Computing the Envelope for Stepwise-Constant Resource
Allocations

Nicola Muscettola
NASA Ames Research Center

Moffett Field, California 94035-1000
mus@email.arc.nasa.gov

Abstract. Computing tight resource-level bounds is a fundamental problem in the con-
struction of flexible plans with resource utilization. In this paper we describe an efficient
algorithm that builds a resource envelope, the tightest possible such bound. The algo-
rithm is based on transforming the temporal network of resource consuming and produc-
ing events into a flow network with nodes equal to the events and edges equal to the
necessary predecessor links between events. A staged maximum flow problem on the
network is then used to compute the time of occurrence and the height of each step of the
resource envelope profile. Each stage has the same computational complexity of solving
a maximum flow problem on the entire flow network. This makes this method computa-
tionally feasible and promising for use in the inner loop of flexible-time scheduling algo-
rithms.

1 Resource Envelopes

Retaining temporal flexibility in activity plans is important for dealing with execution uncer-
tainty. For example, flexible plans allow explicit reasoning about the temporal uncontrolla-
bility of exogenous events [11] and the seamless incorporation of execution countermeasures.
Fixed-time schedules (i.e., the assignment of a precise start and end time to all activities) are
brittle and it is typically very difficult to exactly follow them during execution. For an exam-

ple of the effect of fixed-time schedules in an intelligent execution situation, consider the
“Skylab strike” [6], when during the Skylab 4 mission, astronauts went on a sit-down strike
after 45 days of trying to catch up with the exact demands of a fast paced schedule with no
flexibility for them to adjust to the space environment.

A major obstacle to using flexible schedules, however, remains the difficulty of computing
the amount of resources needed across all of their possible executions. This problem is par-
ticularly difficult for multiple-capacity resources (such as electrical power) that can be both
consumed and produced in any amount by concurrent activities. Techniques have been devel-
oped [5] [10] for giving conservative estimates of the resource levels needed by a flexible
schedule, yielding both an upper bound and a lower bound profile on the resource level over
time. In the context of a systematic search method to build flexible plans, resource-level
bounds can be used at each search step as follows: a) as a backtracking test, i.e., to determine
when the lower/upper bound interval is outside of the range of allowed resource levels at
some time and therefore no fixed-time instantiations of the plan is resource-feasible; and b)
as a search termination test, i.e., to determine when the lower/upper bound range is inside
the range of allowed resource levels at all times and therefore all fixed-time instantiations of
the plan are resource-feasible.

Bound tightness is extremely important computationally since a tight bound can save a po-
tentially exponential amount of search (through early backtracking and solution detection)
when compared to a looser bound. In this paper, we discuss how to computstiiece-

level envelopei.e., the measure of maximum and minimum resource consumption at any

time for all fixed-time schedules in the flexible plan. At each time the envelope guarantees
that there are two fixed-time instantiations, one producing the minimum level and the other
the maximum. Therefore, the resource-level envelope is the tightest possible resource-level
bound for a flexible plan since any tighter bound would exclude the contribution of at least
one fixed-time schedule. If the resource-level envelope can be computed efficiently, it could
substitute looser bounds that are currently used in the inner core of constraint-posting sched-
uling algorithms (Laborie 2001) with the potential for great improvements in performance.

To appreciate the difficulty of computing the resource level, we can compare the cases of a
fully flexible plan with that of a plan with a single fixed-time instantiation. In the fixed-time
case, the envelope degenerates to the resource profile that is used in the inner loop of tradi-
tional scheduling algorithms [2][15]. Computing from scratch a resource profile is cheap. It
is easy to see that its worst cast time complexitPigN Ig N) whereN is the number of
activities in the flexible plan. Consider now a fully flexible plan and assume that we naively
wanted to compute the resource-level envelope for a flexible plan by simply enumerating all
schedules and taking the maximum/minimum of all resource levels at all times. Since a
flexible activity plan has a number of possible instantiated fixed-time schedules that is expo-
nential in the number of events, such naive method is clearly impractical in most cases.

Note that “resource-level envelope calculationhi equivalent to “scheduling with multiple
capacity”, an NP-hard problem. For example, note that a reduction of the envelope calcula-
tion to scheduling is not straightforward. Consider the interval between minimum and
maximum envelope at a given time. It is true that a solution to the scheduling problem can be
obtained in polynomial time if the envelope interval is always completely contained within
resource availability (in which case all fixed-time instantiations are legal schedules). How-
ever, if at least two times the envelope interval is partly outside the availability bound, one
can generate examples in which the envelope cannot tell us whether there is a fixed-time
schedule that is within availability at all times or whether for all schedules the resource level
is outside availability at some time. Discriminating Wween these two cases still requires
search.

This paper presents a polynomial algorithm for the computation of resource-level envelopes
based on a novel combination of the theory of shortest-paths in the temporal constraint net-
work for the flexible plan, and the theory of maximum flows for a flow network derived from
the temporal and resource constraints. We develop the theory, show that the algorithm is
correct, and that its asymptotic complexity@§N O(maxflow(N))), whereN is the number

of start/end times of the activities in the plan, which is at most twice the number of activities,
and O(maxflow(N)) is the complexity of a maximum flow algorithm applied to an auxiliary
flow network with N nodes. We believe that this method will be efficient in practice, since
experimental analysis [1] show the practical cost of maxflow to be as goad(his®). How-

ever this paper is a theoretical contribution and a definitive answer to its practical complexity
will require further experimental work.

In the rest of the paper we introduce some notation and describe the formal model of activity
networks with resource consumption. Then we review the literature on resource contention
measures and show an example in which the current state of the art is inadequate. The dis-
cussion of our algorithm follows. Some informal examples to establish an intuitive under-
standing of our method are first given. Then we establish the connection between maximum
flow problems and finding sets of activities that have the optimal contribution to the resource
level. These sets are then shown to compute an envelope. Finally, we describe a simple enve-
lope algorithm and its complexity, and conclude discussing future work.

2 Resource Envelopes

Figure 1 shows an activity network with resource allocations. Our notation is equivalent to
that of previous work on flexible scheduling with multiple-capacity resources [5][10]. The

network has two time variables per activity, a start event and an end evente{eande,.

for activity A;), a non-negative flexible activity duration link (e.§, 5] for activity A,), and
flexible separation links between events (€[@, 4] from e;. to). A time origin, T, corre-
sponds to timé and supports separation links to other events. Without loss of generality we
assume that all events occur aftey and before an everik, rigidly connected tols. The
interval T T is thetime horizonT of the network.

<, 121> [2,3] <€, 122>
AN V {

<@ 1> [2,5] <@ 1>
/N N\

Az <€ 3>

Ts [30, 30] Te
rn O [1, 4] r; 0 [-7, -5]
r 0 [-l, 3] r;20 [1, 3]
rng[l, 2] 4 D[2, 4]

Figure 1: An activity network with resource allocations

Time origin, events and links constitute a Simple Temporal Network (STN) [8]. Unlike regu-
lar STNs, however, each event has an associg@tedation variablewith real domain (e.g.,

rs; for eventesy) representing the amount of resource allocated when the event occurs. We
call this augmented networR a piecewise-onstant Rsource allocation STKER-STN). In

the following we will assume that all allocations refer to a single, multi-capacity resource.
The extension of the results to the case of multiple resources is straightforward. Angevent
with negative allocation is aonsumerwhile ane* with positive allocation is @roducer

This formalization covers many of the usual models for resource allocations. For example,
note that an event can be either a consumer or a producer in different instantiations of the
allocation variables (e.g., eveay; for which the bound for,; is[-1, 3]). This allows reason-

ing about dual-use activities (e.g., the activities of starting a car and running it make use of
the alternator as either a power consumer or producer). Moreover, some events can have
resource allocations that are opposite to each other @g¢s. e;s). This allows modeling
allocations that last only during an activity's occurrence, such as power consumption. Note,
however, that this model does not cover continuous accumulation such as change of energy
stored in a battery over time. A conservative approximation can be achieved by accounting
for the entire resource usage at the activity start or end.

We will always assume that the cR-STN is temporally consistent. From the STN theory [8],
this means that the shortest-path problem associatedrRnlitas a solution. Given two events

& ande, we denote withee,| the shortest-path from to e,. We will call a full instantiation

of the time variables iR a schedules(.) wheres(e)is the time of occurrence of evestac-
cording to scheduls. The setS contains all possible consistent schedulesoEach eveng

has a time boundet(e), lt(e)], with et(e)andlt(e) respectively the earliest and latest time for

e. The time bound represents the range of possible time valiggéor all sO S. From the

STN theory, we know thagt(e) =— |eT;| andlt(e) = |Tse|} Finally, given three eventg, e,

ande;, the triangular inequality among shortest pgths;| < |e;e| + |ee;| holds.

A fundamental data structure used in the rest of the paper iaukieorecedence graph,
Aprec(R), for a cR-STNR. The anti-precedence graph is similar to the precedence graph of
[10] with the following differences: a) the links are in reverse order; 2) it does not distinguish
between the set of strict precedence edgesand the set of precedence edges that allow time

equality, E; and 3) several possible kinds of precedence graphs are allowable for a network
R. Formally, Aprec(R) is a graph with the same eventsR&nd such that for any two events

e ande, with |g; & < 0 there is a path frone to e in Aprec(R). Alternatively, we can say

that an eveng, precedes anothes, in the anti-precedence graphef cannot be executed
beforee,. A way to build an anti-precedence graph is to run an all-pairs shortest-path algo-
rithm onR and retain only the edges with non-positive shortest distance. Smaller graphs can
also be obtained by eliminating dominated edges. The choice of precedence graph type may
affect performance but not the correctness of the algorithm described here.

The cost of computingdprec(R) is therefore bound by the cost of computing the all-pairs
shortest path graph fR, i.e., it isO(NE + N? Ig V) whereN is the number of events (at
most twice the number of activities in the plan) aBds the number of temporal distance
constraints in the original cR-STN [7].

<[4, 10], 3> <[6, 13], 2>

<[2,11],-5> <[3, 15], 3>

Figure 2: Anti-precedence graph with time/resource usage

Figure 2 depicts one of the anti-precedence graphs of the network in Figure 1 with the time
bound and the maximum allowed resource allocation labeling each event.

3 Resource Contention Measures

Safe execution of a flexible activity networks needs to avoid resource contention, i.e., the
possibility that for some consistent time assignment to the events there is at least one time at
which the total amount of resource allocated is outside the availability bounds. There are
essentially two methods for estimating resource contention: heuristic and exact. Most of the
heuristic techniques [14] [12] [3] measure the probability of an activity requesting a resource
at a certain time. This probability is estimated either analytically on a relaxed constraint
network or stochastically by sampling time assignments on the full constraint network. The
occurrence probabilities are then combined in an aggregate demand on resources over time,
the contention measure. Probabilistic contention can give a measure of likelihood of a con-
flict. However, it is not a safe measure, i.e., the lack of detected conflicts does not exclude
that a variable instantiation for the cR-STN could cause an inconsistent resource allocation.
Exact methods avoid this problem. They compute sufficient conditions for the lack of conten-
tion. [10] has a good survey of such methods. Current exact methods operate on relaxations
of the constraint network. For example, edge-finding techniques [13] analyze how an activity
can be scheduled relative to a subset of activities, comparing the sum of all durations with a
time interval derived from the time bounds of all the activities under consideration. Relying
solely on time bounds ignores much of the inter-activity constraints and is effective only
when the time bounds are relatively tight. Therefore algorithms using these contention meas-
ures tend to eliminate much of the flexibility in the activity network. Some recent work [5]
[10] goes further in exploiting inter-activity constraints. For example, [10] propoded-a

ance constrainthat is based on conservative upper and lower bounds on the resource level
immediately before and after each eveniThese bounds precisely estimate the contribution

of events that must precedand overestimate the contribution of events that may or may not

precedee. The over-estimate assumes that only the events with the worst contribution (pro-
ducers for upper bounds and consumers for lower bounds) happen befbhe balance
constraint appears to work well in a flexible scheduling algorithm [10] but the bounds on
which it is based may be very loose for networks with significant amounts of parallelism.

VAR N H - NN
Ay Az N Ags Aon
\ I
S 0, +oo] |
T 1[0, +o0]
N\ /
[2, 2] N
>NV
1 A +1 [l’ l] A1 Ain

Figure 3: Over-constraining a flexible activity network

For example, consider the activity graph in Figure3, consisting of two rigid chainsaof

tivities with the same fixed duration and the same fixed activity separation. Assume that the
horizon T is wide enough to allow any feasible ordering among them. Each activity con-
sumes one unit during its occurrence and the resource has two available units of capacity
over time. It is clear that the maximum resource level requested by the flexible plan at any
time cannot exceed two, and therefore all schedules obtained by merging any schedule of the
two chains are feasible. A scheduling algorithm using a resource-level envelope will there-
fore recognize that the initial problem is already a feasible flexible plan and will terminate
immediately. In contrast, a scheduler using the balance constraint will always detect an over-
allocation until it somehow constrains the network (e.g., by systematic or local search) with
constraints that are at least as tight as the two following cases: a) the start actifipne

chain occurs no later than the start of the second activity of the other; or b) more than two
activities overlap and there is an activityon one chain that must start between the end of
activity i and the start of activity+2 on the other chain. The dashed arrows in Figure 3 rep-
resent the constraints posted in case b. The balance constraint cannot correctly handle this
situation because it cannot account for the constraint structure of all possible parallel chains
simultaneously The rest of this paper shows that the full constraint structure can be effi-
ciently exploited in calculating the resource-level envelope.

4 Resource Envelopes

As discussed in the introduction, we are seeking the maximum and minimum possible re-
source production (consumption) among all possible schedulRsNbte that the maximum
(minimum) overall resource level induced Byfor any possible schedule can always be ob-
tained by assigning each allocation variable to its maximum (minimum) possible value. For
any specific value assignment to the allocation variables, each event has a constant weight:
positive, c(¢"), for a producer and negative, c(€), for a consumer. Given a schedgs

and a timet O T, E4(t) is the set of events such thats(e)< t. For any subseA of the set of

events inR, E(R), we define the @source-level incrememsA(A) = 0 if A= 0, andA(A) =

Terenn C(€) — c(€) if A # 0. The following functions of time rigorously define the resource-
level envelope:

» Resource levalue to schedule L4(t) = A(Es(t)).
e Maximum resource envelopé max(t) = maxsgs (L «(t)).
» Minimum resource envelope min(t) = minggs (L s(t)).

The resource level envelopthat we seek is the interval bound function of tifie,.(t),

L max(t)]. Since the methods to computg;,, andL . can be obtained from each other with
obvious term substitutions, we only develop the algorithmifgx,.

Before we formally discuss our algorithm, we want to introduce some examples to give an
intuitive feel of the foundations of the method. First consider an activity network consisting
of a single activity that produces or consumes resource capacity during its occurrence (Figure
4(a)). We could build_ . by asking at each timgdT whetherA; can happen before, after

or can overlap. If the activity starts with a resource production (Figure 4(b)), then the re-
source level will be maximum atif A, starts, contains or ends @tThis is always possible
betweenet(e,s) andlt(e;s). Within this intervallL ma(t) = 1, while outsideL ma(t) = 0. Con-
versely, if A; starts with a consumer (Figure 4(c)), then the maximum resource level can be
zero at timet only if A, can start aftet or can end beforefor some schedule. This is possi-

ble only befordt(e;s) and afteret(e,s). ThereforeL n.(t) = —1 betweenit(e;s) andet(e,o), and

L max(t) = O everywhere else. This example suggests a strategy for computindhat looks

at each event and considers the incremental contribution of the event’s weight to the maxi-
mum resource envelope at the earliest time for producers or at the latest time for consumers.

<[0, 3], > <[5, 10], -n>
NN/

€s A; €1e
@

A rn=1 rn=-1
1 —|
0 0™ ‘ 3|:|5 >
-1

(b) ()
Figure 4: Maximum resource-level envelope for a single activity
<[0, 3], > <[4, 10],-r> <[5, 11], > <[8, 14],-r>

& A e LU el A e
(@) e

A "=2n=1 A n=1n=2
2 Zf
1 \—\ 1
0 10 14> 0 5 14>

(b) ©
Figure 5: Maximum level envelope for two chained activities

For a complex network, however, this simple strategy is insufficient. Consider a rigidly
linked pair of activities with a reusable resource allocation (Figure 5(a)). In this case, the
time of occurrence of,. ande;s are bound together. Looking at the contribution to the enve-
lope of each event in isolation, we would want to add the contributicsg Gfs late as possi-

ble since it is a consumer, and the contributioregfas early as possible, since it is a pro-
ducer. The decision of which time to choose depends on the total contributhanhdvents.

The total contribution will be added &{e,) if the total contribution is a consumption (Fig-

ure 5(b)) or atet(eyy) if the total contribution is a production (Figure 5(c)). Note that in both
cases,; andess arependingat the selected time, i.e., their contribution has not been added
yet to the envelope but they both could occur at the selected time. This suggests revising the
strategy for computingd ..« as follows: at the earliest or latest time of each event, select the
set of pending events whose resource-level increment is maximum, eliminate these events

from the pending events and declare the increment fQf at that time to be their resource-

level increment.

Now consider the network in Figure 1 and the event time bounds, maximum resource alloca-
tion and precedence graph in Figure 2. Assume that we wantpuieL ,.(3). The set of
events that may be scheduled before, at or after Brige{e;s, e, s e &. However, of

these only{es., &s €. &< are pending since the contribution Q.. of es occurs at its
earliest timel. The subset of pending events that we need to consider at3timeompute

the increment on. .., are all those that are forced to occur at or bef®bessuming that some
pending event occurs 8t These subsets afe;d, {€ss), {€3s &3¢ aNd{ere, &5 3¢ &1} UN-
fortunately, each of these subsets has a negative weight and therefore none of them is selected
at time 3 since, from the definition of resource-level increment, the empty event set has the
maximum (zero) increment. At timé the set of pending events is augmented wgthand a

new subset of pending events with positive weidRte, &s, s €. &, IS possible. This
generates the increment that, added tg(3), gives USL nax(4).

The selection of the pending events subset of maximum resource-level increment is the key
source of complexity in calculating ... An exhaustive enumeration of all subsets is intrac-
table in the general case. Fortunately, it turns out that this selection problem is equivalent to
a maximum flow problem for an appropriate flow network derived fraprec(R). We dis-

cuss this rigorously in the rest of the paper.

5 Calculating Maximum Resource-Level Increments

Consider an intervaHOT. We can partition all events iR into three sets depending on
their relative position with respect td: 1) the closed event€y with all events that must
occur strictly before or at the start #f, i.e., such that thait(e) < start(H); 2) thepending
eventsRy with all events that can occur within or at the end of intetdai.e., such thak(e)

> start(H) andet(e) < end(H); and 3) theopen event©y with all events that must occur
strictly afterH, i.e., such thagt(e) > end(H).

The setRy could contain events that can be scheduled both inside and outsideH=T,
thenCy = 0O, Ry = E(R) andOy = O. If H is a single instant of time, i.eH=[t, t], we will
use the simplifying notatio=Cy, 4, R=R[;,q andO=0y,y.

Assume that we want to compute the resource-level increment for a sclsetiddimetOH.
This will always include the contribution of all events @y and none of those iy irre-
spective ofs andt. With respect to the events Ry, if an event is scheduled to occur at or
beforet, then all of its predecessors (accordingAprec(R)) will also have to occur at or
beforet. In other words, it is possible to find a set of eveitd] Ry such that the events
e0Ry, that are scheduled no later thain s are those ifX or thoseg, O Ry such thatee,|

< 0 for someg, O X. We call this thepredecessor seRy of X. Therefore, the resource level
at timet for a given schedulsg is the sum of the weights of events @y and inPyx O Ry.
Since we are trying to maximize the resource level, we will look for the Bgtwith the
maximum total weight.

An important property that we will exploit later is that given two predecessoPseasdPy,
Px n Py andPy OP, are also predecessor sets.

5.1 Resource-Level Increments and Maximum Flow

We know that to compute ., We want to look for set®yx with maximum weight. We find
these by computing a maximum flow for an auxiliary flow network built frdRy and
Aprec(R). For a complete discussion of maximum flow problems see [7]. Here we only high-
light some concepts and relations that we will use.

First let us define the auxiliary flow problem that we will us to complujg,.

Resource Increment Flow Problem:Given a set of pending everf for a cR-STNR, we
define the resource increment flow probl&iR) with sourcegand sinkr as follows:
1. Foreach eveng /7Ry there is a corresponding nodg F(Ry).
2. For each eveng” [Ry, there is an edger— e* with capacityc(e”).
3. For each event™ /7Ry, there is an edge™ - r with capacityc(e), i.e., the opposite
of e”s weight inR.
4. For each pair ofe; and e, with an edgeg; — &, in the anti-precedence grapiprec(R)
there is a corresponding ling — & in F(Ry) with capacity .
Figure 6 shows the auxiliary flow problem for the anti-precedence graph in Figure 2, with
every edge labeled with its capacity.

e Internal flow (precedence constraints)
""""""""""" Incoming flow (producer events)
_— - Outgoing flow (consumer events)

Figure 6: Resource increment flow problem

Consistent with the theory of maximum flows, we will indic#te;, &) as the flow associated

to alinke - e in F(Ry). The flow function has, by definition, several properties. It is skew-
symmetric, i.e.f(e;, &) = —f(ey, &). Each flow has to be not greater than the capacity of the
link to which it is associated. For example, referring to the flow network in Figuf@ot e

< 2, while f(eye, 0) < 0 since there is no edge from, and g, a situation equivalent to the
capacity of the edge, » o being zero. We also use the implicit summation notaf{gqg B),
whereB andA are disjoint event sets iR(Ry), to indicate the flowf(A, B) = Z.paZposf(a,

b). Consider now any subset of eve®tEIRy, and let us callA® the set of eventa® = Ry— A.
From the final property defining a flow function, flow conservation, we can obtain the fol-
lowing: f({a}, A) = f(A, {T}) + f(A, A°). The total network flow is defined a#{a}, Ryx) =
f(Ry, {1}). The maximum flow of a network is a flow functiof},.x such that the total net-
work flow is maximum.

A fundamental concept in the theory of flows is tfesidual networkThis is a graph with an
edge for each pair of nodes F(Ry) with positiveresidual capacityj.e., the difference be-
tween edge capacity and flow. Each edge in the residual network has capacity equal to the
residual capacity. For example, considering the network in Figure 6, assunféethaf) = 3
andf(o, e = 2. The residual network for that flow will have the following edgeg:—t

with capacityl, T - e With capacity3, ande,.—a with capacity2. Also note that any resid-
ual network for any flow of(Ry) will always have an edge of infinite capacity for each edge
in the precedence graphprec(R). An augmenting paths a path connecting to t in the
residual network. The existence of an augmenting path indicates that additional flow can be
pushed fromg to 1. Alternatively, the lack of an augmenting path indicates that a flow is
maximum.

A resource-level incremerfi(A) for an event seA O Ry is related to a flow inF(Ry) as
follows. We define the producer weight it asc(A*) = Ze. ga ¢(€") and the consumer weight

in A asc(A”) = Z.pna c(€). We also define theroducer residualn A for a flow f of F(Ry)

asr(A*) = ¢(A") - f({a}, A), i.e., the total residual capacity of the edges froro A, and the
consumer residudh A asr(A7) = ¢(A”) — f(A, {1}).

Lemma 1: A(A) = r(A™") — (A7) + f(A, A9).
Proof: A(A) = ¢(A*) — c(A") = (c(A") - f({a}, A)) — (c (A7) — f{a}, A)) =r(A™) — (c(A) -
f(A, {1}) = f(A, A%)) =r(A") —r(A7) + (A, A9.O

We now focus on predecessor sets suchas

Lemma 2: f(Px, P%) < 0. Moreover,f(Px, P%)=0 if and only iff(e;, &)=0 for eache, /7 P%
ande,[Px.

Proof: From the definition of predecessor set there is no eslgee; in F(Ry) with e 00P%
ande;0Pyx. Thereforef(e;, &) < 0 andf(Pyx, P%) < 0. The second condition can be demon-
strated by observing that the sum of any number of non-positive numbers @d only if
each number i8.0

Corollary 1: A(Px) sT(Px®) =r(Px).
Proof: Immediate from Lemma 1 and Lemma 2.

5.2 Maximum flows and maximum resource-level increments

We can now find the maximum resource-level incremenPsgt O Ry. SincePna. = 0 may

be true, the maximum resource-level increment is always non-negative. The computation of
the set uses a maximum floiy,, of F(Ry). We indicate withr ,,.«(A) the producer/consumer
residual ofA computed foff ... The following fundamental theorem holds.

Theorem 1: Given a partial planRy, consider the (possibly empty) $&t..0f events that are
reachable from the sourcein the residual network of sonig,y of F(Ry). Pmax iS the prede-
cessor set with maximug(Ppay) 20.
Proof: Assume that ,(€") = 0 for eache” O F(Ry). In this case no event is reachable from
g in the residual network, thug;.x = 0 andA(Pyax) = 0. From Corollary 1, for any prede-
cessor sePy it is A(Px) € = max(Px) < 0 = A(Pmax) and thereforé\(Pp.,) is maximum.
Assume Nowr (€ > 0 for somee” O F(Ry), in which caseP,,,, is not empty. The follow-
ing three properties hold.
1. PnaxiS a predecessor set.
If not, there will be an eveng, [Py such thafee| < 0 for some eveng 0Py From
the definition ofAprec(R), however, we know that there must be a patiprec(R) from
e to &. Since this path will be present |(Ry) with all links having infinite capacity, the
path will also always be present in any residual network for any flow. Therefore there is a
path in the residual network going from to e, (by definition of P,,,) and then toe,.
Therefore g,[0Pmax Which is a contradiction.
2. rmax(Pmax) = 0.
If not, there will be an evend” O Pyax Such thatr (€ > 0. We can therefore build an
augmenting path df(Ry) as follows: 1) a path frong to € with positive residual capacity
which exists by definition oP,,,; and 2) an edge -t with positive residual capacity
rmax(€°). The existence of the augmenting path means thatis not a maximum flow,
which is a contradiction.
3. fmad Pmax Pcmax) =0
SinceP, is a predecessor set, from the proof of Lemma 2 we knowfthatPmax, P'max)
< 0. If fra(Pmax Pmax) < 0, then there is a pair of evengsP., ande, 0P such that
fmax(€1, &) < 0. This means that the residual capacity frepto e, is positive and therefore
there is an edge, - e, in the residual network. But by definition &, this means that
& 0Pmax, Which is a contradiction.

Applying the properties o . to Lemma L A(Pimax) = Mmax (Pmax’) = Mmax(Pmax) + fmax(Pmax:
Pcmax) = rmax(F)maer) >0.

To prove the maximality oP,,.,, observe from Corollary 1 that a non-empty predecessor set
Px hasA(Px) > 0 only if ra(€") > 0 for somee" O Px. It is easy to see thdy is the set of
events reachable in the residual graph fregi O Pn.," and that the properties at points 2
and 3 above also hold fd?y. Therefore A(Px) = rmax(Px") € Fmax(Pmax’) = A(Pmay), Which
proves the maximality oPa,.[]

The construction oP,,,, discussed before does not guarantee its uniqueness since it depends
on a specific maximum flow among potentially many fe(Ry). The following theorem
proves, however, thaR,. is indeed unique for all maximum flows &{Ry) and that it con-

tains the minimum number of events among all predecessor sets with maximum positive
resource-level increment.

Theorem 3: The predecessor s&;.x With maximum resource-level incremefifP,.,,) and
with minimum number of events is unique across all maximum floERy).

Proof: Consider two maximum flow$y,c; and fra, « @among all maximum flows oF(Ry)
and assume that they produce two distinct maximum resource-level increment predecessor
Sets, Prax, j @nd Ppax, k. From the maximality of their increment, it must BPraxy) =
A(Praxj) = Amax. We can rewrite one maximum predecessor s&®as; = P« O P« where
Pjnk= Pmaxj N Pmaxx @8NAP_j= Praxx — Pmax;- The hypothesis of distinction &y j andPpax,

k yieldsPy # O.

First we observe thaA(Pj,k) = Amax- If Not, A(P) > 0 andA(Py) > 0. But this means that
Piok = Pmaxj O Pmaxk IS @ predecessor set such t&{Pjq) > Amax, Which is a contradiction.
Consider nowPp,; and let us calk(e) the residualr n.(e) computed in flowfya . Since
A(Pjnk) = Amax it must ber;(e") = 0if € O P, Also, rj(e") = 0 for eache™ O Ppaxj. From
Lemma 1,A(Pj-«) = fmaxj(Pj-«» P5-x) = 0. From Lemma 2 it follows thafta (P, Pjak) = O
Hence, there cannot be a link in the residual network from an eveR,into one inP;_.
Therefore,e O Py is not reachable frony in the residual network ang, = 0. Since this
is true for any paikj, k>, Pnax IS Unique.

The same argument appliedPg,., and P [P, proves the minimality oP,.,, whereP" is
a predecessor set such tagP") = Aoy

6 Building Resource Envelopes

So far we know that the resource level for a scheduletimet O H is equal to4(t) = A(Ch)

+ A(Px) for some predecessor se. However, it is not immediately obvious that the con-
verse also applies. Given any predecessoPggelve want to be able to determine a timeO

H, the separation timeand a scheduls,, the separation schedulesuch that all and only the
events inCyOPx are scheduled at or before time The existence of a separation schedule
and a separation time is not obvious because of the upper-bound constraints in the STN, i.e.,
the metric links between events that do not contribute to the constructigprec(R). If
some event occurs too early with respecttpan upper-bound constraint may force some
event to occur before timg even if it is not a successor iprec(R). We now show that
indeed we can find a separation time and schedulargPy, and therefore also fd?,,.,. For
the latter, we show thdy is one of the times at which the resource level is maximum blver
for any schedule. This yields the maximum resource envelgpeif H=[t,] and we scan
over the horizorT.

6.1 Latest events

First we find the events iy that will be scheduled at timig. We say that is alatest event
of Py if it is not a strict predecessor of any other evenpig i.e., for anye’ O Py, |e’ e|= 0.
We will call Py o the set of all latest events Iy. Also, we definePy eany = Px — Py jate-

The following property holds between eventshigae and Py eary-

Property 1: Any evente 7 Pxeany IS a strict predecessor of some eveatJ Py jae, 1.€.,
|ee| <0.

Proof: Sincee; O Pyxeary, there must be an evesf; O Px such thaje; e < 0. If €1 O Py jate:
the property is proven. Otherwise, we can find a finite chain of evenie, - ... »e;1-»e;
with 0 Py e and|eei| < 0, |ejej1]| < 0and|eye| < 0, Yyielding |exe| < 0 for the triangu-
lar inequality of the shortest paths. If we could not find@rd Py 14 t0 Start such a finite
chain, the chain would have to become a cycle of eventByif,, which contradicts the
temporal consistency &.00

6.2 Separation Time for Latest Events

We can construct a separation timeat which we will schedule all latest events.

Lemma 3: There is a time intervalltxmin, txmad that intersects all time bounds
[et(e), It(e)]with e /7Py aeand such thastart(H) <tx max

Proof: There must be a time value in common among all time bound? jg.. If not, there
would be two eventg;, e 0 Py ae SUCh thatet(e) > It(e;) and from the triangular inequal-
ity, |ee| < - et(e) + It(ey) < 0, which is inconsistent with the definition ¢fy .. Observe
that there must be an eves{ Py 4 SUCh thatit(e) = ty max. If start(H) > tx max, thenlt(e) <
start(H), which contradicte 0 Ry.0

We define the separation time & max (start(H), txmn), With tx = start(H) if Px=0. We
can then show that each eventrfy can be scheduled afteg.

Lemma 4: For any event [7P%, lt(e) >ty

Proof: By definition of R, it must belt(e) > start(H). So we only need to consider the case in
which ty = tymin > start(H). In this case there is at least one evenfl Px e Such thaet(e)

= tymn. FOr this event it ide e| < — et(e) + It(e). Sincee O P%, it must be thafe e| > Q
otherwisee would follow in Apred(R) an event inPy. Thereforelt(e) > et(e) + |e e| > et(g)

= tx, min.O

6.3 Separation schedule for predecessors

We now build the separation schedsgjefor Py andty, i.e., a schedule such thg{(e) < tx for
elCyOPx and s¢(e) > tx for edP%00y. Note that the following discussion holds also if
Px=0 andty= start(H).

The following algorithm builds the separation schedule.

1. Schedule aled Py atty, i.e.,sx (€) = .
2. Propagate time through obtaining new time boundgt’(e), It'(e)] for eachedE(R).
3. Schedule all events E(R) — Px 4 at their new latest time, i.esx(e) = It’ ().

For s« to be a schedule, it must be consistent with respeg. td/e see that step 1 is consis-
tent since: 1}y belongs to the intersection of all latest event time bounds; and 2) since for
any pair of latest evenig e,|=0, scheduling one ajf does not prevent any other latest events
to be also scheduled at tintg Step 3 above is also consistent because it is always possible to
schedule all events at their latest times without temporal repropagation.
Now we need to show that the property defining a separation schedule is satisfgdNote
that we already know that it is satisfied for eventsPig,.. By definition it is also satisfied
for events inCy andOy,. Therefore, we need to show that it is satisfied k..., andP.
a)lt'(e) stx for all e O Pyeany
According to Property 1 we can pick an evexlllPy 1. SUch thate e| < 0.From the tri-
angular inequality we havé(e) <It'(e,) + |ere| < It'(e) = tx.
b)It'(e) > tx for all ed P%.
From Lemma 4 we know that before temporal repropagation itltfas> tx. After it, ei-
ther It'(e)=It(e), in which case the condition is satisfied, te) has changed due to a
propagation that starts from some evelll Py . SO it must bdt'(e) =ty + |ge]. Since
el P%, it must be|ee| > 0,otherwisee would follow in Apred(R) an event inPy. Hence,
It'(e) > tx.

We can now compute the maximum resource level for any schedule within the inkerial
the following, we indicate withP(Ry) the Pra computed oveF(Ry).

Theorem 4: The maximum resource level for any scheduldRadver an intervalH T is
given byA (Cy) + A(Pmax(RH)).

Proof: We know that at any time¢OH the events inRy that are scheduled befoteare a
predecessor s@. For the resource level at tinteit is alwaysA (Cp) + A(Px) £ A (Cp) +
A(Pmax(Ry)), the latter being the resource level at the separation tinfer the separation
schedulesy.r

There are two interesting special cases of Theorem 4.

Corollary 2: The maximum possible resource consumption Roover T is equal to
APmax(Ry))-

This means that estimating the maximum possible resource consumption for a flexible plan
over the entire time horizon has the same complexity as a maximum flow problem.

Corollary 3 Lmax(t) = A(Q)"'A(Pmax(Rt))-

The last formula tells us how to compute the resource-level envelope at a specific time. We
now need to find an efficient algorithm to compute the resource-level envelope over the en-
tire horizonT.

7 Efficient Computation of Resource Envelopes

From Corollary 3, the naive approach to compute a resource-level envelope would be to iter-
ate over all possibledT. However, we only need to compulte,., at times when eithet, or

R: changes. This can only happeneife) or It(e) for any edE(R). Therefore we need to
compute new levels far ,ax ONly 2N times, whereN is the number of start/end events in the
original activity network For each such computation, we need to: a) compyg(R;) by
running a maximum flow on a network with at mastnodes; and 2) collect and sum the
events in C; and Py(R:). The total complexity of the algorithm is therefor®(N
O(maxflow(N)) + N?), whereO(maxflow(N)) is the complexity of finding a maximum flow

with an arbitrary maximum flow algorithm. For modern algorithms using the “preflow push”
method [9], the worst case complexity can ®&N?). Extensive empirical studies show that

the practical complexity of variations of the method can be as fagi(ls$?) [1]. This sug-

gests that resource-level envelopes could operate in the inner loop of scheduling search algo-
rithms, especially if they can be computated incrementally.

8 Conclusions

In this paper we describe an efficient algorithm to compute the tightest exact bound on the
resource level induced by a flexible activity plan. This can potentially save exponential
amounts of work with respect to currently available looser bounds. Future work will pursue
two directions. The first is developing more incremental algorithms for the computation of
the envelope. Using a temporal scanning of the events in the temporal network, it should be
possible to significantly reduce the size of the networks on which the maximum flow algo-
rithm needs to be run. This could significantly speed up the envelope calculation. The second
direction will test the practical effectiveness of resource envelopes in the inner loop of search
algorithms for multi-capacity resource scheduling, such as those used in (Laborie, 2001).
This includes inner-loop backtracking and termination tests and variable and value ordering
heuristics that exploit more directly the properties of the resource envelopes.

Acknowledgements

Ari Jonsson and Jeremy Frank were instrumental in pushing me to focus on this problem.
During a dinner discussion at possibly the worst tourist restaurant in Paris, Grigore Rosu
convinced me that the key of the resource-level envelope problem lies with the maximum-
flow problem. Paul Morris gave me several helpful comments and suggested a simplification
of the proof of theorem 1. Finally, Amedeo Cesta, Mary Bernardine Dias, Gregory Dorais,
Paul Tompkins, an anonymous reviewer of a previous, unsuccessful submission, and a re-
viewer of the current successful one, gave several comments that helped me improve the
presentation.

This work was performed with the support of the Intelligent Systems project of the Comput-
ing, Information and Communication Technologies research program of the National Aero-
nautics and Space Administration.

References

1. R.K. Ahuja, M. Kodialam, A.K. Mishra, J.B. Orlin. Computational Investigations of Maximum Flow Algorithms,
European Journal of Operational Researdfol 97(3), 1997.

2. K.R. BakerlIntroduction to Sequencing and Schedulilgley, New York, 1974.

3. J.C. Beck, A.J. Davenport, E.D. Davis, M.S. Fox. Beyond Contention: Extending Texture-Based Scheduling
Heuristics. inProceedings of AAA1997, Providence, RI, 1997.

4. A, Cesta, A. Oddi, S.F. Smitih Constraint-Based Method for Resource Constrained Project Scheduling with
Time Windows CMU RI Technical Report, February 2000.

5. A. Cesta, C. Stella. A time and Resource Problem for Planning ArchitecRmeseedings of the™European
Conference on Planning (ECP 97loulouse, France, 1997.

6. H. S.F. Cooper JrThe Loneliness of the Long-Duration Astronafir & Space/Smithsonigrdune/July 1996,
available athttp://www.airspacemag.com/ASM/Mag/Index/1996/JJ/llda.html

7. T.H. Cormen, C.E. Leiserson, R.L. Rivekttroduction to AlgorithmsCambridge, MA, 1990.
8. R. Dechter, I. Meiri, J. Pearl. Temporal Constraint NetwoAgificial Intelligence 49:61-95, May 1991.

9. A.V. Goldberg, R.E. Tarjan. A New Approach to the Maximum-Flow Probléournal of the ACMVol. 35(4),
1988.

10. P. Laborie, Algorithms for Propagating Resource Constraints in Al Planning and Scheduling: Existing Approaches
and New ResultsProceedings of ECP 200Toledo, Spain, 2001.

11. P. Morris, N. Muscettola, T. Vidal. Dynamic Control of Plans with Temporal Uncertaintyraneedings of
IJCAI 2001,Seattle, WA, 2001

12. N. Muscettola. On the Utility of Bottleneck Reasoning for Schedulingroteedings of AAA1994 Seattle,
WA, 1994.

13. W.P.M. Nuijten. Time and Resource Constrained Scheduling: a Constraint Satisfaction Approach. PhD Thesis,
Eindhoven University of Technology,994.

14. N. Sadeh. Look-ahead techniques for micro-opportunistic job-shop scheduling. PhD Thesis, Carnegie Mellon
University, CMU-CS-91-102, 1991.

15. M. Zweben, M.S. Foxntelligent SchedulingMorgan Kaufmann, San Francisco, 1994.

