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Abstract

Genetic algorithms typically use crossover, which relies on pairing or
mating a set of selected parents. As part of crossover, random mating is
often carried out in which the mate for a parent is chosen uniformly at
random from the set of remaining parents. The present work focuses on
this mating process in genetic algorithms. A novel approach to parent
mating is presented which uses a criterion for mating individuals, con-
stituting the basis for a wide range of different mating strategies. These
strategies can be applied in combination with the traditional similarity-
based criterion between individuals or with a fitness-based criterion. The
novel mating algorithm created in this work uses a parameter called mat-
ing index that allows different mating strategies to be developed within a
uniform framework: from an exploitative strategy called Best-First to
an explorative one called Best-Last. Self-Adaptive mating is a novel
mating strategy defined in the context of the novel algorithm, which al-
lows a balance between exploitation and exploration to be obtained in a
domain-independent manner. The present work consists of formally defin-
ing and implementing the novel mating approach, analyzing its behavior
from a theoretical point of view, and developing an extensive experimen-
tal study to quantitatively determine the benefits of the different novel
mating strategies compared to the traditional random mating approach.
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In the domain of real function optimization, the experiments show that
Best-First strategy is the best option for unimodal problems, Best-
Last strategy is the best option for multimodal problems, and Self-
Adaptive strategy produces robust results for both types of problems.

Keywords: Genetic algorithms, premature convergence, mating strategies, mat-
ing index, self-adaptive mating.

1 Introduction

Genetic algorithms (GAs) [10, 9] use stochastic search methods based on natu-
ral evolution in order to solve adaptation problems in fields like optimization,
design, learning, or scheduling, among others. A complete review of successful
GA applications can be found in [1, Chapter 2] and [3, Chapter 6].

In a GA, a set of candidate solutions is created each generation. The quality
of a solution, its fitness, determines its chance to survive and reproduce. Two
processes form the basis of genetic algorithms: variation (recombination and
mutation) and selection. While the former facilitates diversity and novelty, the
latter favours quality. Ideally, at the end of a running GA, a solution with
optimal or near-optimal fitness is found.

Premature convergence to local optima is one of the most frequent difficulties
that arise when applying GAs to complex problems. It occurs when genetic
operators can no longer generate offspring that are fitter than their suboptimal
parents. Premature convergence is associated with the loss of diversity in the
population. However, too much population diversity can lead to a dramatic
deterioration of GA efficiency. Therefore, an important issue in the design and
application of GAs is the trade-off between exploitation of the best individuals
and exploration of alternative regions of the search space.

By focusing on the mating phase of GAs, the present work deals with achiev-
ing a proper balance between exploitation and exploration. Traditionally, mat-
ing takes place after parent selection and prior to recombination. Normally,
parents are mated in pairs so that each pair of parents can subsequently be
recombined. A key question is how mating should be carried out in order to
improve GA performance. The traditional mating approach consists of select-
ing a parent’s mate uniformly at random from the set of remaining parents.
In addition to the traditional random mating approach, other approaches exist
that apply mating restriction techniques based on similarity relations between
parents [5, 7]. Although these methods have been shown to benefit GA perfor-
mance, they are costly in computational terms. This disadvantage is due to the
fact that similarity comparisons between two parents’ chromosomes normally
take place at a gene level. Furthermore, these methods were designed for rather
specific contexts like fitness sharing [5] and incest prevention [7] and, therefore,
their impact has been quite limited.

The goal of this work is to develop, analyze, and evaluate a novel and gen-
eral approach to mating in GAs. By using fitness-based comparisons between
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parents, rather than just similarity-based comparisons, the problem of complex-
ity is overcome. Furthermore, the novel approach lends itself to a self-adaptive
algorithm which gives rise to a simple and general mating strategy.

The rest of this paper is structured as follows. Section 2 reviews previous
work on restricted mating in GAs. Section 3 introduces our novel approach to
mating, along with the different mating strategies derived from it. The novel
approach is illustrated in Section 4 through an example. Section 5 contains
a formal analysis of the mating approach introduced in this work. Section 6
includes an extensive empirical evaluation of the novel mating strategies. A
discussion of our approach to mating in GAs is made in Section 7. Finally,
Section 8 contains the main conclusions derived from the present work.

2 Restricted Mating in Genetic Algorithms

The usual way of mating parents in GAs consists of taking a parent from the
mating pool and selecting its mate by choosing uniformly at random one of the
remaining parents. The mated parents are then removed from the mating pool,
and the same process is repeated until all the individuals have been mated.
Restricted mating techniques, which do not select a mate uniformly at random,
have been successfully developed for specific contexts such as fitness sharing
and incest prevention. Other approaches that incorporate mating preferences
into evolutionary systems are: assortative mating genetic algorithms [8, 11, 15],
correlative tournament selection [14], seduction [16], tabu genetic algorithm [21],
and evolving agents [19, 18, 22].

Fitness sharing [5] is a method that forces the population to maintain dif-
ferent niches. In multimodal optimization problems, where a number of high-
fitness individuals corresponding to various local optima are identified, niches
are search space regions of high fitness. Fitness sharing adjusts fitnesses of in-
dividuals prior to parent selection, so that individuals are allocated to niches
in proportion to the niches fitness. In order to improve the efficiency of fit-
ness sharing, Deb and Goldberg [5] used a restricted mating approach whose
goal was to avoid the creation of lethal (low fitness) individuals. Once niches
are formed in the population, the recombination of two parents from different
niches is likely to form lethal offspring. Therefore, restricted mating among in-
dividuals of the same niche is promoted. This is achieved by following the same
scheme as random mating but, given a parent, a candidate mate is accepted
only if the phenotype/genotype distance between them is smaller than a given
threshold. Otherwise, another candidate is sought. If no candidate is accepted,
one is chosen uniformly at random as in random mating. In the case of real
functions optimization, the phenotype space corresponds to the real values of
the variables, while the genotype space uses a binary representation for them. If
similarity is measured within the phenotypic space, Euclidean distance is used.
Hamming distance is employed when similarity between individuals is measured
within the genotypic space. Other GA approaches applying restricted mating
in the specific context of multimodal optimization problems are: island models
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[13], diffusion models [12], and automatic speciation models [20].
In contrast to fitness sharing, incest prevention [7] was defined in the con-

text of global optimization rather than niching. Incest prevention promotes
restricted mating between dissimilar enough individuals. In general, when two
similar individuals are mated, their offspring may not introduce significant new
information about the search space, which provokes a reduction in the perfor-
mance of the GA. Incest prevention follows a dual scheme to that used in fitness
sharing: A candidate mate is accepted only if its phenotype/genotype distance
to the current parent is greater than a given threshold. Usually, this threshold
is reduced when better offspring is not obtained during the search process.

In comparison to random mating, similarity-based restricted mating was
shown to produce a more effective exploration of the search space both in fit-
ness sharing [5] and in incest prevention[7]. However, the time cost associated
with measuring the distances between individuals is an important disadvantage
of both these similarity-based restricted mating techniques. This work explores
fitness-based mating as an alternative for establishing mating preferences with
a lower computational cost. Although fitness-based restricted mating was ad-
dressed in [4, 2], this technique has not been sufficiently investigated in the past,
due to the widespread use of similarity in the definition of mating approaches.
One of the goals of this work is to thoroughly compare fitness-based mating
strategies with their similarity-based counterparts.

The present work aims at formalizing a general mating approach which al-
lows a wide range of mating strategies to be defined and effectively applied to
the task of global optimization in GAs. Finally, a self-adaptive mating method
is developed.

3 The New Mating Approach

This section introduces a novel approach to mating in GAs. Our novel approach
has two main characteristics. Firstly, it allows mating preferences to be defined
either in terms of similarity between individuals or in terms of fitness of in-
dividuals, in contrast to most of the mating strategies reviewed in Section 2,
which are typically based on similarity between individuals. Secondly, the novel
approach lends itself to a self-adaptive implementation in which each individual
in the population has its own mating preference. In this way, different mating
strategies can be applied depending on the hardness of the fitness function and
the current state of the search process.

The novel approach is defined by the following algorithm, which constitutes
a GA mating phase, taking place between parent selection and parent recombi-
nation.

Algorithm 1 (Mating step). Novel mating approach for GAs:

Input:
Ps Population of selected parents
γ Mating Size: number of eligible parents for next mating
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cr Criterion used for defining mating preferences
(cr ∈ {similarity, fitness})

α Mating Index: integer used for defining a mating preference
(2 ≤ α ≤ γ)

Output:
Pm Population of mated parents

1. Choose γ parents uniformly at random from Ps without replacement. The
set of chosen parents is denoted by Ch.

2. Let p1 be the parent in Ch with highest fitness. Remove p1 from Ps and
Ch, and include it in Pm. Set Ch now includes the candidate mates for
p1.

3. Order the α − 1 best candidates in Ch under criterion cr. When cr =
similarity, candidates are ranked according to phenotype similarity with
p1. When cr = fitness, candidates with higher fitness are ranked first.
Let Bα(p1) = {b2, b3, . . . , bα−1, bα} be the set of ordered best candidates
obtained under criterion cr.

4. Choose p2 = bα as mate for p1, remove p2 from Ps, and include p2 in Pm.
It should be noted that p1 and p2 are placed in contiguous positions in Pm.

5. Go back to step 1 if Ps is not empty yet.

In Algorithm 1, γ (mating size) different parents are randomly chosen for the
next round of mating, and the fittest of them is mated with another individual
as determined by cr (mating criterion) and α (mating index). Similarity in the
phenotype space is the traditional criterion used to establish mating preferences
in GAs [5, 7]. This is why similarity has been included in the domain of cr in
Algorithm 1. Due to the computational complexity of similarity comparisons, a
new fitness-based criterion for establishing mating preferences is also introduced.
While determining the similarity of two individuals requires examining their
chromosomes gene by gene, comparing their fitnesses involves examining only
two numbers.

Note that the novel mating approach defined by Algorithm 1 becomes the
traditional mating approach when γ = 2, since parents are then mated uni-
formly at random. Therefore, the novel mating approach is a generalization of
the traditional approach. The values of mating index α induce different mat-
ing strategies corresponding to a wide range of degrees of exploitation versus
exploration.

Several variants of the general scheme in Algorithm 1 are possible. This
work focuses on three of them:

1. When α = 2, the best parent is mated with the first mating candidate un-
der criterion cr. Thus, the resulting scheme is called Best-First mating
strategy.
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2. When α = γ, the best parent is mated with the last mating candidate
under criterion cr. This strategy is called Best-Last mating.

3. When the parameter α is made local to each individual, encoded into
the chromosome, and subjected to recombination and mutation, a Self-
Adaptive mating strategy results.

In the rest of this section, these variants are discussed in more detail.

3.1 Best-First Mating

Exploitation of the best solutions in the current population can be achieved by
setting α = 2 in Algorithm 1. In this way, the fittest of the chosen parents, p1,
is mated with the first of the candidates under criterion cr. If a fitness-based
criterion is used, p1’s mating preference is clearly an exploitative strategy, since
fitter candidates are preferred over the rest. If a similarity-based criterion is
used, p1’s mating preference is exploitative as well, since it is implicitly assumed
that fitter candidates are more similar to p1 than the rest.

In step 3 of Algorithm 1, an ordering of the first α − 1 candidates in Ch
under criterion cr is in fact not necessary in Best-First mating. Just the first
of the candidates under criterion cr is sought. Thus, only a variable storing the
currently first candidate is needed to implement Best-First.

Best-First mating with a similarity-based criterion is inspired by the mat-
ing strategy used by Deb and Goldberg [5] in the context of fitness sharing.
Whereas Deb and Goldberg used a similarity threshold to guide the mating
process within niches, Best-First mating employs a mating size parameter in
order to obtain a certain degree of exploitation. Similarity-based Best-First
mating is also similar to positive assortative mating [8, 11, 15], which chooses the
most similar candidate as mate for the current individual. On the other hand,
Best-First mating with a fitness-based criterion has common characteristics
with some of the mating methods developed in [4, 2].

3.2 Best-Last Mating

Exploration of alternative solutions to the best ones in the current population
can be performed by setting α = γ in Algorithm 1. By doing that, the fittest of
the chosen parents, p1, is mated with the last of the candidates under criterion
cr. If a fitness-based criterion is used, p1’s mating preference is clearly an
explorative strategy, since the fittest parent prefers less fit candidates over the
rest. If a similarity-based criterion is used, p1’s mating preference is explorative
as well, since the most distant candidate in the phenotype space is chosen for
mating.

In step 3 of Algorithm 1, an ordering of the first α − 1 candidates in Ch
under criterion cr is not necessary in Best-Last mating. Only the last of the
candidates under such a criterion is sought. Therefore, a unique variable storing
the currently last candidate is needed to implement Best-Last.
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Best-Last mating with a similarity-based criterion is inspired by the mat-
ing strategy used by Eshelman and Schaffer [7] for incest prevention. While
Eshelman and Schachter used a similarity threshold to prevent incest, Best-
Last mating achieves a particular degree of exploration by setting the mating
size value. Similarity-based Best-Last mating is also similar to negative assor-
tative mating [8, 11, 15], which chooses the most dissimilar candidate as mate
for the current individual. On the other hand, to the best of our knowledge
Best-Last mating with a fitness-based criterion has not yet been investigated
in the literature.

3.3 Self-Adaptive Mating

Properly setting the parameters values has a great influence on GA performance.
Parameters can be either manually tuned in advance or automatically controlled
during execution. While manual parameter tuning is usually a time-consuming
task, automatic parameter control has the advantage that parameters can be
adapted to the state of the search process. A classification of parameter setting
techniques for evolutionary algorithms can be found in [6]. This section deals
with self-adaptive control of mating parameters. Self-adaptive parameter con-
trol consists of encoding the parameters into the chromosomes and performing
recombination and mutation on them. In this way, the values of the parameters
leading to better individuals will have a greater chance to survive.

If an individual j is represented as 〈xj,1, . . . , xj,n〉, its extended represen-
tation under Self-Adaptive mating would be 〈xj,1, . . . , xj,n, xj,n+1〉, where
xj,n+1 = αj is the mating index for individual j. In other words, the mating
index is now a local parameter, and each individual has an independent mat-
ing preference. The algorithm performing Self-Adaptive mating can easily
be obtained from Algorithm 1 by removing α from the input and substituting
α− 1 with xp1,n+1 − 1 in step 3.

It remains to consider how mating indexes are initialized, recombined, and
mutated. As far as initialization is concerned, each mating index is assigned an
integer generated uniformly at random from range [2, γ]. Recombination of the
mating indexes of two parents can be carried out in several ways: by assigning
to the two children the mean of the parents’ mating indexes, or by letting
the two children inherit the parents’ mating indexes, among other possibilities.
This work uses the latter method, since we have found it to produce better
experimental results. Mutation of mating indexes is implemented by setting a
probability p+ that mating index is incremented by one, a probability p− that
mating index is decremented by one, and a probability 1− p+− p− that mating
index is changed uniformly at random. Values p+ = p− . 0.5 were employed,
since they led to better performance in the experiments.
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Figure 1: Population of six parents {A,B, C, D, E, F} to be mated.

4 An Example of the Novel Mating Strategies

This section presents an example illustrating the novel mating strategies de-
scribed in Section 3: Best-First mating, Best-Last mating, and Self-
Adaptive mating.

Consider a population of six selected parents, Ps = {A,B, C,D, E, F}, re-
sulting after parent selection in a GA. The six parents have to be mated be-
fore recombination. Figure 1 depicts the parents according to their phenotype
(x -axis) and their fitness (y-axis), where it is assumed that there is a bijec-
tion between phenotypes of individuals and a certain discretized interval of real
numbers. In order to make the example independent of the criterion used for
defining mating preferences (similarity-based or fitness-based), a linear fitness
function is assumed in Figure 1 for parents {A,B, C, D, E, F}.

The random mating strategy mates parents by choosing a mate uniformly
at random among the remaining parents. A possible mating resulting from
this strategy is {CF,EA,BD}. It is important to note that fitness or similarity
information is not used at any step of random mating.

If a mating size γ = 6 is assumed for simplicity, the Best-First, Best-
Last, and Self-Adaptive mating strategies create Ch = {A,B, C, D, E, F}.
The first mate, p1, is the parent with highest fitness in Ch; p1 = F in this
case. In Best-First, the second mate, p2, is the first of the candidates in
{A,B, C, D,E} under criterion cr ; p2 = E in this case. As a result, F and E
are mated, and the same process continues until all of the parents have been
mated. A new set Ch would be formed prior to each pairing between p1 and p2.
Ultimately, the mating resulting from this strategy is {FE,DC,BA}.

The Best-Last mating strategy works analogously to Best-First, but now
the last of the candidates under criterion cr is assigned to p2 at each iteration
of the mating algorithm. In this way, F and A are first mated. In the end, the
mating resulting from this strategy is {FA,EB,DC}.
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The Self-Adaptive mating is now considered. The following mating in-
dexes will be assumed: {αA = 5, αB = 2, αC = 3, αD = 3, αE = 4, αF = 2}.
The first mate, p1, is again the parent with highest fitness in Ch; p1 = F in
this case. The second mate, p2, is the (αF − 1)-th candidate in {A,B, C, D, E}
under criterion cr ; p2 = E in this case. As a result, F and E are mated, and
the same process continues until all of the parents have been mated. A new
set Ch is formed prior to each pairing between p1 and p2. When the number
of candidates for p1 in Ch is smaller than αp1 , the last element in Ch under
criterion cr is selected as mate for p1. The mating resulting from this strategy
is {FE,DB,CA}.

It should be noted that Best-First produces the best potential mating for
the simple fitness function in Figure 1, since mating parents with high fitness will
favor the creation of children with high fitness with higher probability. However,
in more realistic and interesting fitness functions, it is clear that Best-First is
not always optimal, as Section 6 shows.

5 Analysis

This section analyzes the novel mating approach introduced in this work by
making use of an idealized model. The analysis is developed for two main types
of domains: on the one hand, unimodal fitness functions with a unique optimum
and, on the other hand, multimodal fitness functions with many local optima.
In both cases, the influence of mating on the effectiveness to reach the global
optimum is studied. For simplicity, this section only deals with similarity-based
mating. As in Section 4, it will be assumed that there is a bijection between
phenotypes of individuals and a certain discretized interval of real numbers.

5.1 Analysis for Unimodal Fitness Functions

Consider the maximization problem of the linear fitness function depicted in
Figure 2, f(x) = x, where x represents individuals’ phenotype defined in the
range [x1, x2] with x1 < x2. For any other unimodal fitness function, an analo-
gous argument to the following one could be made.

Let x′ ∈ (x1, x2) (see Figure 2) denote the fittest individual within set Ch
of Algorithm 1; therefore, x′ is the next individual to be assigned a mate x′′.
Candidate mates for x′ can only belong to range [x1, x

′], since f(x′) ≥ f(x′′)
from Algorithm 1.

Assume that the recombination of two parents, xp1 ∈ [x1, x2] and xp2 ∈
[x1, x2] with xp1 < xp2 , is performed in the phenotype space and produces
children, xchild(xp1 ,xp2 ), uniformly distributed over [xp1 , xp2 ]. Consequently, the
expected fitness of a child of xp1 and xp2 can be calculated as:

f(xchild(xp1 ,xp2 )) =
f(xp1) + f(xp2)

2
=

xp1 + xp2

2
.

Likewise, the expected fitness of a child resulting from the recombination of x′
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Figure 2: A linear unimodal fitness function with no local optima except for the
global optimum.

and x′′, with x′′ ∈ [x1, x
′], is:

f(xchild(x′,x′′)) =
x′ + x′′

2
,

which increases as x′′ approaches x′ and has a maximum at x′′ = x′.
It can be concluded from the previous result that, in the case of unimodal

fitness functions, those mating strategies under the novel approach favoring
recombination with similar individuals produce a more effective search for the
global optimum.

5.2 Analysis for Multimodal Fitness Functions

Consider the maximization problem of a multimodal fitness function, g(x),
where x represents individuals’ phenotype defined in the range [x1, x2] with
x1 < x2, as depicted in Figure 3. Function g(x) has a global optimum at xop,
whose basin of attraction lies in the range [xop − b, xop + b].

Without loss of generality, consider that individual x′ = x1 is to be assigned
a mate x′′. Function g(x) reaches several local optima between x′ and xop − b.
Contrarily to Section 5.1, individual x′ has been chosen outside the basin of
attraction of the global optimum, which is the usual situation for the population
individuals when a multimodal fitness function is optimized. The argument in
Section 5.1 can be applied to individuals only in the basin of attraction of the
global optimum.

As in Section 5.1, assume that the recombination of two parents, xp1 ∈
[x1, x2] and xp2 ∈ [x1, x2] with xp1 < xp2 , is performed in the phenotype space
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Figure 3: A multimodal fitness function.

and produces children, xchild(xp1 ,xp2 ), uniformly distributed over [xp1 , xp2 ]. Since
the problem of global optimization is to be solved, it is convenient to calculate
the probability of reaching the basin of attraction of the global optimum by
recombining x′ with a candidate mate x′′ ∈ [x1, x2]. Such a probability is
zero for x′′ ∈ [x1, xop − b), since [x′, x′′] ∩ [xop − b, xop + b] = ∅. For x′′ ∈
[xop− b, xop + b], the probability that the child reaches [xop− b, xop + b] is equal
to x′′−(xop−b)

x′′−x′ . Finally, for x′′ ∈ (xop + b, x2], the probability is equal to 2b
x′′−x′ ,

since [x′, x′′] ∩ [xop − b, xop + b] = [xop − b, xop + b]. In summary, as shown in
Figure 4:

Pr(x = x′′) =





0 if x′′ ∈ [x1, xop − b)
x′′−(xop−b)

x′′−x′ if x′′ ∈ [xop − b, xop + b]
2b

x′′−x′ if x′′ ∈ (xop + b, x2]
.

It can be concluded from Figure 4 that, in the case of multimodal fitness
functions and individuals outside the basin of attraction of the global optimum,
those mating strategies under the novel approach favoring recombination with
dissimilar individuals produce a more effective search for the global optimum.
While candidate mates in [x1, xop − b) lead to local optima, there is always a
probability greater than zero that the basin of attraction of the global optimum
is reached if candidate mates are taken from [xop − b, x2].

6 Experiments

This section contains a comparative evaluation of the following mating strate-
gies: random mating, Best-First mating, Best-Last mating, and Self-
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  Pr(x”) 
xop 

x” 
x2 x’= x1 xop− b xop+ b 

2b xop+b−x’ 
Figure 4: Probability that a child of x′ and x′′ reaches the basin of attraction
of the global optimum [xop − b, xop + b].

Adaptive mating. In general, Best-First mating strategy produces exploita-
tion of the best solutions in the current population, Best-Last mating produces
exploration of alternative solutions to the best ones in the current population,
and Self-Adaptive mating produces a combination of exploration and ex-
ploitation that depends on the shape of the fitness function and the state of the
search process.

The domain studied in the experiments is optimization of real functions.
Given an n-dimensional function, f : <n −→ <, global optimization consists of
determining x∗ ∈ <n such that f(x∗) ≥ f(x) ∀x 6= x∗ with x ∈ <n. This
definition corresponds to a maximization problem. In the case of minimization,
the inequality to be considered is f(x∗) ≤ f(x). In this section, a discretized
real interval is considered for each dimension of the function domain. Each
interval point is encoded as a binary string by using a Gray code.

The experiments were performed by means of a simple GA using tournament
parent selection with tournament size equal to two, one-point crossover with
crossover probability equal to one, bit-flip mutation with mutation probability
equal to the inverse of the chromosome length, generational survivor selection,
and elitism for the best individual. Different seeds for the random number
generator were used for each run of the simple GA. All of the experiments were
carried out on a Pentium M processor 760 (2 GHz) running Windows.

The rest of this section is structured so that the following comparisons are
progressively made:

(a) unimodal vs. multimodal fitness functions: Two different types of func-
tions were tested, namely Sphere function in Section 6.1 and Schwefel 7
function in Section 6.2. While Sphere is a unimodal function with just one
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local optimum (the global optimum), Schwefel 7 is a multimodal function
that contains a high number of local optima.

(b) fitness-based vs. similarity-based mating preferences: Both cases are ex-
plored in Section 6.1 and Section 6.2.

(c) traditional (random) vs. advanced (Best-First, Best-Last, and Self-
Adaptive) mating strategies

(d) varying mating sizes: The range of explored values is γ ∈ {3, 5, 10, 20, 30}.

6.1 Experiments for Sphere function

The Sphere function is defined as follows:

f1(x) =
n∑

i=1

x2
i .

This function has a minimum at (x1 = 0, . . . , xn = 0) whose value is 0. The
experiments were designed for n = 20, −10 ≤ xi ≤ 10 ∀i ∈ {1, . . . , 20}, and
10 bits were used to represent each variable; as a result, chromosomes with 200
genes were employed. The population size selected was 100 individuals.

Figure 5 represents the evolution, generation by generation, of the mean best
fitness for Sphere function when fitness-based mating strategies are used. One
hundred runs were carried out for each experiment. Whereas the random mating
strategy is depicted in the three graphs of Figure 5 for illustrative purposes, the
rest of the mating strategies (Best-First, Best-Last, and Self-Adaptive)
are depicted in just one graph. For these three advanced strategies, experiments
were performed for different mating size values: γ ∈ {3, 5, 10, 20, 30}.

The Best-First mating strategy performs better than the random strategy,
as shown in Figure 5(a). In general, the performance improvement obtained by
Best-First increases with the mating size. This behavior can also be observed
in Figure 5(c) for the Self-Adaptive strategy, although it takes mating size
γ = 10 to begin to see an improvement over the random strategy. From Figure
5(b), it is clear that the Best-Last mating strategy performs worse than the
traditional random strategy in the case of Sphere function. This behavior gets
worse as mating size increases.

Figure 6 shows the evolution of the mean best fitness for the Sphere function
when similarity-based mating strategies are utilized. In general, the results for
similarity-based mating follow a similar pattern to those in Figure 5 for fitness-
based mating. However, in the case of similarity-based Best-First strategy,
more generations are needed in order to outperform random mating, as shown in
Figure 6(a). This is a disadvantage of similarity-based Best-First compared
to fitness-based Best-First in the case of Sphere function.
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(b) Sphere (Random vs. Fitness-based best-last)
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(c) Sphere (Random vs. Fitness-based self-adaptive)
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Figure 5: Mean best fitness results for the Sphere minimization problem under
fitness-based random, Best-First (a), Best-Last (b), and Self-Adaptive
(c) mating strategies. For the advanced strategies, mating size is varied from 3
to 30.
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(c) Sphere (Random vs. Similarity-based self-adaptive)
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Figure 6: Mean best fitness results for the Sphere minimization problem un-
der similarity-based random, Best-First (a), Best-Last (b), and Self-
Adaptive (c) mating strategies. For the advanced strategies, mating size is
varied from 3 to 30.
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6.2 Experiments for Schwefel 7 Function

The Schwefel 7 function [17, pages 292-293] is defined in the following way:

f2(x) =
n∑

i=1

xi · sin
(√

|xi|
)

.

This function has a maximum at (x1 = 420.9687, . . . , xn = 420.9687) whose
value is n · 418.9829. The experiments were designed for n = 10, −500 ≤
xi ≤ 500 ∀i ∈ {1, . . . , 10}, and 100 bits were used to represent each variable;
consequently, chromosomes with 1000 genes were created. The population size
was 100 individuals. Due to the complexity of Schwefel 7 function, five hundred
runs were performed for each experiment.

Figure 7 depicts the evolution of the mean best fitness for the Schwefel
7 function and fitness-based mating strategies. The opposite performance to
that of the Sphere function is to some extent obtained for Best-Last and
Best-First versus random mating. Firstly, Figure 7(b) shows that Best-Last
mating strategy performs better than the random strategy in the case of Schwefel
7 function. In general, the performance improvement obtained by Best-Last
increases with the mating size. Secondly, Best-First mating strategy performs
worse than the random strategy, as shown in Figure 7(a). This behavior gets
worse as mating size increases. On the other hand, contrarily to the case of
Sphere function shown in Figure 5(c), fitness-based Self-Adaptive mating for
Schwefel 7 function behaves worse as mating size grows. As depicted in Figure
7(c), although γ ∈ {3, 5} outperforms random mating, that is not the case for
γ ∈ {10, 20, 30}.

Figure 8 contains the evolution of the mean best fitness for Schwefel 7 func-
tion when similarity-based mating strategies are used. In general, the results
for similarity-based mating follow a similar pattern to those in Figure 7 for
fitness-based mating. However, in the case of similarity-based strategies, the
outperformances of both Best-Last and Self-Adaptive strategies with re-
spect to random strategy are superior to those obtained from their fitness-based
counterparts. This represents an advantage of similarity-based strategies over
fitness-based strategies in the case of Schwefel 7 function.

7 Discussion

The experimental results obtained in Section 6 suggest that Best-First mat-
ing is the best option for unimodal problems, while Best-Last mating is the
best option for highly multimodal problems. When the degree of multimodal-
ity is unknown, the Self-Adaptive mating approach is a good option offering
robust results. In unimodal problems, Self-Adaptive mating clearly outper-
forms random mating as γ increases. In multimodal problems, Self-Adaptive
mating produces better results than random mating for middle and low γ values.
For mating size values in the range γ ∈ [3, 10], Self-Adaptive mating performs
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(c) Schwefel 7 (Random vs. Fitness-based self-adaptive)
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Figure 7: Mean best fitness results for the Schwefel 7 maximization prob-
lem under fitness-based random, Best-First (a), Best-Last (b), and Self-
Adaptive (c) mating strategies. For the advanced strategies, mating size is
varied from 3 to 30.
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Figure 8: Mean best fitness results for the Schwefel 7 maximization problem
under similarity-based random, Best-First (a), Best-Last (b), and Self-
Adaptive (c) mating strategies. For the advanced strategies, mating size is
varied from 3 to 30.
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better than (or at least comparably to) random mating over the experiments in
Section 6.

An example of how Self-Adaptive mating works is shown in Figure 9. This
figure depicts the mean α value in the population, generation by generation, for
the two cases in which Self-Adaptive strategy had the best behavior in Section
6: fitness-based mating for Sphere function and similarity-based mating for
Schwefel 7 function. The results are averaged over one hundred runs for Sphere
function and over five hundred runs for Schwefel 7 function. In both cases, the
mating size was assigned value γ = 20. Only the results for the first one hundred
generations are depicted, since this is the range in which significant changes are
obtained for the mean mating index. From Figure 9, the population mean
mating index value in the initial population (approximately α = 11) decreases
rapidly for Sphere function. This is in accordance with the experimental results
obtained in Section 6.1, which showed that Best-First (where α is small)
produces the best results for Sphere function. On the other hand, the mean
mating index for Schwefel 7 function is greater than that for Sphere function
throughout the generations. This is what should be expected taking into account
that, from Section 6.2, Best-Last (where α is large) produces the best results
for Schwefel 7 function. However, due to the fact that individuals with high
mating index may produce lethal individuals after recombination in the case of
Schwefel 7 function, the graph for this function is not as close to α = 20 as
the graph for Sphere function is to α = 2. This explains the results obtained in
Section 6, in which Self-Adaptive mating applied to Sphere function produced
similar results to those obtained through Best-First strategy, while Self-
Adaptive mating applied to Schwefel 7 function could not reach the good
results produced by Best-Last strategy.

While fitness-based strategies produce better results than similarity-based
strategies for unimodal problems like Sphere function optimization, similarity-
based strategies outperform fitness-based strategies in the case of multimodal
problems like Schwefel 7 function optimization. However, an important advan-
tage of fitness-based strategies is that they lead to substantial computation time
savings as shown in Table 1.

8 Conclusion

Most of the existing approaches to mating in GAs apply restrictions based on
similarity between individuals. The novel mating approach introduced in this
work considers also an alternative fitness-based criterion for defining mating
strategies, which is compared to the widespread similarity-based criterion. The
fitness-based criterion offers important advantages regarding computation time
savings and, in cases like unimodal function optimization, greater efficiency to
approach the optimum in fewer generations.

An important group of mating methods for GAs, for instance assortative
mating [8, 11, 15], use mating strategies that select just the most similar or the
most dissimilar individual from a set of candidates. In our novel approach, a
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Figure 9: Mean α value in the population for Sphere and Schwefel 7 functions
under Self-Adaptive strategy with γ = 20.

Sphere Schwefel 7
Fitness Similarity Fitness Similarity

γ = 3 7.37 22.05 37.94 111.32
γ = 5 7.23 36.85 38.39 198.82

Best-First γ = 10 7.46 67.15 38.79 369.9
γ = 20 7.62 115.94 38.74 680.56
γ = 30 7.45 154.87 38.29 944.99
γ = 3 7.5 21 38.24 123.79
γ = 5 7.42 36.86 37.98 203.7

Best-Last γ = 10 7.57 66.16 37.86 389.39
γ = 20 7.63 124.88 35.88 687.93
γ = 30 7.87 166.38 36.33 956.08
γ = 3 8.81 26.86 45.32 129.42
γ = 5 8.2 57.82 43.8 298.66

Self-Adaptive γ = 10 8.89 203.54 43.05 1056.43
γ = 20 9.06 675.39 43.91 3636.85
γ = 30 9.38 1304.7 44.31 7235.56

Table 1: Mean computation times (in seconds) for each run of the experiments
in Section 6.
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parameter called mating index (see Section 3) allows any of the candidates to be
chosen. In this way, if a similarity-based criterion is considered, a candidate with
an arbitrary degree of similarity can be obtained or, if a fitness-based criterion
is considered, a candidate with an arbitrary fitness can be selected. Therefore,
a wide spectrum of mating strategies can be investigated by varying the mating
index.

The novel mating approach facilitates the definition of a Self-Adaptive
mating strategy in which each individual has its own mating preference (or
mating index). In this way, the fittest individuals determine the most successful
mating strategies generation by generation. Self-Adaptive mating turns out
to be a robust strategy that performs well on a variety of different problems.
That is not the case for strategies like Best-First and Best-Last, since they
only outperform random mating in specific types of problems.

A future research topic derived from the present work is the definition
of a mating strategy that deterministically controls mating index parameter
throughout the GA generations. In this way, although the mating index would
be the same for every individual in the population, it would change from gen-
eration to generation. A possible scheme would consist of assigning α = γ at
GA initialization and decreasing α by one every a given number of generations.
Other non-linear reduction schemes could also be possible. This determinis-
tic scheme applies more exploration in the initial generations of the GA, when
promising search areas are sought, and applies more exploitation in the final
generations, when population diversity has decreased.

Another future research topic is the inclusion of mating size parameter γ as
a local parameter in the chromosome of each individual. The performance of
the new Self-Adaptive strategy, resulting from including mating size γ along
with mating index α as local parameters, should be compared to the strategies
defined in this work.
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[15] G. Ochoa, C. Mädler-Kron, R. Rodriguez, and K. Jaffe. Assortative mating in
genetic algorithms for dynamic problems. In F. Rothlauf, J. Branke, S. Cagnoni,
D. W. Corne, R. Drechsler, Y. Jin, P. Machado, E. Marchiori, J. Romero, G. D.
Smith, and G. Squillero, editors, Applications of Evolutionary Computing, volume
3449, pages 617–622. Springer, 2005.

22



[16] E. Ronald. When selection meets seduction. In Proceedings of the 6th Interna-
tional Conference on Genetic Algorithms (ICGA’95), pages 167–173, Pittsburgh,
PA, 1995. Morgan Kaufmann, San Francisco, CA.

[17] H. P. Schwefel. Numerical Optimization of Computer Models, volume 26. Wiley,
Chichester, UK, 1981.

[18] R. E. Smith and C. Bonacina. Mating restriction and niching pressure: results
from agents and implications for general evolutionary computation. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2003), pages
1382–1393, Chicago, IL, 2003. Springer.

[19] R. E. Smith, C. Bonacina, P. Kearney, and W. Merlat. Embodiment of evolu-
tionary computation in general agents. Evolutionary Computation, 8(4):475–493,
2000.

[20] W. M. Spears. Simple subpopulation schemes. In Proceedings of the 3rd An-
nual Evolutionary Programming Conference, pages 296–307, San Diego, CA, 1994.
World Scientific.

[21] C. K. Ting, S. T. Li, and C. Lee. On the harmonious mating strategy through
tabu search. Information Sciences: an International Journal, 156(3-4):189–214,
2003.

[22] T. Unemi and M. Nagayoshi. Evolution of learning robot team via local mating
strategy. In Fourth European Conference on Artificial Life, Brighton, UK, 1997.
Poster Session.

23


