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Abstract. Computing tight resource-level bounds is a fundamental problem in the con-
struction of flexible plans with resource utilization. In this paper we describe an efficient
algorithm that builds a resource envelope, the tightest possible such bound. The algo-
rithm is based on transforming the temporal network of resource consuming and produc-
ing events into a flow network with nodes equal to the events and edges equal to the
necessary predecessor links between events. A staged maximum flow problem on the
network is then used to compute the time of occurrence and the height of each step of the
resource envelope profile. Each stage has the same computational complexity of solving
a maximum flow problem on the entire flow network. This makes this method computa-
tionally feasible and promising for use in the inner loop of flexible-time scheduling algo-
rithms.

1 Resource Envelopes

Retaining temporal flexibility in activity plans is important for dealing with execution uncer-
tainty. For example, flexible plans allow explicit reasoning about the temporal uncontrolla-
bility of exogenous events [11] and the seamless incorporation of execution countermeasures.
Fixed-time schedules (i.e., the assignment of a precise start and end time to all activities) are
brittle and it is typically very difficult to exactly follow them during execution. For an exam-
ple of the effect of fixed-time schedules in an intelligent execution situation, consider the
“Skylab strike” [6], when during the Skylab 4 mission, astronauts went on a sit-down strike
after 45 days of trying to catch up with the exact demands of a fast paced schedule with no
flexibility for them to adjust to the space environment.
A major obstacle to using flexible schedules, however, remains the difficulty of computing
the amount of resources needed across all of their possible executions. This problem is par-
ticularly difficult for multiple-capacity resources (such as electrical power) that can be both
consumed and produced in any amount by concurrent activities. Techniques have been devel-
oped [5] [10] for giving conservative estimates of the resource levels needed by a flexible
schedule, yielding both an upper bound and a lower bound profile on the resource level over
time. In the context of a systematic search method to build flexible plans, resource-level
bounds can be used at each search step as follows: a) as a backtracking test, i.e., to determine
when the lower/upper bound interval is outside of the range of allowed resource levels at
some time and therefore no fixed-time instantiations of the plan is resource-feasible; and b)
as a search termination test, i.e., to determine when the lower/upper bound range is inside
the range of allowed resource levels at all times and therefore all fixed-time instantiations of
the plan are resource-feasible.
Bound tightness is extremely important computationally since a tight bound can save a po-
tentially exponential amount of search (through early backtracking and solution detection)
when compared to a looser bound. In this paper, we discuss how to compute theresource-
level envelope, i.e., the measure of maximum and minimum resource consumption at any



time for all fixed-time schedules in the flexible plan. At each time the envelope guarantees
that there are two fixed-time instantiations, one producing the minimum level and the other
the maximum. Therefore, the resource-level envelope is the tightest possible resource-level
bound for a flexible plan since any tighter bound would exclude the contribution of at least
one fixed-time schedule. If the resource-level envelope can be computed efficiently, it could
substitute looser bounds that are currently used in the inner core of constraint-posting sched-
uling algorithms (Laborie 2001) with the potential for great improvements in performance.
To appreciate the difficulty of computing the resource level, we can compare the cases of a
fully flexible plan with that of a plan with a single fixed-time instantiation. In the fixed-time
case, the envelope degenerates to the resource profile that is used in the inner loop of tradi-
tional scheduling algorithms [2][15]. Computing from scratch a resource profile is cheap. It
is easy to see that its worst cast time complexity isO (N lg N) whereN is the number of
activities in the flexible plan. Consider now a fully flexible plan and assume that we naively
wanted to compute the resource-level envelope for a flexible plan by simply enumerating all
schedules and taking the maximum/minimum of all resource levels at all times. Since a
flexible activity plan has a number of possible instantiated fixed-time schedules that is expo-
nential in the number of events, such naïve method is clearly impractical in most cases.
Note that “resource-level envelope calculation” isnot equivalent to “scheduling with multiple
capacity”, an NP-hard problem. For example, note that a reduction of the envelope calcula-
tion to scheduling is not straightforward. Consider the interval between minimum and
maximum envelope at a given time. It is true that a solution to the scheduling problem can be
obtained in polynomial time if the envelope interval is always completely contained within
resource availability (in which case all fixed-time instantiations are legal schedules). How-
ever, if at least two times the envelope interval is partly outside the availability bound, one
can generate examples in which the envelope cannot tell us whether there is a fixed-time
schedule that is within availability at all times or whether for all schedules the resource level
is outside availability at some time. Discriminating between these two cases still requires
search.
This paper presents a polynomial algorithm for the computation of resource-level envelopes
based on a novel combination of the theory of shortest-paths in the temporal constraint net-
work for the flexible plan, and the theory of maximum flows for a flow network derived from
the temporal and resource constraints. We develop the theory, show that the algorithm is
correct, and that its asymptotic complexity isO(N O(maxflow(N))), whereN is the number
of start/end times of the activities in the plan, which is at most twice the number of activities,
andO(maxflow(N)) is the complexity of a maximum flow algorithm applied to an auxiliary
flow network with N nodes. We believe that this method will be efficient in practice, since
experimental analysis [1] show the practical cost of maxflow to be as good asO (N 1.5). How-
ever this paper is a theoretical contribution and a definitive answer to its practical complexity
will require further experimental work.
In the rest of the paper we introduce some notation and describe the formal model of activity
networks with resource consumption. Then we review the literature on resource contention
measures and show an example in which the current state of the art is inadequate. The dis-
cussion of our algorithm follows. Some informal examples to establish an intuitive under-
standing of our method are first given. Then we establish the connection between maximum
flow problems and finding sets of activities that have the optimal contribution to the resource
level. These sets are then shown to compute an envelope. Finally, we describe a simple enve-
lope algorithm and its complexity, and conclude discussing future work.

2 Resource Envelopes

Figure 1 shows an activity network with resource allocations. Our notation is equivalent to
that of previous work on flexible scheduling with multiple-capacity resources [5][10]. The



network has two time variables per activity, a start event and an end event (e.g.,e1s ande1e

for activity A1), a non-negative flexible activity duration link (e.g.,[2, 5] for activity A1), and
flexible separation links between events (e.g.,[0, 4] from e3e to e4s). A time origin, Ts, corre-
sponds to time0 and supports separation links to other events. Without loss of generality we
assume that all events occur afterTs and before an eventTe rigidly connected toTs. The
intervalTsTe is thetime horizonT of the network.

Figure 1: An activity network with resource allocations

Time origin, events and links constitute a Simple Temporal Network (STN) [8]. Unlike regu-
lar STNs, however, each event has an associatedallocation variablewith real domain (e.g.,
r31 for evente3s) representing the amount of resource allocated when the event occurs. We
call this augmented networkR a piecewise-constant Resource allocation STN(cR-STN). In
the following we will assume that all allocations refer to a single, multi-capacity resource.
The extension of the results to the case of multiple resources is straightforward. An evente−−−−

with negative allocation is aconsumer,while ane++++ with positive allocation is aproducer.
This formalization covers many of the usual models for resource allocations. For example,
note that an event can be either a consumer or a producer in different instantiations of the
allocation variables (e.g., evente2s for which the bound forr21 is [-1, 3]). This allows reason-
ing about dual-use activities (e.g., the activities of starting a car and running it make use of
the alternator as either a power consumer or producer). Moreover, some events can have
resource allocations that are opposite to each other (e.g.,e1e vs. e1s). This allows modeling
allocations that last only during an activity’s occurrence, such as power consumption. Note,
however, that this model does not cover continuous accumulation such as change of energy
stored in a battery over time. A conservative approximation can be achieved by accounting
for the entire resource usage at the activity start or end.
We will always assume that the cR-STN is temporally consistent. From the STN theory [8],
this means that the shortest-path problem associated withR has a solution. Given two events
e1 ande2 we denote with|e1e2| the shortest-path frome1 to e2. We will call a full instantiation
of the time variables inR a schedules(.) wheres(e) is the time of occurrence of evente ac-
cording to schedules. The setS contains all possible consistent schedules forR. Each evente
has a time bound[et(e), lt(e)], with et(e)andlt(e) respectively the earliest and latest time for
e. The time bound represents the range of possible time valuess(e) for all s∈∈∈∈ S. From the
STN theory, we know thatet(e) = −−−− |eTs| and lt(e) = |Tse|. Finally, given three events,e1, e2
ande3, the triangular inequality among shortest paths|e1e3| ≤≤≤≤ |e1e2| + |e2e3| holds.
A fundamental data structure used in the rest of the paper is theanti-precedence graph,
Aprec(R), for a cR-STNR. The anti-precedence graph is similar to the precedence graph of
[10] with the following differences: a) the links are in reverse order; 2) it does not distinguish
between the set of strict precedence edges,E<, and the set of precedence edges that allow time
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equality,E≤≤≤≤; and 3) several possible kinds of precedence graphs are allowable for a network
R. Formally,Aprec(R) is a graph with the same events asR and such that for any two events
e1 ande2 with |e1 e2| ≤≤≤≤ 0 there is a path frome1 to e2 in Aprec(R). Alternatively, we can say
that an evente1 precedes anothere2 in the anti-precedence graph ife1 cannot be executed
beforee2. A way to build an anti-precedence graph is to run an all-pairs shortest-path algo-
rithm on R and retain only the edges with non-positive shortest distance. Smaller graphs can
also be obtained by eliminating dominated edges. The choice of precedence graph type may
affect performance but not the correctness of the algorithm described here.
The cost of computingAprec(R) is therefore bound by the cost of computing the all-pairs
shortest path graph forR, i.e., it is O(NE + N2 lg V) whereN is the number of events (at
most twice the number of activities in the plan) andE is the number of temporal distance
constraints in the original cR-STN [7].

Figure 2: Anti-precedence graph with time/resource usage

Figure 2 depicts one of the anti-precedence graphs of the network in Figure 1 with the time
bound and the maximum allowed resource allocation labeling each event.

3 Resource Contention Measures

Safe execution of a flexible activity networks needs to avoid resource contention, i.e., the
possibility that for some consistent time assignment to the events there is at least one time at
which the total amount of resource allocated is outside the availability bounds. There are
essentially two methods for estimating resource contention: heuristic and exact. Most of the
heuristic techniques [14] [12] [3] measure the probability of an activity requesting a resource
at a certain time. This probability is estimated either analytically on a relaxed constraint
network or stochastically by sampling time assignments on the full constraint network. The
occurrence probabilities are then combined in an aggregate demand on resources over time,
the contention measure. Probabilistic contention can give a measure of likelihood of a con-
flict. However, it is not a safe measure, i.e., the lack of detected conflicts does not exclude
that a variable instantiation for the cR-STN could cause an inconsistent resource allocation.
Exact methods avoid this problem. They compute sufficient conditions for the lack of conten-
tion. [10] has a good survey of such methods. Current exact methods operate on relaxations
of the constraint network. For example, edge-finding techniques [13] analyze how an activity
can be scheduled relative to a subset of activities, comparing the sum of all durations with a
time interval derived from the time bounds of all the activities under consideration. Relying
solely on time bounds ignores much of the inter-activity constraints and is effective only
when the time bounds are relatively tight. Therefore algorithms using these contention meas-
ures tend to eliminate much of the flexibility in the activity network. Some recent work [5]
[10] goes further in exploiting inter-activity constraints. For example, [10] proposes abal-
ance constraintthat is based on conservative upper and lower bounds on the resource level
immediately before and after each evente. These bounds precisely estimate the contribution
of events that must precedee and overestimate the contribution of events that may or may not
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precedee. The over-estimate assumes that only the events with the worst contribution (pro-
ducers for upper bounds and consumers for lower bounds) happen beforee. The balance
constraint appears to work well in a flexible scheduling algorithm [10] but the bounds on
which it is based may be very loose for networks with significant amounts of parallelism.

Figure 3: Over-constraining a flexible activity network

For example, consider the activity graph in Figure3, consisting of two rigid chains ofn ac-
tivities with the same fixed duration and the same fixed activity separation. Assume that the
horizon T is wide enough to allow any feasible ordering among them. Each activity con-
sumes one unit during its occurrence and the resource has two available units of capacity
over time. It is clear that the maximum resource level requested by the flexible plan at any
time cannot exceed two, and therefore all schedules obtained by merging any schedule of the
two chains are feasible. A scheduling algorithm using a resource-level envelope will there-
fore recognize that the initial problem is already a feasible flexible plan and will terminate
immediately. In contrast, a scheduler using the balance constraint will always detect an over-
allocation until it somehow constrains the network (e.g., by systematic or local search) with
constraints that are at least as tight as the two following cases: a) the start activityn of one
chain occurs no later than the start of the second activity of the other; or b) more than two
activities overlap and there is an activityk on one chain that must start between the end of
activity i and the start of activityi+2 on the other chain. The dashed arrows in Figure 3 rep-
resent the constraints posted in case b. The balance constraint cannot correctly handle this
situation because it cannot account for the constraint structure of all possible parallel chains
simultaneously. The rest of this paper shows that the full constraint structure can be effi-
ciently exploited in calculating the resource-level envelope.

4 Resource Envelopes

As discussed in the introduction, we are seeking the maximum and minimum possible re-
source production (consumption) among all possible schedules ofR. Note that the maximum
(minimum) overall resource level induced byR for any possible schedule can always be ob-
tained by assigning each allocation variable to its maximum (minimum) possible value. For
any specific value assignment to the allocation variables, each event has a constant weight:
positive, c(e+), for a producer and negative,– c(e−−−−), for a consumer. Given a schedules∈∈∈∈S
and a timet ∈∈∈∈ T, Es(t) is the set of eventse such thats(e)≤≤≤≤ t. For any subsetA of the set of
events inR, E(R), we define the resource-level incrementas∆∆∆∆(A) = 0 if A = ∅∅∅∅, and∆∆∆∆(A) =
ΣΣΣΣe+,e-∈∈∈∈A c(e+) – c(e−−−−) if A ≠≠≠≠ ∅∅∅∅. The following functions of time rigorously define the resource-
level envelope:

• Resource leveldue to schedules: Ls(t) = ∆∆∆∆(Es(t)).
• Maximum resource envelope: L max(t) = maxs∈∈∈∈S(L s(t)).
• Minimum resource envelope: Lmin(t) = mins∈∈∈∈S(L s(t)).
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The resource level envelopethat we seek is the interval bound function of time[L min(t),
Lmax(t)] . Since the methods to computeL min andLmax can be obtained from each other with
obvious term substitutions, we only develop the algorithm forLmax.
Before we formally discuss our algorithm, we want to introduce some examples to give an
intuitive feel of the foundations of the method. First consider an activity network consisting
of a single activity that produces or consumes resource capacity during its occurrence (Figure
4(a)). We could buildLmax by asking at each timet∈∈∈∈T whetherA1 can happen before, after
or can overlapt. If the activity starts with a resource production (Figure 4(b)), then the re-
source level will be maximum att if A1 starts, contains or ends att. This is always possible
betweenet(e1s) and lt(e1e). Within this intervalL max(t) = 1, while outsideLmax(t) = 0. Con-
versely, if A1 starts with a consumer (Figure 4(c)), then the maximum resource level can be
zero at timet only if A1 can start aftert or can end beforet for some schedule. This is possi-
ble only beforelt(e1s) and afteret(e1e). Therefore,Lmax(t) = −−−−1 betweenlt(e1s) andet(e1e), and
Lmax(t) = 0 everywhere else. This example suggests a strategy for computingL max that looks
at each event and considers the incremental contribution of the event’s weight to the maxi-
mum resource envelope at the earliest time for producers or at the latest time for consumers.

Figure 4: Maximum resource-level envelope for a single activity

Figure 5: Maximum level envelope for two chained activities

For a complex network, however, this simple strategy is insufficient. Consider a rigidly
linked pair of activities with a reusable resource allocation (Figure 5(a)). In this case, the
time of occurrence ofe2e ande3s are bound together. Looking at the contribution to the enve-
lope of each event in isolation, we would want to add the contribution ofe2e as late as possi-
ble since it is a consumer, and the contribution ofe3s as early as possible, since it is a pro-
ducer. The decision of which time to choose depends on the total contribution ofbothevents.
The total contribution will be added atlt(e2e) if the total contribution is a consumption (Fig-
ure 5(b)) or atet(e3s) if the total contribution is a production (Figure 5(c)). Note that in both
casese2s ande3s arependingat the selected time, i.e., their contribution has not been added
yet to the envelope but they both could occur at the selected time. This suggests revising the
strategy for computingLmax as follows: at the earliest or latest time of each event, select the
set of pending events whose resource-level increment is maximum, eliminate these events
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from the pending events and declare the increment forL max at that time to be their resource-
level increment.
Now consider the network in Figure 1 and the event time bounds, maximum resource alloca-
tion and precedence graph in Figure 2. Assume that we want to computeLmax(3). The set of
events that may be scheduled before, at or after time3 is {e1s, e1e, e3s, e3e, e4s}. However, of
these only{e1e, e3s, e3e, e4s} are pending since the contribution toLmax of e1s occurs at its
earliest time1. The subset of pending events that we need to consider at time3 to compute
the increment onLmax are all those that are forced to occur at or before3 assuming that some
pending event occurs at3. These subsets are{e1e}, {e3s}, {e3s, e3e} and{e1e, e3s, e3e, e4s}. Un-
fortunately, each of these subsets has a negative weight and therefore none of them is selected
at time3 since, from the definition of resource-level increment, the empty event set has the
maximum (zero) increment. At time4 the set of pending events is augmented withe2s and a
new subset of pending events with positive weight,{e1e, e2s, e3s, e3e, e4s}, is possible. This
generates the increment that, added toL max(3), gives usLmax(4).
The selection of the pending events subset of maximum resource-level increment is the key
source of complexity in calculatingLmax. An exhaustive enumeration of all subsets is intrac-
table in the general case. Fortunately, it turns out that this selection problem is equivalent to
a maximum flow problem for an appropriate flow network derived fromAprec(R). We dis-
cuss this rigorously in the rest of the paper.

5 Calculating Maximum Resource-Level Increments

Consider an intervalH⊆⊆⊆⊆T. We can partition all events inR into three sets depending on
their relative position with respect toH: 1) the closed eventsCH with all events that must
occur strictly before or at the start ofH, i.e., such that thatlt(e) ≤≤≤≤ start(H); 2) thepending
eventsRH with all events that can occur within or at the end of intervalH, i.e., such thatlt(e)
> start(H) and et(e) ≤≤≤≤ end(H); and 3) theopen eventsOH with all events that must occur
strictly afterH, i.e., such thatet(e) > end(H).
The setRH could contain events that can be scheduled both inside and outsideH. If H=T,
then CT = ∅∅∅∅, RT = E(R) andOH = ∅∅∅∅. If H is a single instant of time, i.e.,H=[t, t], we will
use the simplifying notationCt=C[t, t] , Rt=R[t, t] andOt=O[t, t] .
Assume that we want to compute the resource-level increment for a schedules at a timet∈∈∈∈H.
This will always include the contribution of all events inCH and none of those inOH irre-
spective ofs and t. With respect to the events inRH, if an event is scheduled to occur at or
before t, then all of its predecessors (according toAprec(R)) will also have to occur at or
before t. In other words, it is possible to find a set of eventsX ∈∈∈∈ RH such that the events
ep∈∈∈∈RH that are scheduled no later thant in s are those inX or thoseep ∈∈∈∈ RH such that|exep|
≤≤≤≤ 0 for someex ∈∈∈∈ X. We call this thepredecessor setPX of X. Therefore, the resource level
at time t for a given schedules is the sum of the weights of events inCH and in PX ⊆⊆⊆⊆ RH.
Since we are trying to maximize the resource level, we will look for the setsPX with the
maximum total weight.
An important property that we will exploit later is that given two predecessor setsPX andPY,
PX ∩∩∩∩ PY andPX ∪∪∪∪PY are also predecessor sets.

5.1 Resource-Level Increments and Maximum Flow

We know that to computeL max we want to look for setsPX with maximum weight. We find
these by computing a maximum flow for an auxiliary flow network built fromRH and
Aprec(R). For a complete discussion of maximum flow problems see [7]. Here we only high-
light some concepts and relations that we will use.
First let us define the auxiliary flow problem that we will us to computeLmax.



Resource Increment Flow Problem:Given a set of pending eventsRH for a cR-STNR, we
define the resource increment flow problemF(RH) with sourceσσσσ and sinkττττ as follows:

1. For each evente ∈ RH there is a corresponding nodee∈F(RH).
2. For each evente++++ ∈∈∈∈RH, there is an edgeσσσσ→→→→ e++++ with capacityc(e++++).
3. For each evente−−−− ∈∈∈∈ RH, there is an edgee−−−−→→→→ττττ with capacityc(e−−−−), i.e., the opposite

of e−−−−’s weight inR.
4. For each pair ofe1 ande2 with an edgee1→→→→e2 in the anti-precedence graphAprec(R),

there is a corresponding linke1→→→→e2 in F(RH) with capacity +∞.
Figure 6 shows the auxiliary flow problem for the anti-precedence graph in Figure 2, with
every edge labeled with its capacity.

Figure 6: Resource increment flow problem

Consistent with the theory of maximum flows, we will indicatef(e1, e2) as the flow associated
to a link e1→→→→e2 in F(RH). The flow function has, by definition, several properties. It is skew-
symmetric, i.e.,f(e2, e1) = −−−− f(e1, e2). Each flow has to be not greater than the capacity of the
link to which it is associated. For example, referring to the flow network in Figure 6,f(σσσσ, e2e)
≤≤≤≤ 2, while f(e2e, σ σ σ σ) ≤≤≤≤ 0 since there is no edge frome2e and σσσσ, a situation equivalent to the
capacity of the edgee2→→→→σσσσ being zero. We also use the implicit summation notationf(A, B) ,
whereB and A are disjoint event sets inF(RH), to indicate the flowf(A, B) = ΣΣΣΣa∈∈∈∈AΣΣΣΣb∈∈∈∈Bf(a,
b). Consider now any subset of eventsA⊆⊆⊆⊆RH and let us callAc the set of eventsAc = RH −−−− A.
From the final property defining a flow function, flow conservation, we can obtain the fol-
lowing: f({ σσσσ}, A) = f(A, { ττττ}) + f(A, A c). The total network flow is defined asf({ σσσσ}, RH) =
f(RH, {ττττ}). The maximum flow of a network is a flow functionfmax such that the total net-
work flow is maximum.
A fundamental concept in the theory of flows is theresidual network.This is a graph with an
edge for each pair of nodes inF(RH) with positiveresidual capacity,i.e., the difference be-
tween edge capacity and flow. Each edge in the residual network has capacity equal to the
residual capacity. For example, considering the network in Figure 6, assume thatf(e1e, ττττ) = 3
and f(σσσσ, e2e) = 2. The residual network for that flow will have the following edges:e1e→→→→ττττ
with capacity1, ττττ→→→→e1e with capacity3, ande2e→→→→σσσσ with capacity2. Also note that any resid-
ual network for any flow ofF(RH) will always have an edge of infinite capacity for each edge
in the precedence graphAprec(R). An augmenting pathis a path connectingσσσσ to ττττ in the
residual network. The existence of an augmenting path indicates that additional flow can be
pushed fromσσσσ to ττττ. Alternatively, the lack of an augmenting path indicates that a flow is
maximum.
A resource-level increment∆∆∆∆(A) for an event setA ⊆⊆⊆⊆ RH is related to a flow inF(RH) as
follows. We define the producer weight inA asc(A++++) = ΣΣΣΣe++++ ∈∈∈∈ A c(e++++) and the consumer weight
in A asc(A−−−−) = ΣΣΣΣe−−−− ∈∈∈∈ A c(e−−−−). We also define theproducer residualin A for a flow f of F(RH)
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asr(A ++++) = c(A++++) – f({ σ}, A), i.e., the total residual capacity of the edges fromσσσσ to A, and the
consumer residualin A asr(A −−−−) = c(A−−−−) – f(A, {ττττ}).

Lemma 1: ∆∆∆∆(A) = r(A ++++) – r(A −−−−) + f(A, A c).
Proof: ∆∆∆∆(A) = c(A++++) – c(A−−−−) = (c(A+) – f({σσσσ}, A)) – (c (A−−−−) – f({σσσσ}, A)) = r(A ++++) – (c(A−−−−) –
f(A, { ττττ}) −−−− f(A, A c)) = r(A ++++) – r(A −−−−) + f(A, A c).����

We now focus on predecessor sets such asPX.

Lemma 2: f(PX, Pc
X) ≤≤≤≤ 0. Moreover,f(PX, Pc

X)=0 if and only if f(e1, e2)=0 for eache1∈∈∈∈ Pc
X

ande2∈∈∈∈PX.
Proof: From the definition of predecessor set there is no edgee2→→→→e1 in F(RH) with e1∈∈∈∈Pc

X
ande2∈∈∈∈PX. Therefore,f(e2, e1) ≤≤≤≤ 0 and f(PX, Pc

X) ≤≤≤≤ 0. The second condition can be demon-
strated by observing that the sum of any number of non-positive numbers is0 if and only if
each number is0.����

Corollary 1: ∆∆∆∆(PX) ≤≤≤≤ r(PX
++++) −−−− r(PX

−−−−).
Proof: Immediate from Lemma 1 and Lemma 2.

5.2 Maximum flows and maximum resource-level increments

We can now find the maximum resource-level increment setPmax ⊆⊆⊆⊆ RH. SincePmax = ∅∅∅∅ may
be true, the maximum resource-level increment is always non-negative. The computation of
the set uses a maximum flowfmax of F(RH). We indicate withrmax(A) the producer/consumer
residual ofA computed forfmax. The following fundamental theorem holds.

Theorem 1: Given a partial planRH, consider the (possibly empty) setPmaxof events that are
reachable from the sourceσσσσ in the residual network of somefmax of F(RH). Pmax is the prede-
cessor set with maximum∆(Pmax) ≥≥≥≥ 0.
Proof: Assume thatrmax(e

++++) = 0 for eache+ ∈∈∈∈ F(RH). In this case no event is reachable from
σσσσ in the residual network, thusPmax = ∅∅∅∅ and∆(Pmax) = 0. From Corollary 1, for any prede-
cessor setPX it is ∆∆∆∆(PX) ≤≤≤≤ −−−−rmax(PX

−−−−) ≤≤≤≤ 0 = ∆(Pmax) and therefore∆(Pmax) is maximum.
Assume nowrmax(e

+) > 0 for somee+ ∈∈∈∈ F(RH), in which casePmax is not empty. The follow-
ing three properties hold.
1. Pmaxis a predecessor set.

If not, there will be an evente2 ∉ Pmax such that|e1e2| ≤≤≤≤ 0 for some evente1∈∈∈∈Pmax. From
the definition ofAprec(R), however, we know that there must be a path inAprec(R) from
e1 to e2. Since this path will be present inF(RH) with all links having infinite capacity, the
path will also always be present in any residual network for any flow. Therefore there is a
path in the residual network going fromσσσσ to e1 (by definition of Pmax) and then toe2.
Therefore,e2∈Pmax, which is a contradiction.

2.rmax(Pmax
−−−−) = 0.

If not, there will be an evente−−−− ∈∈∈∈ Pmax such thatrmax(e
−−−−) > 0. We can therefore build an

augmenting path ofF(RH) as follows: 1) a path fromσσσσ to e−−−− with positive residual capacity
which exists by definition ofPmax; and 2) an edgee−−−−→→→→ττττ with positive residual capacity
rmax(e

−−−−). The existence of the augmenting path means thatfmax is not a maximum flow,
which is a contradiction.

3. fmax(Pmax, Pc
max) = 0

SincePmax is a predecessor set, from the proof of Lemma 2 we know thatfmax(Pmax, Pc
max)

≤≤≤≤ 0. If fmax(Pmax, Pc
max) < 0, then there is a pair of eventse1∈∈∈∈Pmax ande2∈∈∈∈Pc

max such that
fmax(e1, e2) < 0. This means that the residual capacity frome1 to e2 is positive and therefore
there is an edgee1→→→→e2 in the residual network. But by definition ofPmax, this means that
e2∈∈∈∈Pmax, which is a contradiction.



Applying the properties ofPmax to Lemma 1,∆∆∆∆(Pmax) = rmax (Pmax
+) – rmax(Pmax

−−−−) + fmax(Pmax,
Pc

max) = rmax(Pmax
+) > 0.

To prove the maximality ofPmax, observe from Corollary 1 that a non-empty predecessor set
PX has∆∆∆∆(PX) > 0 only if rmax(e

+) > 0 for somee+ ∈∈∈∈ PX. It is easy to see thatPX is the set of
events reachable in the residual graph fromPX

++++ ⊆⊆⊆⊆ Pmax
++++ and that the properties at points 2

and 3 above also hold forPX. Therefore,∆∆∆∆(PX) = rmax(PX
++++) ≤≤≤≤ rmax(Pmax

++++) = ∆∆∆∆(Pmax), which
proves the maximality ofPmax.�

The construction ofPmax discussed before does not guarantee its uniqueness since it depends
on a specific maximum flow among potentially many forF(RH). The following theorem
proves, however, thatPmax is indeed unique for all maximum flows ofF(RH) and that it con-
tains the minimum number of events among all predecessor sets with maximum positive
resource-level increment.

Theorem 3: The predecessor setPmax with maximum resource-level increment∆(Pmax) and
with minimum number of events is unique across all maximum flows ofF(RH).
Proof: Consider two maximum flowsfmax,j and fmax, k among all maximum flows ofF(RH)
and assume that they produce two distinct maximum resource-level increment predecessor
sets,Pmax, j and Pmax, k. From the maximality of their increment, it must be∆∆∆∆(Pmax,k) =
∆∆∆∆(Pmax,j) = ∆∆∆∆max. We can rewrite one maximum predecessor set asPmax,j = Pj∩∩∩∩k ∪∪∪∪ Pk−−−−j where
Pj∩∩∩∩k= Pmax,j ∩∩∩∩ Pmax,k andPk −−−−j= Pmax,k −−−− Pmax,j. The hypothesis of distinction ofPmax, j andPmax,

k yieldsPk−−−−j ≠≠≠≠ ∅∅∅∅.
First we observe that∆∆∆∆(Pj∩∩∩∩k) = ∆∆∆∆max. If not, ∆∆∆∆(Pj−−−−k) > 0 and∆∆∆∆(Pk−−−−j) > 0. But this means that
Pj∪∪∪∪k = Pmax,j ∪∪∪∪ Pmax,k is a predecessor set such that∆∆∆∆(Pj∪∪∪∪k) > ∆∆∆∆max, which is a contradiction.
Consider nowPmax,j and let us callr j(e) the residualrmax(e) computed in flowfmax,j. Since
∆∆∆∆(Pj∩∩∩∩k) = ∆∆∆∆max, it must ber j(e

+) = 0 if e+ ∈∈∈∈ Pj−−−−k. Also, r j(e
−−−−) = 0 for eache−−−− ∈∈∈∈ Pmax,j. From

Lemma 1,∆∆∆∆(Pj−−−−k) = fmax,j(Pj−−−−k, Pc
j−−−−k) = 0. From Lemma 2 it follows thatfmax,j(Pj−−−−k, Pj∩∩∩∩k) = 0.

Hence, there cannot be a link in the residual network from an event inPj∩∩∩∩k to one inPj−−−−k.
Therefore,e ∈∈∈∈ Pj−−−−k is not reachable fromσ in the residual network andPj−−−−k = ∅∅∅∅. Since this
is true for any pair<j, k>, Pmax is unique.
The same argument applied toPmax andP∅∅∅∅⊆⊆⊆⊆Pmax proves the minimality ofPmax, whereP∅∅∅∅ is
a predecessor set such that∆∆∆∆(P∅∅∅∅) = ∆∆∆∆max.�

6 Building Resource Envelopes

So far we know that the resource level for a schedules at timet ∈∈∈∈ H is equal toL s(t) = ∆∆∆∆(CH)
++++ ∆∆∆∆(PX) for some predecessor setPX. However, it is not immediately obvious that the con-
verse also applies. Given any predecessor setPX, we want to be able to determine a timetX ∈∈∈∈
H, theseparation time, and a schedulesX, theseparation schedule,such that all and only the
events inCH∪PX are scheduled at or before timetX. The existence of a separation schedule
and a separation time is not obvious because of the upper-bound constraints in the STN, i.e.,
the metric links between events that do not contribute to the construction ofAprec(R). If
some event occurs too early with respect totX, an upper-bound constraint may force some
event to occur before timetX even if it is not a successor inAprec(R). We now show that
indeed we can find a separation time and schedule foranyPX and therefore also forPmax. For
the latter, we show thattX is one of the times at which the resource level is maximum overH
for any schedule. This yields the maximum resource envelopeLmax if H= [t, t] and we scant
over the horizonT.



6.1 Latest events

First we find the events inPX that will be scheduled at timetX. We say thate is a latest event
of PX if it is not a strict predecessor of any other event inPX, i.e., for anye’ ∈∈∈∈ PX, |e’ e|≥≥≥≥ 0.
We will call PX,late the set of all latest events inPX. Also, we definePX,early = PX – PX,late.

The following property holds between events inPX,late andPX,early.

Property 1: Any evente1∈∈∈∈ PX,early is a strict predecessor of some evente2 ∈∈∈∈ PX, late, i.e.,
|e2e1| < 0.

Proof: Sincee1 ∈∈∈∈ PX,early, there must be an evente11 ∈∈∈∈ PX such that|e11e1| < 0. If e11 ∈∈∈∈ PX, late,
the property is proven. Otherwise, we can find a finite chain of eventse2→→→→e1k→→→→…→→→→e11→→→→e1
with e2∈∈∈∈ PX, late and |e2e1k| < 0, |e1jei j-1| < 0 and|e11e1| < 0, yielding |e2e1| < 0 for the triangu-
lar inequality of the shortest paths. If we could not find ane2 ∈∈∈∈ PX, late to start such a finite
chain, the chain would have to become a cycle of events inPX,early, which contradicts the
temporal consistency ofR.����

6.2 Separation Time for Latest Events

We can construct a separation timetX at which we will schedule all latest events.

Lemma 3: There is a time interval[tX,min, tX,max] that intersects all time bounds
[et(e), lt(e)]with e ∈∈∈∈ PX,lateand such thatstart(H) ≤≤≤≤ tX,max.
Proof: There must be a time value in common among all time bounds inPX,late. If not, there
would be two eventse1, e2 ∈∈∈∈ PX,late such thatet(e1) > lt(e2) and, from the triangular inequal-
ity, |e1e2| ≤≤≤≤ −−−− et(e1) + lt(e2) < 0, which is inconsistent with the definition ofPX,late. Observe
that there must be an evente ∈∈∈∈ PX,late such thatlt(e) = tX, max. If start(H) > t X, max, thenlt(e) <
start(H) , which contradictse ∈∈∈∈ RH.����

We define the separation time astX= max (start(H), tX,min), with tX = start(H) if PX=∅∅∅∅. We
can then show that each event inPc

X can be scheduled aftertX.

Lemma 4: For any evente ∈∈∈∈ Pc
X, lt(e) > tX

Proof: By definition of RH it must belt(e) > start(H). So we only need to consider the case in
which tX = tX,min > start(H). In this case there is at least one evente1 ∈∈∈∈ PX,late such thatet(e1)
= tX,min. For this event it is|e1 e| ≤≤≤≤ −−−− et(e1) + lt(e). Sincee ∈∈∈∈ Pc

X, it must be that|e1 e| > 0,
otherwisee would follow in Apred(R) an event inPX. Therefore,lt(e) ≥≥≥≥ et(e1) + |e1 e| > et(e1)
= tX, min.����

6.3 Separation schedule for predecessors

We now build the separation schedulesX for PX andtX, i.e., a schedule such thatsX(e) ≤≤≤≤ tX for
e∈∈∈∈CH∪∪∪∪PX and sX(e) > tX for e∈∈∈∈Pc

X∪∪∪∪OX. Note that the following discussion holds also if
PX=∅∅∅∅ andtX= start(H).
The following algorithm builds the separation schedule.

1. Schedule alle∈∈∈∈ PX, late at tX, i.e.,sX (e) = tX.
2. Propagate time throughR obtaining new time bounds[et’(e), lt’(e)] for eache∈∈∈∈E(R).
3. Schedule all eventse ∈∈∈∈ E(R) – PX,late at their new latest time, i.e.,sX(e) = lt’ (e).



For sX to be a schedule, it must be consistent with respect toR. We see that step 1 is consis-
tent since: 1)tX belongs to the intersection of all latest event time bounds; and 2) since for
any pair of latest events|e1e2|≥≥≥≥0, scheduling one attX does not prevent any other latest events
to be also scheduled at timetX. Step 3 above is also consistent because it is always possible to
schedule all events at their latest times without temporal repropagation.
Now we need to show that the property defining a separation schedule is satisfied forsX. Note
that we already know that it is satisfied for events inPX,late. By definition it is also satisfied
for events inCH andOH. Therefore, we need to show that it is satisfied forPX,early andPc

X.
a) lt’(e) ≤≤≤≤ tX for all e ∈∈∈∈ PX,early

According to Property 1 we can pick an evente1∈∈∈∈PX, late such that|e1 e| < 0.From the tri-
angular inequality we havelt’(e) ≤≤≤≤ lt’(e1) + |e1 e| < lt’(e1) = tX.

b) lt’(e) > t X for all e∈∈∈∈ Pc
X.

From Lemma 4 we know that before temporal repropagation it waslt(e) > tX. After it, ei-
ther lt’(e)=lt(e), in which case the condition is satisfied, orlt’(e) has changed due to a
propagation that starts from some evente1∈∈∈∈ PX, late. So it must belt’(e) = t X + |e1e|. Since
e∈∈∈∈ Pc

X, it must be|e1e| > 0,otherwisee would follow in Apred(R) an event inPX. Hence,
lt’(e) > t X.

We can now compute the maximum resource level for any schedule within the invervalH. In
the following, we indicate withPmax(RH) thePmax computed overF(RH).

Theorem 4: The maximum resource level for any schedule ofR over an intervalH⊆⊆⊆⊆T is
given by∆∆∆∆ (CH) + ∆∆∆∆(Pmax(RH)).
Proof: We know that at any timet∈∈∈∈H the events inRH that are scheduled beforet are a
predecessor setPX. For the resource level at timet it is always∆∆∆∆ (CH) + ∆∆∆∆(PX) ≤≤≤≤ ∆∆∆∆ (CH) +
∆∆∆∆(Pmax(RH)), the latter being the resource level at the separation timetX for the separation
schedulesX.�

There are two interesting special cases of Theorem 4.

Corollary 2: The maximum possible resource consumption forR over T is equal to
∆∆∆∆(Pmax(RT)).

This means that estimating the maximum possible resource consumption for a flexible plan
over the entire time horizon has the same complexity as a maximum flow problem.

Corollary 3: Lmax(t) = ∆∆∆∆(Ct)+∆∆∆∆(Pmax(Rt)).

The last formula tells us how to compute the resource-level envelope at a specific time. We
now need to find an efficient algorithm to compute the resource-level envelope over the en-
tire horizonT.

7 Efficient Computation of Resource Envelopes

From Corollary 3, the naïve approach to compute a resource-level envelope would be to iter-
ate over all possiblet∈∈∈∈T. However, we only need to computeL max at times when eitherCt or
Rt changes. This can only happen atet(e) or lt(e) for any e∈∈∈∈E(R). Therefore we need to
compute new levels forL max only 2N times, whereN is the number of start/end events in the
original activity network. For each such computation, we need to: a) computePmax(Rt) by
running a maximum flow on a network with at mostN nodes; and 2) collect and sum the
events in Ct and Pmax(Rt). The total complexity of the algorithm is thereforeO(N
O(maxflow(N)) + N2), whereO(maxflow(N)) is the complexity of finding a maximum flow



with an arbitrary maximum flow algorithm. For modern algorithms using the “preflow push”
method [9], the worst case complexity can beO(N3). Extensive empirical studies show that
the practical complexity of variations of the method can be as fast asO(N1.5) [1]. This sug-
gests that resource-level envelopes could operate in the inner loop of scheduling search algo-
rithms, especially if they can be computated incrementally.

8 Conclusions

In this paper we describe an efficient algorithm to compute the tightest exact bound on the
resource level induced by a flexible activity plan. This can potentially save exponential
amounts of work with respect to currently available looser bounds. Future work will pursue
two directions. The first is developing more incremental algorithms for the computation of
the envelope. Using a temporal scanning of the events in the temporal network, it should be
possible to significantly reduce the size of the networks on which the maximum flow algo-
rithm needs to be run. This could significantly speed up the envelope calculation. The second
direction will test the practical effectiveness of resource envelopes in the inner loop of search
algorithms for multi-capacity resource scheduling, such as those used in (Laborie, 2001).
This includes inner-loop backtracking and termination tests and variable and value ordering
heuristics that exploit more directly the properties of the resource envelopes.
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