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Abstract 
The goal of this work was to use data-driven methods to automatically detect and isolate 
faults in the J-2X rocket engine. It was decided to use decision trees, since they tend to be 
easier to interpret than other data-driven methods. The decision tree algorithm 
automatically “learns” a decision tree by performing a search through the space of 
possible decision trees to find one that fits the training data. The particular decision tree 
algorithm used is known as C4.5. Simulated J-2X data from a high-fidelity simulator 
developed at Pratt & Whitney Rocketdyne and known at the Detailed Real-Time Model 
(DRTM) was used to “train” and test the decision tree. Fifty-six DRTM simulations were 
performed for this purpose, with different leak sizes, different leak locations, and 
different times of leak onset. To make the simulations as realistic as possible, they 
included simulated sensor noise, and included a gradual degradation in both fuel and 
oxidizer turbine efficiency. A decision tree was trained using 11 of these simulations, and 
tested using the remaining 45 simulations. In the training phase, the C4.5 algorithm was 
provided with labeled examples of data from nominal operation and data including leaks 
in each leak location. From the data, it “learned” a decision tree that can classify unseen 
data as having no leak or having a leak in one of the five leak locations. In the test phase, 
the decision tree produced very low false alarm rates and low missed detection rates on 
the unseen data. It had very good fault isolation rates for three of the five simulated leak 
locations, but it tended to confuse the remaining two locations, perhaps because a large 
leak at one of these two locations can look very similar to a small leak at the other 
location. 

Introduction 
The J-2X rocket engine will be tested on Test Stand A-1 at NASA Stennis Space Center 
(SSC) in Mississippi. A team including people from SSC, NASA Ames Research Center 
(ARC), and Pratt & Whitney Rocketdyne (PWR) is developing a prototype end-to-end 
integrated systems health management (ISHM) system that will be used to monitor the 
test stand and the engine while the engine is on the test stand.1 The prototype will use 
several different methods for detecting and diagnosing faults in the test stand and the 
engine, including rule-based, model-based, and data-driven approaches. SSC is currently 
using the G2 tool (http://www.gensym.com) to develop rule-based and model-based fault 
detection and diagnosis capabilities for the A-1 test stand. This paper describes 

http://www.gensym.com/


preliminary results in applying the data-driven approach to detecting and diagnosing 
faults in the J-2X engine. 

The conventional approach to detecting and diagnosing faults in complex engineered 
systems such as rocket engines and test stands is to use large numbers of human experts. 
Test controllers watch the data in near-real time during each engine test. Engineers study 
the data after each test. These experts are aided by limit checks that signal when a 
particular variable goes outside of a predetermined range. The conventional approach is 
very labor intensive. Also, humans may not be able to recognize faults that involve the 
relationships among large numbers of variables. Further, some potential faults could 
happen too quickly for humans to detect them and react before they become catastrophic. 
Automated fault detection and diagnosis is therefore needed. 

One approach to automation is to encode human knowledge into rules or models. Another 
approach is use data-driven methods to automatically learn models from historical data or 
simulated data. Our prototype will combine the data-driven approach with the model-
based and rule-based approaches. This paper focuses on the data-driven approach. 

The J-2X Engine 
The J-2X is a rocket engine currently under development at Pratt & Whitney Rocketdyne. 
It will be fueled by liquid hydrogen and liquid oxygen. It will be used as the second-stage 
engine on NASA’s Ares I crew launch vehicle 
(http://www.nasa.gov/mission_pages/constellation/ares/aresl/) and Ares V cargo launch 
vehicle (http://www.nasa.gov/mission_pages/constellation/ares/aresV/). It is derived from 
the J-2 engine, which served as the second- and third-stage engines on the Saturn V 
launch vehicle. 

 
http://www.pw.utc.com/vgn-ext-
templating/v/index.jsp?vgnextrefresh=1&vgnextoid=8fd0586642738110VgnVCM10000
0c45a529fRCRD  

Test Stand A-1 
SSC operates several rocket engine test stands. Each test stand provides a structure strong 
enough to hold a rocket engine in place as it is fired, and a fuel feed system to provide 
fuel to the engine. Test stand A-1 is a large test stand that is currently used to test the 
space shuttle main engines, and will be used to test the J-2X. It can withstand a maximum 
dynamic load of 1.7 million pounds of force. It provides liquid hydrogen and liquid 
oxygen to the engine being tested, and has numerous sensors on its fuel feed system. 
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http://www.nasa.gov/mission_pages/constellation/ares/aresl/
http://www.nasa.gov/mission_pages/constellation/ares/aresV/
http://www.pw.utc.com/vgn-ext-templating/v/index.jsp?vgnextrefresh=1&vgnextoid=8fd0586642738110VgnVCM100000c45a529fRCRD
http://www.pw.utc.com/vgn-ext-templating/v/index.jsp?vgnextrefresh=1&vgnextoid=8fd0586642738110VgnVCM100000c45a529fRCRD
http://www.pw.utc.com/vgn-ext-templating/v/index.jsp?vgnextrefresh=1&vgnextoid=8fd0586642738110VgnVCM100000c45a529fRCRD


 
http://rockettest.nasa.gov/rptmb/ssc_a1_test_stand.asp  

The J-2X Detailed Real-Time Model 
We used data from a high-fidelity physics-based simulator to train and test the data-
driven algorithms. The physics-based model chosen for this project is the J-2X Detailed 
Transient Model or DTM. The J-2X DTM, as the name indicates, is a transient model that 
accurately models all phases of engine operation including start, mainstage  (phase 
between start and shutdown), and shutdown. The J-2X DTM simulates processes 
describing rocket engine operation including heat transfer, fluid flow, combustion and 
valve dynamics. Flowrates, pump speeds, temperatures and pressures are modeled as time 
dependent differential equations that are updated at a high rate, typically 2000 Hz. 
Property tables, valve characteristics and turbomachinery efficiency and performance 
curves are also incorporated in the DTM. DTM’s are used to develop safe start and 
shutdown sequences and for anomaly resolution. The J-2X DTM builds on a long history 
of DTM’s supporting most major Pratt & Whitney Rocketdyne (PWR) rocket engines.   

The J-2X DTM underwent modification to enable it to run in “real-time” mode. In real-
time mode, the DTM will respond in real world clock time to external stimuli such as 
changes in valve position and engine inlet conditions. The latter will comprise the 
interface to the test stand model. Advances in computer processor technology have made 
this possible due to the fast update rate required to maintain numeric stability. Real-time 
is achieved if a model advances in time (step time) at the same rate as a wall clock. If a 
processor can perform all calculations in a step time or less, then the model is real-time 
capable. The step time should also be consistent and set to the longest measured step time 
corresponding to the longest logical path.  Shorter frames are then padded to provide a 
deterministic step time. The J-2X DTM, or any DTM for that matter, was not optimized 
for real-time operation. Changes that were required include streamlining model code, 
limiting or eliminating model diagnostic output, and fixing the step time. The J-2X DTM 
currently uses a variable step time to maintain numeric stability so deterministic timing is 
not possible. Real-time DTM operation is required when communication to other real-
time components of a system is required such as hardware-in-the-loop testing or for 
online monitoring of an engine and test stand. Near real-time operation has been 

http://rockettest.nasa.gov/rptmb/ssc_a1_test_stand.asp


demonstrated indicating full real-time operation is feasible in the near future. The 
modified DTM now has the designation J-2X Detailed Real-Time Model or DRTM. 

The DRTM was modified to enable failure mode simulation. Failure modes are modeled 
as changes to the flowpath of the DRTM (e.g. leaks) or modification of engine 
parameters (e.g. turbine efficiency) representative of failure signatures. Sensor 
characteristics, such as lag and bit toggle, and process noise were also modeled to better 
replicate engine operation.  A simulation of cavitation due to low inlet pressure was also 
added to the DRTM as the primary test stand/engine interface fault mode. As the inlet 
pressure falls below a certain level, the propellant begins to vaporize and pump 
performance drops dramatically. 

Data-driven fault detection and diagnostics 
In our previous work2,3, we used unsupervised anomaly detection algorithms to 
automatically detect faults in space shuttle main engine data. Unsupervised anomaly 
detection algorithms are trained using only nominal data. They learn a model of the 
nominal data, and signal an anomaly when new data fails to match the model. They are 
useful when few examples of failure data are available. For a rocket such as the space 
shuttle main engine, very few examples of failures exist in the historical data. 
Unsupervised anomaly detection algorithms are therefore useful when using historical 
data as training data. For the J-2X, no real data is available yet, since the engine has not 
been built yet. However, we do have a high-fidelity physics-based simulator that can 
simulate faults. We therefore decided to use supervised learning. When used for fault 
detection and diagnostics, supervised learning algorithms take as input data from nominal 
operation and from each failure mode. They learn a model that is able to distinguish 
between the nominal data and the data for each fault mode. They are able to go beyond 
the capabilities of unsupervised anomaly detection algorithms by identifying the fault 
mode, rather than just detecting anomalies. 

We decided to use a decision tree learning algorithm because the decision trees learned 
by these algorithms are much easier for human experts to interpret than the models 
produced by some competing algorithms such as neural networks or support vector 
machines. Having engineering experts examine the decision trees is very helpful for 
verifying them before deploying them. The decision tree algorithm automatically “learns” 
a decision tree by performing a search through the space of possible decision trees to find 
one that fits the training data. The particular decision tree algorithm used is known as 
C4.5.4

Results 
In the first experiment, two DRTM simulations were used to train a decision tree. The 
two simulations each had a leak at the same location, but the leaks were of two different 
sizes and started at two different times. The simulations included simulated sensor noise, 
and included a gradual degradation in both fuel and oxidizer turbine efficiency. The 
simulations also included all four modes, and lasted 500 seconds. The internal timestep 
was 0.00005 seconds, and the timestep in the recorded data was 0.02 seconds. The 
resulting tree had 14 nodes. The tree decides whether or not there is a leak at the one 



location at which the leaks were simulated. Engineering experts on our team examined 
the tree and concluded that it makes sense. 

A third DRTM simulation was used to test the tree. This simulation had a leak at the 
same location but again with a different size and at a different time. When applied to this 
test set, the tree was 99.9957% accurate, which is extremely high accuracy. Only one 
timestep was classified wrong. 

A second set of experiments was performed using 56 DRTM simulations as follows: 

• Five leak locations  
• Eleven simulations for each leak location, with eleven different leak sizes 
• One simulation with no leak 
• Each simulation was 500 seconds, and the time at which the leak started ranged 

from 50 to 400 seconds. 

A C4.5 decision tree was trained using 11 of these simulations (two for each leak location 
plus one with no leak), and tested on the remaining 45 simulations. The resulting decision 
tree has 12,289 nodes, and is thus too big to be easily comprehended by humans. The 
decision tree decides whether there is no leak or a leak at a particular location (out of the 
five locations). The following table shows the false alarm rates for this decision tree: 

leak location
3 4 7 8 9 total

false alarm rate 0.0032% 0.0011% 0.0000% 0.0029% 0.0000% 0.0072%
 

The false alarm rates in the table answer the following question: Of all the time steps that 
do not have a leak, for what percentage does the decision tree incorrectly report a leak in 
each location? The total false alarm rate of 0.0072% is considered to be very good. 

The following table shows the missed detection rates for the same tree: 



leak location
missed detection rate 3 4 7 8 9
leak area (sq in) 0.01 17.92% 18.69% 25.05% 49.71% 30.03%

0.03 0.02% 0.19% 23.74% 54.73% 29.09%
0.05 0.02% 0.12% 0.06% 40.90% 18.35%
0.07 0.00% 0.01% 0.05% 5.77% 6.94%
0.1 0.00% 0.01% 0.04% 16.91% 0.22%

0.12 0.01% 0.02% 0.06% 12.06% 0.04%
0.15 0.01% 0.02% 0.05% 6.57% 0.01%
0.17 0.00% 0.02% 0.02% 2.96% 0.00%
0.2 0.00% 0.03% 0.00% 1.92% 0.00%

0.22 0.00% 0.02% 0.00% 0.05% 0.00%
0.25 0.01% 0.01% 0.02% 0.62% 0.00%

 
The missed detection rates in the table answer the following question: Of all the time 
steps that have a leak of the given size at the given location, for what percentage of the 
time steps does the decision tree fail to detect the leak? It can be seen that at leak 
locations 3 and 4, the tree performs very well for leaks of size 0.03 square inches or 
greater. For leaks at location 7, the tree performs well for leaks of size 0.05 square inches 
or greater. For leaks at location 9, the tree performs well for leaks of size 0.1 square 
inches or greater. But for leaks at location 8, the tree does not do a good job of detecting 
the leak until the size of the leak reaches 0.22 square inches. This reflects the fact that 
leak location 8 produces the smallest leak rates for a given leak area. 

The following table shows the misisolation rate for the same tree: 
leak location

misidentification rate 3 4 7 8 9
leak area (sq in) 0.01 82.02% 23.15% 9.23% 0.50% 18.89%

0.03 99.97% 0.90% 2.68% 2.17% 63.99%
0.05 99.91% 0.55% 0.05% 2.39% 61.17%
0.07 64.24% 0.35% 0.19% 1.49% 47.77%
0.1 0.73% 0.43% 0.40% 16.02% 2.57%

0.12 0.83% 0.54% 0.51% 19.66% 8.74%
0.15 0.00% 0.33% 0.30% 34.85% 2.48%
0.17 0.00% 0.00% 0.36% 26.11% 2.64%
0.2 0.22% 0.19% 0.00% 46.41% 0.67%

0.22 1.13% 1.11% 0.57% 5.05% 1.13%
0.25 0.49% 1.64% 0.36% 58.48% 0.38%  

The misisolation rates in the table answer the following question: Out of all the time steps 
in which a leak of a particular size at a particular location occurs, how often is it 
misidentified as being at a different location? It can be seen that the decision tree does a 
good job of isolating leaks of size 0.1 square inches or larger for locations 3, 4, and 7, but 



not for locations 8 or 9. More light is shed on misisolation by the confusion matrix in the 
following table: 

no leak 3 4 7 8 9<-classified as
------ ------ ------ ------ ------ ------

474581 15 5 0 14 0 no leak
4 51745 67796 413 17 136 3

2243 1800 109719 164 2815 322 4
6210 1995 100 97651 1258 61 7

29748 2788 1444 13 61028 23797 8
14564 1141 1123 127 34542 54756 9

 
The confusion matrix answers the following question: When there is a leak at a particular 
location (or no leak), how often does the decision tree say that there is a leak at a 
particular location (the correct location or an incorrect location)? The first row is false 
alarms, the first column is missed detections, and the rest of the matrix is 
misidentifications (except for the diagonal).* The matrix shows that locations 8 and 9 are 
often confused with each other, explaining the high misisolation rates for those two 
locations. A possible explanation for this confusion is that a small leak at location 8 could 
look like a large leak at location 9. 

Conclusions 
High-fidelity simulated J-2X data was used to train a decision tree for fault detection and 
fault isolation. Testing the tree on a separate set of simulated data showed that the tree 
has very low false alarm rates. It has very low missed detection rates for leaks of size 0.1 
square inches or larger at four of the five locations, and adequate missed detection rates 
for leaks of size 0.2 square inches or larger at the fifth location. The tree almost always 
correctly isolates leaks of size 0.1 square inches or larger for three of the five locations, 
but tends to confuse the remaining two locations.  

The decision tree described here was delivered to SSC for integration with G2 at Test 
Stand A-1. 
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