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Abstract

In this paper, we investigate the use of Bayesian networks
to construct large-scale diagnostic systems. In particular,
we present a novel analytical and experimental approach
to developing large-scale Bayesian networks by composi-
tion. This compositional approach reflects how (often re-
dundant) subsystems are architected to form systems such
as electrical power systems. We develop Bayesian networks
and clique trees representing 24 different electrical power
systems, including the real-world electrical power systems
ADAPT. ADAPT is representative of electrical power sys-
tems deployed in aerospace, and is located at the NASA
Ames Research Center. The largest among these 24 Bayesian
networks contains over 1,000 random variables. Related
work has used Bayesian networks to diagnose specific elec-
trical power systems, however we are not aware of previous
research that investigates a wide range of distinct electrical
power systems as is done in this paper. While we consider
diagnosis of power systems specifically, we believe this work
has application to numerous health management problems, in
particular in dependable systems such as aircraft and space-
craft.

Keywords: Bayesian networks; clique tree clustering; un-
certainty; model-based diagnosis; knowledge engineering;
electrical power systems; real-time systems; domain mod-
elling; scalability; composition.

Track: Emerging Application or Methodologies.

Designation of the application domain(s): Aircraft;
spacecraft; real-time systems; electrical power systems.

Identification of Al techniques employed or issues ad-
dressed: We investigate model-based diagnosis using prob-
abilistic techniques.  Specifically, we discuss the use of
Bayesian networks to perform diagnosis and health manage-
ment in electrical power systems in aircraft and spacecraft.
We identify important issues that arise in engineering diag-
nostic applications in this area, namely the modelling chal-
lenge, the real-time reasoning challenge, and the scalability
challenge. The modelling challenge concerns how to model
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an EPS by means of Bayesian networks. The real-time rea-
soning challenge is associated with the embedding of Al
components, including diagnostic reasoners, into hard real-
time systems. The scalability challenge, which is the main
focus of this paper, is concerned with how different EPSs,
with varying architectures and components, can be repre-
sented in varying Bayesian networks for diagnosis, and how
space requirements and computation times vary accordingly.
The modelling challenge has been addressed by a high-level
specification language from which Bayesian networks are
auto-generated; the real-time reasoning challenge by off-
line compilation of Bayesian networks into clique trees or
arithmetic circuits which are used on-line. The scalability
challenge is addressed by means of composition, in other
words by considering the subsystems making up a system.
For example, a electrical power systems can be made up by
power storage and power distribution subsystems. We pro-
vide in this paper several novel analytical and experimen-
tal results that shed light on large-scale BNs developed for
electrical power system diagnosis. The experimental part in-
cludes results for Bayesian networks and clique trees repre-
senting 24 different electrical power systems, including the
Bayesian network and clique tree models of ADAPT.

Indication of application status (e.g., feasibility analy-
sis, research prototype, operational prototype, deployed
application, etc.): We discuss the development of diagnos-
tic applications for 24 different electrical power systems,
including the Advanced Diagnostics and Prognostics Test-
bed (ADAPT) (see also http://ti.arc.nasa.gov/
adapt/). ADAPT, which has capabilities for power gener-
ation, power storage, and power distribution, is a fully oper-
ational electrical power system that is representative of such
systems in aircraft and spacecraft. We have developed a di-
agnostic application that is an operational prototype working
on real-world data from ADAPT. This paper takes the next
step by considering how what we have learned from ADAPT
can be applied to electrical power systems that are similar to
ADAPT, but of different sizes and structures. Specifically,
we discuss the composition of electrical power systems from
power storage and power distribution subsystems, and how
this composition is reflected in the Bayesian network and
clique tree models of these EPSs.



Introduction

This paper is concerned with efficient probabilistic reason-
ing and diagnosis in particular.  Our approach is based
on developing a Bayesian network (Pearl 1988) model of
a system, and then using it to efficiently compute answers
to probabilistic queries.  Bayesian networks and their
inference engines provide a well-established approach to
model-based diagnosis and monitoring (Lerner et al. 2000;
Chien et al. 2002; Yongli et al. 2006; Mengshoel et al.
2008).

We focus on NASA-relevant research problems that rep-
resent challenges in aircraft and spacecraft health manage-
ment. In this paper, we take as our point of departure an
electrical power system known as the Advanced Diagnostics
and Prognostics Testbed (ADAPT). ADAPT is an electrical
power system (EPS) developed at NASA Ames for support-
ing the development of diagnostic and prognostic models;
for evaluating advanced warning systems; and for testing di-
agnostic tools and algorithms (Poll e al. 2007). ADAPT
is representative of electrical power systems deployed in
aerospace vehicles.

Progress in probabilistic model-based diagnosis is stim-
ulated by real-world applications, and EPSs raise several
challenges including the following: (1) The challenge of de-
veloping models that are capable of handling 100s or 1000s
of different faults, many of which may occur at the same
time; (2) The challenge of real-time diagnostic comput-
ing, especially on on-board avionics systems with limited
processor and memory capacity; (3) The challenge of de-
veloping BNs (and in particular large-scale BNs) for a wide
spectrum of EPS sizes while obtaining high performance.

To start addressing these challenges, we have developed a
probabilistic approach to model-based diagnosis for ADAPT
(Mengshoel et al. 2008). Our approach is based on de-
veloping Bayesian network models of aerospace vehicles
or sub-systems of such vehicles. These models typically
represent the health state of sensors and other system com-
ponents explicitly by means of random variables.  We
have paid special attention to meeting two of the main
challenges — (1) model development and (2) real-time rea-
soning — often associated with real-world application of
model-based diagnosis technologies (Musliner ef al. 1995;
Mengshoel 2007a). To address the challenge of model de-
velopment, we have developed a systematic approach to rep-
resenting electrical power systems as Bayesian networks,
supported by an easy-to-use specification language. To ad-
dress the real-time reasoning challenge, we compile BNs
into arithmetic circuits or clique trees. The evaluation of
arithmetic circuits and clique trees supports real-time diag-
nosis by being predictable and fast. In experiments with the
ADAPT BN, which currently contains 503 discrete nodes
and 579 edges, the time taken to exactly compute the most
probable explanation using an arithmetic circuits or a clique
tree was in the order of 1-10 milliseconds.

Building on earlier results as discussed above, this paper
investigates scalability issues associated with probabilistic
methods and technologies. In particular, we consider chal-
lenge (3) above, and present a novel analytical and experi-
mental approach to developing large-scale BNs by compo-

sition. This compositional approach reflects how (often re-
dundant) subsystems are architected to form systems such
as EPSs. Specifically, we consider 24 different EPS archi-
tectures including ADAPT, formed by the duplication and
integration of a varying number of power storage and power
distribution subsystems. Previous work has used BNs to di-
agnose specific EPSs (Chien et al. 2002; Yongli et al. 2006;
Mengshoel et al. 2008), however we are not aware of other
efforts that consider a range of distinct EPSs. While we
consider EPS health management specifically, the work has
application to numerous health management problems, in-
cluding such problems in aircraft and spacecraft.

The remainder of this paper is structured as follows. Con-
cepts related to Bayesian network are presented first, fol-
lowed by a discussion of EPSs. We then present our scalabil-
ity analysis and an EPS case study. We finally report on ex-
perimental results for 24 different EPSs including ADAPT,
conclude, and outline future work.

Preliminaries

A Bayesian network (BN) structures a multi-variate proba-
bility distribution by using a directed acyclic graph (DAG).
Our main emphasis will be on discrete BN nodes. A (dis-
crete) BN node V' is a discrete random variable with a mu-
tually exclusive, exhaustive, and finite state space 2y =
Q(V) = {v1,...,vm}. We use the notation IIy, for the par-
ents of a node V, ¥y for the children of V, and 7y for
an instantiation of all parents IIy, of V. The notion of a
Bayesian network can now be introduced (Pearl 1988).

Definition 1 (Bayesian network) A Bayesian network is a
tuple (V, E, P), where (V,E) is a DAG with nodes
VvV = {W,..V,,}, edges E = {V1,...,V,;,,}, and where P
= {Pr(Vy | Ov,),...,Pr(V, | Iy, )} is a set of condi-
tional probability tables (CPTs). For each node V; € 'V
there is one CPT, which defines a conditional probability
distribution Pr(V; | Iy, ).

The independence assumptions induced by (V,E) in De-
finition 1 imply the following joint distribution:

Pr(v) =Pr(Vi =vy,...,Vy =v,) = HPr(vi | Tv;),
i=1

M
where Iy, C {Vi11,...,V,, }.

A BN can be provided evidence by setting or clamping
some variables to known states. These nodes are called evi-
dence variables. Taking into account the input on evidence
variables, different probabilistic queries can be answered
(Pearl 1988). These probabilistic queries include marginals,
most probable explanation (MPE), and maximum aposteri-
ori probability (MAP). While probabilistic queries can be
used for many purposes, our focus in this paper is on diagno-
sis, where we query health variables representing the health
of components, sensors, or both (Mengshoel ef al. 2008).

It has been shown that exact MPE computation is NP-
hard (Shimony 1994), and approximating an MPE to within
a constant ratio-bound has also been proven to be NP-hard
(Abdelbar and Hedetnieme 1998). There are two broad



classes of approaches to Bayesian network inference: In-
terpretation and compilation. In interpretation approaches,
a Bayesian network is directly used for inference. In com-
pilation approaches, such as the clique tree (Lauritzen and
Spiegelhalter 1988; Shenoy 1989) and arithmetic circuit
(Darwiche 2003; Chavira and Darwiche 2007) approaches,
a Bayesian network is off-line compiled into a secondary
data structure, and this secondary data structure is then used
for on-line inference. In clique tree clustering, inference
consists of propagation in a clique tree compiled from a
Bayesian network. In arithmetic circuit evaluation, infer-
ence is performed in an arithmetic circuit that was compiled
from a Bayesian network. Computation time depends on a
number of structural and numerical factors associated with
a BN and is not yet, despite recent progress, sufficiently un-
derstood.

Electrical Power Systems and ADAPT

Electrical power systems (EPSs) are crucial systems in air-
craft and spacecraft (Button and Chicatelli 2005; Poll et al.
2007), and ADAPT has been developed to investigate health
management technologies in a real-world setting. In this pa-
per, we investigate ADAPT’s power storage and distribution
subsystems. Over a hundred sensors report their measure-
ments to a health management system that monitors the sta-
tus of the EPS. Typical sensor measurements of system vari-
ables include voltages, currents, temperatures, and switch
positions. The ADAPT test bed provides a controlled envi-
ronment to inject failures in a repeatable manner, and this
makes it ideal for use in experiments with our novel tech-
niques and models.

The physical hardware of the ADAPT EPS consists of
battery chargers, batteries, relays, circuit breakers, invert-
ers, wires, sensors, and loads. Most of the hardware is con-
tained within equipment racks or cabinets, with the excep-
tion of the loads which are placed in the surrounding lab
area. Three batteries may be interchangeably connected to
two load banks. Each load bank can connect up to 6 al-
ternating current (ac) loads and 2 direct current (dc) loads.
The locations of the loads with respect to the load bank con-
nection points are fixed for the purposes of any given ex-
periment. Different configurations/modes of the EPS are
commanded by opening and closing different combinations
of relays between the batteries and the loads. As a con-
sequence, ADAPT’s system behavior is hybrid, consisting
of discrete configuration changes and continuous behavior
within the modes.

Composition and Scalability Analysis

We have developed a multi-variate Bayesian network model
of the ADAPT EPS, currently containing over 500 ran-
dom variables including over 100 health variables, where
the health variables include components and sensors (Meng-
shoel et al. 2008). This BN supports the diagnosis of mul-
tiple sensor and/or component faults. Experiments in the
ADAPT testbed have showed strong performance on sce-
narios with multiple faults as well as very fast and pre-
dictable inference times. We now consider the scalability

over a range of BNs representing different EPSs, including
the ADAPT BN as described above as one data point.

Scalability, in terms of space requirement and computa-
tion time for clique tree evaluation, is determined by clique
tree size (Lauritzen and Spiegelhalter 1988).

Definition 2 (Clique tree size) Let I be the set of cliques in
a clique tree compiled from a BN 3. The (total) clique tree

size is defined as
@) =>_ I 12x]. @

vel Xey

A number of interacting factors determine the number of
cliques and the size of each clique in (2); we now discuss a
few of them.

The Subsystem (or Composition) Factor: Suppose that
we consider an EPS as a system that might be part of a larger
system-of-systems (SoS) such as an aircraft. As we vary the
size of the SoS, the size of its systems typically also need
to vary. For example, as we vary the aircraft under consid-
eration from a small UAV to a large commercial aircraft, the
characteristics of the EPS also changes. Since a diagnostic
BN needs to vary accordingly, we now consider this in terms
of impact on clique tree size.

We partition a BN’s nodes into subsystems Y =
{1, ..., v}, and identify subsystem types © = {1, ..., 6}, with
0 < v. In EPSs, typical subsystem types are: power gener-
ation, power storage, and power distribution. ADAPT has,
for example, 3 power storage and 2 power distribution sub-
systems. Hence, T = {1,2,3,4,5} and © = {1, 2} for the
variant of ADAPT we investigate in this paper.

We introduce a map f from nodes into subsystems: f :
V — 7, and also a map g from subsystems into subsystem
types: g : T — O. Now, we can define different subsets of
cliques from T, specifically I'; = {y € T' | for all X € ~,
f(X) = i}, and obtain the following:

(@)=Y ] 19xI. 3)
vels Xey
In words, (3) provides the size of all cliques in a subsystem.
We define a set of interaction cliques I'y as 'y = ' —
U;_,I';. The set I'g represents the interaction between dif-
ferent subsystems. We obtain the following alternative ex-
pression for total clique tree size:

T([) =Y 7(I). )

=0

Now, instead of considering the subsystems individually
as in (4), we make the assumption that each of them is iden-
tical (given its type). Formally, we let ¢ € T and assume
T(I';) = 7([y(;)) as well as ¢g = 1 and obtain the following
result:

6
)= e x7(Iy), (5)
=0

where ¢; represents the number of times a subsystem of type
1 € O is found in a system. The significance of (5) is that it



enables us to analyze the impact (on clique tree size) of dif-
ferent systems, with different size and redundancy require-
ments, by taking a compositional approach. Specifically,
if we know or can reliably estimate 7(T';), we just need to
count the number of times ¢; a subsystem type ¢ occurs, and
then do this for all subsystem types in a given system. This
aligns well with design methodologies that use redundancy
and product-line approaches to support the development of
EPSs for vehicles with different power requirements.

An important but non-trivial question to consider is the
value of 7(T'g) in (5) as subsystems are composed in differ-
ent ways to form a system. Based on (5), we can identified
a few special cases and simplifications; further information
is provided by our experiments. One simplification, which
we call perfect compositionality, puts cp = 0 in (5) to ignore
interactions and adds together the size of each subsystem.
Clearly, this creates a lower bound that scales linearly with
the number of subsystems c; for a given I';.

The State Space (or Discretization) Factor: In EPSs,
continuous signals are often converted to discrete digital
numbers by means of analog-to-digital (A/D) converters. A
key parameter in A/D conversion is the number of bits in
discretized signal, and how to map these discretized into BN
node states. Fundamentally, there is a desire to maximize
the fidelity of the BN to the underlying EPS, but at the same
time the computation time cannot get too large, because then
a diagnosis will not be computed in time. The cardinality of
a node has a multiplicative effect in the cliques in which is
an element, see (2), and hence one needs to carefully trade
off the potential improvement in diagnostic accuracy (due to
increased discretization) with the cost of increased compu-
tation time. Further, this factor may need to be taken into
account multiple times according c; in (5).

The Interaction (or Ambiguity) Factor: Increased inter-
action or ambiguity in a BN has a detrimental effect on scal-
ability. Consider bipartite BNs as an example (Mengshoel
et al. 2006; Mengshoel 2007b). Example of low ambigu-
ity is when each leaf node has (for example) P = 1 parent
nodes. Example of high ambiguity is when each leaf node
has (for example) P = 5 parent nodes. The higher the am-
biguity, the faster cycles are induced in the moral graph, as
a function of the ratio of leaf nodes to root nodes, thereby
more quickly inducing cliques with many BN nodes in the
clique tree. This factor is perhaps less of a concern in engi-
neered systems including EPSs, since they are typically less
ambiguous and often close to tree structured (see experimen-
tal results below). However, there may be some ambiguity
in the interaction between subsystems, thus impacting the
term 7(T'g) in (5).

Electrical Power System Case Study

We now consider a small EPS case study. The high-level
specification for this EPS is shown in Table 1. Figure 1
shows the BN that is auto-generated from this high-level
specification. Figure 2 shows the clique tree that this BN is
compiled into, using clique tree clustering. We hypothesize
that it is much easier for many, including people well-versed
in probabilistic models, to provide information in the for-
mat illustrated in Table 1 compared to what is illustrated in

Part Type of Failure Upstream
Name Part Probability | Part
Batteryl battery 0.0005

Wirel wire 0.0000 Batteryl
Voltagel sensorVoltage | 0.0005 Wirel
Current] sensorCurrent | 0.0005 Wirel
Breakerl breaker 0.0005 Wirel
Status1 sensorTouch 0.0005 Breakerl
Wire2 wire 0.0000 Breakerl
Relayl relay 0.0005 Wire2
Feedbackl | sensorTouch | 0.0005 Relayl
Loadl load 0.0005 Relayl
Templ sensorCurrent | 0.0005 Loadl

Table 1: High-level specification of a small electrical power
systems (EPS). The EPS consists of two subsystems, namely
a battery subsystem (lines from Batteryl to Statusl) and a
load bank subsystem (lines from Wire2 to Temp1).

Figure 1 or Figure 2. On the other hand, the high-level spec-
ification language is restricted to represent a certain class of
BNs and not BNs in general.

Each line in a high-level specification represents one part
of an EPS, and also contains information about its type, fail-
ure probability, and location within the overall system. For
example, the line Breakerl breaker 0.0005 Wirel in Table 1
communicates that Breakerl is a circuit breaker; has failure
probability 0.0005; and is downstream of Wirel. Broadly
speaking, this specification is for an EPS with a single bat-
tery, Batteryl, powering a single load Loadl, and contain-
ing a few sensors and components. Specifically, Batteryl
has a wire Wirel downstream of it. Wirel has three parts
connected to it, namely a voltage sensor Voltagel, a current
sensor Currentl, and a circuit breaker Breakerl. Breakerl
has a feedback sensor Statusl, which reports whether the
breaker is open or closed, attached to it. Wire2, which is the
first part that we consider to be part of the load bank subsys-
tem (as opposed to the battery subsystem), is downstream of
Breaker!] and has feedback sensor Feedbackl as well as Re-
lay1 attached to it. Relay!l controls power flow into Loadl,
which has a sensor 7emp! attached to it.

The auto-generated BN in Figure 1 contains one or more
BN nodes for each part (or line) in the specification, and in
addition nodes that glue the parts together into an overall
EPS model. A key point here is that nodes can be parti-
tioned, as indicated in the figure, into nodes that belong to
the battery subsystem or the load bank subsystem. For-
mally, we have T = {1,2} and © = {1, 2}, with the map f
as indicated by the coloring in Figure 1 and the map g simply
g(i) = i fori € {1,2}. Roughly speaking, the BN reflects
both the “push” of power from the battery to the load as well
as the “pull” of current by the load. For example, Volt-
agel Batteryl is — subject to Health Batteryl (whether
Batteryl is operational or not) and Closed Wirel (whether
Wirel is open or closed) — propagated downstream to Volt-
agel Wirel, and so forth.

Figure 2 shows a clique tree resulting from the compila-
tion of the BN in Figure 1. Here, cliques in I'; represent



Figure 1: The BN auto-generated from a high-level specifi-
cation (see Table 1) of a small electrical power systems. The
BN represents two subsystems, namely a battery subsystem
(white nodes) and a load bank subsystem (grey nodes).

the battery subsystem, those in I'y the load bank subsys-
tem, while cliques in I'y represent the interaction between
the two subsystems. Clique tree size is 7(I') = 264, with
7(To) =48, 7(T'1) = 98, and 7(['3) = 118.

Experiments

While our discussion earlier in this article has clarified a
number of issues related to the development of large BNs
by means of composition of subsystems, we made a few
simplifying assumptions. In particular, our analysis did
not fully account for: the pruning of BN nodes during auto-
generation; possible interaction between subsystems; and
the result of different clique tree decompositions (due to
varying BN structures). To complement our analysis ear-
lier in this article as well as previous accuracy results for
ADAPT (Mengshoel ef al. 2008), we have performed scala-
bility experiments as reported in this section.

Experimental Design

The goal of the experiments is to study BNs representing
different EPSs with varying number of subsystems of differ-
ent types. Different EPS BN models were created using the
high-level specification language. Clearly, we do not intend
to implement real-world testbeds (similar to ADAPT) for all
of these, and our goal here is rather to study the sizes of the
generated BNs and clique trees (which determines compu-
tation time), which is one important design parameter when
developing EPSs and their diagnostic capabilities. Follow-
ing this approach, we developed 24 different EPS architec-
tures using the high-level specification language, giving 24
auto-generated BNs, which were compiled into 24 clique
trees which can be used for EPS diagnosis. In Table 2,
the notation EPS(x,y) is used to represent an EPS in which
x represents the number of battery subsystems and y repre-
sents the number of load bank subsystems (see (Poll et al.
2007) for details on these subsystems).
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Figure 2: The clique tree compiled from a BN (see Figure 1)
representing a small electrical power systems. These cliques
can be partitioned into those that contain battery subsystem
nodes (white nodes only) load bank subsystem nodes (grey
nodes), and both nodes (white and grey nodes). The 11
cliques at the bottom are battery subsystem cliques. Among
the cliques at the top, 9 are load bank subsystem cliques.
In the middle, there are 3 cliques representing the interface
between the two subsystems.
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Figure 3: This figure shows how clique tree size varies
as a function of the number of random variables (or BN
nodes). Clique tree size determines computation time, while
the number of random variables varies from EPS to EPS.
Each data point, of which there are 24, represents an EPS.

Experimental Results

We now turn to the experiments results for the diagnostic BN
models of 24 EPSs including ADAPT. Table 2 and Figure 3
summarize the experimental results; a few key observations
follow:

e In Table 2, min(m/n) = 1.13, while max(m/n) = 1.17.
This shows that our auto-generated BNs are fortunately
quite sparse, given that m/n = 1 for trees.

e There is an approximately 5-time increase in BN size
from EPS(1,1) to EPS(6,4), and a little over 12-time in-
crease in clique tree size. We believe that this is quite
promising, given the inherent hardness of BN computa-
tion. Further, if we consider EPS(5,4) instead of the out-
lier EPS(6,4), we have 4.4 times as many BN nodes com-
pared to EPS(1,1) and only an 8-time increase in clique
tree size.

e Generally speaking, n/m and the number of CPT para-
meters increase with increasing EPS size in Table 2, and
both of these factors may suggest a harder inference prob-
lem. The product of the ratio n/m and the number of CPT
parameters is maximal for EPS(6,4), perhaps giving some
explanation for why this architecture is an outlier.

e The regression results in Figure 3 exhibit better fit for
the exponential model (R? = 0.9266) than for the linear
model (R? = 0.7647), pointing to the importance of the
potentially nonlinear term 7(I'g) in (5). However, and in
particular if the outlier EPS(6,4) is excluded, both models
are quite reasonable.

Conclusion and Future Work
Due to their high level of predictability and fast execution
times, Bayesian network compilation approaches are well-
suited to automated diagnosis in the setting of on-board

resource-bounded reasoning and real-time systems of inter-
est to NASA (Mengshoel ef al. 2008). This paper improves
the understanding of the scaling behavior of clique tree clus-
tering in the context of composing large-scale BNs. A de-
signer of model-based diagnostic systems, specifically us-
ing Bayesian networks, can use our novel approach to deter-
mine the impact of varying EPS architectures consisting of
repeated subsystems on the computation time of diagnostic
queries.

This work has been performed in the context of NASA’s
ADAPT electrical power system testbed. While ADAPT
is not a replica of an EPS that has been deployed on air-
craft or spacecraft, it is representative of EPSs deployed on
NASA missions. In this paper we have investigated how the
BN-based approach to probabilistic diagnosis for ADAPT
scales to other electrical power systems composed in a sim-
ilar manner from power storage and power distribution sub-
systems.

This work enables the transition of diagnostic and health
management technologies to NASA’s mission systems. In
particular, it appears that Bayesian networks, techniques,
and algorithms for diagnosis can be applied to distinguish
between sensor failures and component failures, a problem
of great interest to NASA. Sensor failures have been a costly
problem for the Shuttle program, for example, with sensor
failures causing launch delays in several cases. Future work
will aim to help NASA in developing model-based diagnos-
tic and sensor validation approaches that take into account
the limited resources available on varying mission hardware.
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Table 2: Electrical power systems (EPSs) are in acrospace often developed by composition or aggregation of subsystems. In
this table we consider the effect of varying the number of two types of EPS subsystems, namely a battery subsystem and a load
bank subsystem, on its BN representation and clique tree size. Total clique tree size is of interest because is determines the
computation time for a wide range of probabilistic queries. The number of batteries is varied from 1 to 6. The number of load
banks is varied from 1 to 4. The table also shows the number of BN nodes, the number of BN edges, the ratio of BN edges to
BN nodes, the number of CPT parameters, and the product of this ratio and the number of CPT parameters. Here, the ADAPT
BN corresponds to the highlighted EPS(3, 2) model.
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