Privacy Preservation through Random Non-linear Data [isto

Abstract hence it might be possible to breach the privacy if one can
Consider a scenario in which the data owner has some m@stimate the rotation matrix. One such attack technique has

vate/sensitive data and wants a data miner to access itidy-st heen discussed by Liet al. [8] which uses a sample of the
ing “important” patterns without revealing the sensitivéorma-

tion. Privacy preserving data mining aims to solve this peob NPUtand output to derive approximations on the estimate of
by randomly transforming (distorting) the data prior toriédease. the rotation matrix.

Previous work only considered the case of linear distostienad- A closelv related but different technigue uses random
ditive, multiplicative or a combination of both — for studg the y d

usefulness of the distorted output and the privacy pregeivethis  data projection to preserve the privacy. In this technique,
paper, we consider a general class of potentially non4lineasfor- the data is projected into a random subspace using either

mations of the data. We develop bounds on the expected @ycuigrthogonal matricese(g. DCT/DFT as done by Mukherjee
of our non-linear distortion and also quantify privacy byngsstan-

dard definitions. We show how our general transformationtan €t @l [10]) or pseudo-random_matrices (as done b_y éfu
used in practice for two specific problem instances: a limeadel al. [9]). It can be shown that using such transformations, the

and a popular non-linear modeiz. neural network. The paperegclidean distance among any pairs of tuples is preserved
presents a thorough theoretical analysis of the transfiomand g any p P P

possible applications. Experiments conducted on reaidiftasets @nd hence, many distance-based data mining techniques

demonstrate the effectiveness of the approach. can be applied. Moreover, the privacy of the projection
scheme can be quantified using the number of columns of
1 Introduction the projection matrix. Figure 1 shows the distribution af th

The first part of the paper talks about distance and the sec8H@" @s a function of the output dimension.
part talks about privacy.
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turb data elements or attributes directly by either adeliti
noise, multiplicative noise or a combination of both. Thidy ¢ 0.5
rely on the fundamental property that the randomized dats
may not reveal private data while still allowing data aneys ;
to be performed on them. We discuss each of them in m 0.3 1
details in this section. } } % % %

0.2
Given a data seD, Agrawal and Srikant [1] proposed
a technique of generating a perturbed datd¥ety using 0.1y
additive noisé.e. D* = D + R, where the entries ok 0 w P w 1 w — w w
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are i.i.d. samples from a zero mean unit variance gauss Dimension of vectors
distribution. Karguptaet al. [6] questioned the use of

random additive noise and pointed out that additive “0iﬁﬁ;ure 1: This graph shows the variation of error in esti-
can be easily filtered out using spectral filtering technigugating the inner product between two arbitrary vectors vs.
thereby leading to privacy breach of the data. the dimension of the output vector. The output is generated
Due to the potential drawback of additive perturbationgy randomly projecting the input in the subspace shown by
several types of multiplicative perturbation techniqueséh points on ther-axis. The dimension of the input vectors are
been proposed in the literature. Kim and Winkler [7] prasg as shown by dotted line. Theaxis refers to the error.
posed one such perturbation technique which multipliesrge squares to the left of this line refers to dimensionality
random number generated from a truncated Gaussian disBityction and to the right refers to dimensionality inflatio

bution of mean one and small variance to each data peintgach point in the graph is an average of 100 independent
D* = D x R, where the matrix multiplication is carried outyig|s.

element-wise. Geometrically, such a perturbation scheme i
no more than multiplying the data by a rotation matrix and In a more recent study, Chen et al. [3] proposed
a combination of these technique®* = 7 + R X



D + N, whereT is a random translation matrixk is 3.2 Problem Definition In this paper we analyze the
a random rotation matrix and/ is a noise matrix. The relation between the input data vectors and their corre-
paper further shows how to break this transformation gponding outputs under the transformatibn While such
practice using a linear regression technique when thekatta@ relationship can be studied in many different ways, we
knows a set of input-output pairs. However, the successfo¢us on thenner productbetween the input and the output.
this attack depends on the variance of the matrices. Thaer product is an important primitive which can be used
paper further defines a privacy measure knowwagance for many advanced data mining tasks such as distance com-
of difference(VoD) which measures the difference of th@utation, clustering, classification and more. Specificall
covariance matrix between each column®f andD. We we try to gain insight into the following problem.
discuss this in more details later.

Data perturbation for categorical attributes have al®soblem Statement: Given two vectors x =
been proposed by Warner [12] and [4]. Evfimevskial. (z1,z2,...,7,) € R®™ andy = (y1,y2,...,9yn) € R",

proposed the-amplification model [5] to bound the amountet x* = 7(x) = (27,25,...,2;) € RP and

of privacy breach in categorical datasets. y* = T(y) = (¥,95,.--,y,) € RP be the corre-
sponding output vectors. Since® and y* are random

3 Background transformations of their parent vectors, we analyze the

In this section we present the notations, the problem defiflationship betweew - y andx* - y*. Our study in this

tion and an overview of the approach. paper focuses on

3.1 NotationslLet x = (21,79,...,2,) € R be an 1. understanding thaccuracy of 7 in preserving dis-

input data vector. Let® — (cf.a5.....a%) € 7 tances.e. studying the properties df [x* - y*], and

be the corresponding output generated according to some analyzingthe privacy-preserving properties ot
transformationZ : R™ — RP. In this paper we study a

very general form of 3.3 Overview of Approach

Bl x"=T7T(x)=B+Qx f(A+Wx) 4 Non-linear Data Distortion

In this section we present our data distortion method using

wheref : R — R is a function which : . . .
a potentially non-linear transformation. Later we will ana

1. acts element-wise on its argument, lyze two special cases of this method: {1} tanh function
which corresponds to the non-linear function used in neu-

2. is continuous in the real ling, ral networks, and (2f is an identity function which corre-
sponds to a linear transformation usifg

3. bounded on all bounded intervals, and In the next subsection we introduce the mechanism of

this transformation and then show its distance-preserving
4. f(z) = O(e?l"l) as|z| — oo wherea € R is a properties.
constant.

4.1 Mechanism Let [D],,x, be a data set owned by Alice
Blpx1, [Qlpxms [Almx1, and[W],,«, are matrices (with in which there aren instances each of dimensionality
dimensions shown) whose entrigs, ¢;;, a;;, andw;; are Alice wants Mark (a data miner) to grant access to this
each independently drawn from normal distributions witthataset. However, she does not want Mark to look at the
mean zero and standard deviations o4, o,, and o, raw data. So for every vectar € D, Alice generates a new
respectivelye.g. w;; ~ N (0, 0,,). The normal distribution tuplex* € D* according to the following transformation:
assumption for generating random matrices is not new and
has been proposed by several authors [3][9]. Special ca€eg) x" =B+ Qx f(A+ Wx)
of 7 can be instantiated by choosing specific instances of )
f two of which we discuss in Section 62(-) denotes the WhereB, Q, A andW are all mean zero and constant vari-
mean of a random variable and(-) denotes its variance.8NC€ gaussian i.i.d. random matrices as defined in Section

The inner product between two vectorsandy is denoted 3.1 Figure 2 shows sample input data. Figure 3 shows the
byx-y. perturbation achieved by the transformation in differeiatd

for the same input.
In the next subsection we discuss how the inner product
TThese are sufficient but by no means necessary conditiorishwate in P€tween two input vectors is related to their transformed
place to ensure the existence of the improper integralsitbdater derive. counterpart.



Figure 3: Sample outputs for the helix data set. Differentpshow the different outputs achieved in different trigith

the same input.
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Figure 2: Sample input data set.

of W, we have

*, 0%
r;y; =

bi+ > qief(ar+ ng)]

(=1

bi + Z qief(ae + We}’)]

=1

In taking the expected value of the above expression, one
need only consider those terms that are not linear in bgth
andb;. All other terms evaluate to zero under the expected
value operator by the independence of the random variables
concerned and their property of having mean zero. Hence,

Elz7y;]

= E b} +> qif(ac+wex)f(ar+wey)
/=1

= E[b}] + mE [q};] E[f(ac+ wex)f(ae + wey)]
4.4 o+ mcrgE[f(ai + wix) f(a; + wiy)]

4.2 Derivation of E[x* - y*] In this section we show howwherei and ¢ are interchangeable. So it suffices to find

E[x* - y*] can be evaluated.
Note that,

Ex*-y* ] = FElziy; +25y5 +

(4.3)

pE [z7y]]

wherei is arbitrary. Further, lettingv; denote the-th row

*
...—l—xp

Yp)
E[ziyi]+ E [x5y5] + ... + E [z5y5]

E[f(a; +wix) f(a; + wiy)] wherei is arbitrary. Below we
define two vectorg andy which aid in finding the expected
value.

DEFINITION 4.1. Letx andy be (p + 1)-dimensional vec-
tors defined as follows:

(4.5) X = (0wX,04)
(4.6) Yy = (0wy,0a)

wheres,, ando, are the variances oV and A respectively
and,x andy are the inputs.



Now let one can obtain a numerical approximationijk™* - y*] (re-
fer to Equation 4.7). However, the approximation becomes
X =a; +wix less accurate the largerm, ando, are. Sincef is bounded,
Y =a; +wiy it is true thatE[f(X) f(Y)] is convergent. Putting it all to-

gether, we can write:
be two random variables. Now andY are linear combi-

nations of normally distributed random variables; heneythpx* . y*] = po?

themselves are gaussian random vectors. Thus, it is easy to oo poo

verify that (4.9) + pmo / / f Y)gx,vy (z,y)dzdy
X ~ N, |I%[]*)

- Next, we state some propertiesBff (X)f(Y)]:
Y ~ N(O,[[31]%) prop fr(X)f(Y)]

Combining Equations 4.3 and 4.4, we can write: o Caselifx.-y=0:

(4.7 Ex* y* | =p{o} + mo—gE [F(X)fF(Y)]} — This implies thatX and Y are independent
(since X and Y are gaussian vectors). Hence

The last equation shows that the expected inner product can E[f(X)f(Y)] = E[f(X)]E[f(Y)].

be evaluated using the joint probability distribution beam

X andY'. Further, it can be shown that sindgeandY are o Case2if%-y < 0ork-y > 0:

gaussian random variables, the joint probability distidou

is actually a bivariate gaussian distributigg y (z, y): — With the help of the additional assumption that

1 f is an odd function, it can be shown using the
9x,v(z,y) = — — % expression fogx y (z,y) that
2|91 /1 = PX v

E[f(X)/(Y)] < 00r E[f(X)[(Y)] > 0.

1 x? 2 2 €T
o [‘2(1— Xy <||A||2 i ||[?|(||1|VA|Z|]>] i : — o
Pxy x y Xy Since computingE[f(X) f(Y)] is difficult to find in

full generality, in the next section we develop a bound on
where for this form to be valifj%x|| and|||| must be nonzero E[f(X)f(Y)] and analyze its properties.

andpx,y, the correlation coefficient ok andY”, must not
be+1. Unless otherwise stated, from now on we will assume pounds OnE[f(X)f(Y)]

that The improper integral foE2[f(X) f(Y)] (Equation 4.9) re-
o [%|| >0,]|¥]| >0, and mains intractable without further knowledge ffIn the ab-
sence of an explicit antiderivative, givghone can generate
* pxy #*1 a table of values foE[f(X) f(Y')]approx Obtained by numer-

ical integration for a number of choices g%||, ||¥||, and
% -y. In order to develop a bound dnf (X)) f(Y)], we use
the following lemma (proof omitted).

Note that these conditions are equivalent|fo- §| <
[IX|[[I7]]- px,v can be defined in terms &fandy as:

_ %3
(48) PXY = TR LEMMA 5.1. |E[f(X)f(Y)]| < VE[(X)E[f2(Y))]
Finally, we can write, The following lemma (Lemma 5.2) shows the bound on

E[f(X)f(Y)].

LEMMA 5.2. Let X, Y, X and y be as defined in the

- ) ) previous sections. It can be shown that,
Note thatE[f(X)f(Y)] can be difficult if not impos-

B0 = [ h | Y H@) W) gxy (@, y)dady

sible to solve explicitly and in full generality, dependiog e @A)

the choice off. However, givery, the above integrals canbe 5[ f(X) f(Y)]| < \/(/ f2(z) - dm)
approximated numerically for instances:oéndy in such a V2| %]|

way thgt scales very well with th_e inputdimeAnsiomwAhicp o2/ 312
enters into the (trivial) computations gk||, ||y||, andx - § (/ 2(y) - y)
alone. Using such an approximatioB[f(X)f(Y)]approx Verllgll



Proof. 6 Special cases
In this section we study two special cases of the general

E[f*(X)] = / / FA(@)gx .y (z,y)dzdy transformatior? : (1) whenf is a sigmoid ottanh function
- which has been used as a popular choice for non-linear
_ > mapping , and (2) wherf is an identity function making
B / f dm/ gx.x (7, y)dy the resulting?” linear.
= / F2)gx (@ 6.1 f = tanh function In this section we analyze the
YRS properties ofE/[x* - }_/*] when f is z_;\sigmoid or hyperbolic
_ / F2(z) - - tangent {anh) function. Our choice off = tanh is not
oo \/E||x|| arbitrary; it makes transformatidh resemble that of a two-
) _ o layer neural network, a tool widely used in data mining and
if X'is not degenerate. Similarly, machine learning for learning non-linear relationshimsfr
@) the data. With such a substitutioff, takes the following
/ 210 P form:
Verllgll
Therefore, the bound o[ f (X)) f(Y)]| can be written as: H(x) = tanh(A 4+ Wx)
x* = B+ QH(x)
e~/ (2lI%I?)
|E[f(X)f(YV)]] < \/ ( / f2(z) - Nor: d:c) , :
[1%]| However, for the results here to describe such a trained neu-
ERTyTETRSIER ral network, one must assume that the weights are indeed in-
(5.10) \/(/ F2(y € dy) dependent and normally distributed with mean zero. Weights
V2|3 are assumed to be normal in many research as shown in [2]
and [11].
i Even with the substitutiorf(z) = tanh(z) in Equation

4.9, evaluation ofE[tanh(X) tanh(Y")] in closed form is
5.1 Variance Analysis In practice, given two input vec-stj|| intractable. Hence we use the bound presented in
tors, it is difficult to run the transformation for many indet emma 5.2 to gain insight intd[tanh(X) tanh(Y)]. Let
pendent trials and then take the average inner products of ih first evaluate?[tanh?(X)]. By definition,
output vectors. In this section we derive bounds on the vari-
ance of the estimated inner product, in order to quantify the

S —z? b3
error injected for a single run of the transformation. Eltanh?(X)] = / tanh?(z) - e e
. V2| |||

LEMMA 5.3. LetX = a; + wix andY = qa; + w;y be two

random variables where; is an arbitrary entry of Al..x1,  Unfortunately, an anti-derivative does not exist for thiad-
wi is an arbitrary row offW},,.,., p is the dimension of the tioy - S0 we approximate theanh function with a linear
output space, anet andy are the inputs. The variance Ofyynction that takes on the values and1 far to the left and
the inner product between the output vectafsandy™ can yignt of the origin, respectively, and has a slope of cortstan

be written as: positive value in between. For simplicity we make this slope
tangent to the slope of thg function at the origin, which
2 _ 4 2 2 2
Oleryny = 2004 +pmojog(E[f(Y)?] + E[f(X)*) means the slope of our approximation to be 1 dvet, 1]
+pmoy(3pE[f(X)*f(Y)?] — pE[f(X) f(Y)]%and zero otherwise. Letting(X) denote the approximating
o BB function,

Proof. The proof is extremely algebra intensive. We omitinh(X) ~ ¥(X) = —1-X(—co,—1) + - X[—11]+ 1 X(1,00)
it here due to shortage of space and plan to report it in an

extended version of this paper. wherey is the indicator function. Figure 4 shows the original

tanh function, the approximation to it and the step function.

What does this expression tell us?. Hillol's expres- )
It is easy to see that,

sion tells us that variance decreases as the size of the pro-
jection matrix increases. Can we have a similar result
here? U(X)? =1 X(—oo—1) + 2% X[—1,1] + 1 X(1,00)
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Figure 4: Hyperbolic tangent4nh) function shown in bold.

U(x) is the approximation teanh(z).
also shown.

A step function is

Denotinggx (z) as the marginal distribution of we get,
/ (x)dx
i )
/ gx (z)dx —i—/
—00 —1
+/ gx (x)dx

1

-1
J/

E[tanh®(z)] tanh?(z) - gx (z)dx
U(X)* - gx
22 gx(x)dx

1
22 gx(x)dz

g9x (z)dz + /

-1

—1 o—a®/(2/1%]1*)

—dx
\/27T||5<||
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Now to evaluate Term 2 (using the previous result),

1 /1 2. /(2|21 }
_ x° e ” X dx
V2| [%]| [ 1

1
1 / — /11 ]
— |- [ x-e dx
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—1
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—1 2 112
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Combining the results,

Eltanh®(z)] < 2® (—

1 1
L) i [cb( !
||x||> El

- \||/J (2e-I0)

Using a similar argument, it can be shown that,

Pl ) < 22 (~pr) <151 |2 (g7) ~@ (g7

191l

\/;_ (2871/@”9”2))

2

)

These results can now be combined to get the final form of
the bound using Equation 5.10.

Figure 5 shows a plot of the bound
|E[tanh(X) tanh(Y")]| with variation of ||x|| and ||y]].
It can be shown that the bound lies between 0 and 1. When
both ||%X|| and ||y|| are smalli.e. close to the origin, we
know that the expected inner product of their output should
be close to 0 as well. Looking at the figure we see that this
is indeed the case. So our bound is a good approximation
when we are close to the origin and becomes crude as we
move further away from the origin.

Now we evaluate Term 2. First we evaluate the followin

integral.

iZ?2

2||%|P?

/xefmz/@”’”‘”z)da: / ||%|[*e~Ydy [usingy =

— ||| |2em =/ @I 4 ¢

]

.2 Linear Transformation The second transformation
that we study in this section is a linear transformation.
Linear transformations have been widely studied in the form
of random projection, multiplicative perturbation [9][8]
where the output s linearly dependent on the input:

x* =T+ Rx



where,

I%]] = Vi, (IIxI*) + o2
91l = Vol (lyl?) + o2

Figure 6 shows a plot of?[x* - y*|] when#§, the angle
betweenx and y varies. For all the figures, the circles
show the true variation oF[x* - y*] vs. 6. The squares
represent the bound. Note that for all the figures, the
bound correctly represent the inner-product only when

10 0,+27, +4x,.... The three figures demonstrate the effect
on the output for three values gk|| and||y||. As can be

) o seen, the bound is a good approximation of the true value

i Il when||%|| and||§|| are small.
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Figure 5: Plot of E[tanh(X) tanh(Y")]| vs. ||X|| and||y[|. 7 Privacy Analysis

8 Experimental Results
whereT andR are random translation and rotation matrice§. Conclusion
In order for our transformatiof” to be linear, we assumeAcknowIedgments
that f is an identity function.e. f(x) = z, Vo € R. Unlike

the previous section, in this section we show how a clos€fis Work was supported by the IVHM project at NASA
form expression fofZ[x* - y*| can be developed for such £mes Research Center. Mark Stefanski would also like to

transformation. acknowledge the NASA USRP internship program.
Using the definition ofX andY’, it is easy to show that,

o References
Ef(X)f(Y)] = EXY]=%-3
Sincex = 0y, (%, 04) andy = 0.,(y, 7a), [1] R. Agrawal and R. Srikant. Privacy-preserving Data Min-
%y = 03} (x-y)+ 02 ing. In Proceddings of SIGMOD’Q(pages 439-450, Dallas,
Texas, May 2000.

Combining these results, we have: [2] 1. Bellido and E. Fiesler. Do Backpropagation Trainecuika

) ) Networks Have Normal Weight Distributions? Rroceed-
Ex*-y*] = poy +pmo E[XY] ings of ICANN’93 pages 772-775, Amsterdam, Netherlands,

September 1993.
[3] K. Chen, G. Sun, and L. Liu. Towards Attack-Resilient
(X : Y) Geometric Data Perturbation. [roceedings of SDM’'Q8

hi h hat for a li f h pages 78-89, 2008.
This equation shows that for a linear transformation, the i, A Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. -Pri

ner product of the output vectors is proportional to the mne  yacy preserving Mining of Association Rules. Rroceedings

product of the input vectors. In other words, the distances of KDD'02, pages 217—228, 2002.

are preserved on average (up to scaling and translatiory. Tls] Alexandre Evfimievski, Johannes Gehrke, and Ramakaishn

result is in line with what some other authors reported else- Srikant. Limiting Privacy Breaches in Privacy Preserving

where [3][9]. Data Mining. InProceedings of PODS'Q3ages 211-222,
Let us investigate the quality of the bound for this  2003.

transformation. Substituting’(z) = z and f(y) = , [6] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On

in Equation 5.10, we see that the integrals EI‘[&Q] and the Privacy Preserving Properties of Random Data Perturba-
E[y? respectivel),/. Now, since ~ N (0, |[%|2) andy ~ tion Techniques. IfProceedings of ICDM’03page 99, Mel-

bourne, Florida, November 2003.
N 21 _ a2 21 _ (1o 12 , .
N0, [[9]]%), E[z*] = [|%[|* andE[y*] = |[9[|*. Thus, [7] J.J. Kim and W. E. Winkler. Multiplicative Noise for Mask

Eost[XY] < |IX/II3] ing Continuous Data. Technical Report Statistics #2003-01
- Statistical Research Division, U.S. Bureau of the Census,
where E.,; denotes the estimated value of the expectation. Washington D.C., April 2003.
Therefore we can write the following expression for thd8] K. Liu, C. Giannella, and H. Kargupta. An Attacker’s View
bound: of Distance Preserving Maps for Privacy Preserving Data
Mining. In Proceedings of PKDD’0gpages 297-308, Berlin,
Elx*-y*] < poi+pmoz||%]||$] Germany, 2006.

= poj +pmog (f< -9)

= pab + pma —i— pma2



= Bound
0 10 e Actual

EXY]

-10- -10- -10|
= Bound| = Bound|
-200 -=Actual -200 -=Actual -20
-6 -4 -2 Q 2 4 6 -6 -4 -2 Q 2 4 6 -6 -4 -2 0 2 4 6
[¢] [¢] [¢]
@ 1% = Iyl =1 o) %]l =19l =05 © [1%[| = lly]l = 0.25

Figure 6: Variation of the outpuf[x* - y*] with respect td (in radians), the angle betweé&randy. Circles represent the
true output and squares represent the bound. For all figihneebpund is independent 6f For a fixed |X|| and||y ||, actual
output oscillates and equals the bound onl§ at 0, =2, . ..,. As||X|| — 0 and||y|| — 0, the actual and estimated value
comes closer. The bound is very tight wheandy close to origin.

[9] K. Liu, H. Kargupta, and J. Ryan. Random Projection-Rase
Multiplicative Data Perturbation for Privacy PreservingsD
tributed Data Mining. IEEE TKDE 18(1):92-106, January
2006.

[10] S. Mukherjee, Z. Chen, and A. Gangopadhyay. A Privacy-
preserving Technique for Euclidean Distance-based Mining
Algorithms using Fourier-related TransformsThe VLDB
Journal 15(4):293-315, 2006.

[11] T. Szabo, L. Antoni, G. Horvath, and B. Fehér. A Full-
Parallel Digital Implementation for Pre-Trained NNs. In
Proceedings of IJCNN’00-Volume gage 2049, Como, Italy,
July 2000.

[12] S. Warner. Randomized Response: A Survey Technique
for Eliminating Evasive Answer BiasJournal of American
Statistical Associatior65(63—69), 1965.



