XXXX)) ) Um)))))))

Note that this encoding creates formulas of ler@th?). A more compact encoding
results in formulas of lengt®(n). For example, we can replace formula (2) above with:

2. ((1b) && X((1b) && X((Ib) && X(1b))))

We can eliminate the use ai-connectives in the formula by adding an atomic
propositionc representing the carry bit. The required properties of-ait counter with
carry are as follows:

1) The marker consists of a repeated pattern of a 1 followed by n-1 0's.

2) The first n bits are 0's.

3) If mis 1 and bis 0 then c is 0 and n steps later b is 1.

4) Ifmis1land bis 1 then cis 1 and n steps later b is 0.

5) If there is no carry, then the next bit stays the same n steps later.

6) If there is a carry, flip the next bit n steps later and adjus t the carry.

Forn = 4, these properties are captured by the conjunction of thaxfimg formulas.

Lo(m) && ({(m -> ((X(m)) && (X(X('m))) && (X(X(X ( m)))
& (XXXXm)))N)

2. (b) && (X(b)) && (X(X(b))) && (X(X(X(!0)))
8.0 ((m && b) > (lc & X(X(X(X(b)))) )
4.0 ((m & b) > (c && X(X(X(X(b)) )
5 [ (lc && X(Im)) ->

( X(tc) && (X(b) -> X(X(X(X(X(b)))) &&

(X(h) -> X(X(X(X(X(tb)))) )
6.0 (c-> ((X(h) > ( X(c) && X(X(X(X(X(10)))) ) ) &&
( X(e) && XXXXX®) ) )

Pattern Formulas We evaluated the efficacy of each encoding algorithm on fpeci
temporal operators using the eight classes of scalabladasdefined by [13] plus one
we defined and cafR,.

n

E(n)=AOp, UM =(..(prup2) u ...) u pn, RN) = A\(OOpi vVOOpiy1).
i i=1

Ua(n)=pru (P2 U (-..Pn1 U pn)-..), C \/D<>p. Ca(n /\D<>p.
i=1 i=1

Q(n) = A(0pi vOpis1), S(N) = AOpi, Re(N)=(...(P1 R P2) X -..) R Pn.
i=1



