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This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive
control systems. It is well known that standard model-reference adaptive control exhibits high-gain control
behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error
rapidly. High-gain control creates high-frequency oscillations that can excite unmodeled dynamics and can
lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking
error, which is formulated as an optimal control problem. The necessary condition of optimality is used to
derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness
of the tracking error by means of the Lyapunov’s direct method. Furthermore, this adaptive law allows a large
adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be
more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the
proposed method.

I. Introduction

In recent years, adaptive control has been receiving a significant amount of attention. The Aviation Safety Program
under the NASA Aeronautics Research Mission Directorate (ARMD) has established the Integrated Resilient Aircraft
Control (IRAC) research project to advance the state of the arts in adaptive control to enable flight control resiliency in
the presence of adverse conditions.1 There has been a steady increase in the number of adaptive control applications
in a wide range of settings such as aerospace, robotics, process control, etc. Research in adaptive control continues
to receive attention from government agencies, industry, and academia. In aerospace applications, adaptive control
has been developed for many flight vehicles. For example, NASA has been conducting a flight test of a neural net
intelligent flight control system on board a modified F-15 test aircraft.2 The U.S. Air Force - Boeing team has suc-
cessfully developed and completed numerous flight tests of direct adaptive control on Joint Direct Attack Munitions
(JDAM).3 The ability to accommodate system uncertainties and to improve fault tolerance of a flight control system is
a major selling point of adaptive control. Nonetheless, adaptive control still faces significant challenges in providing
robustness in the presence of unmodeled dynamics and parametric uncertainties. The crash of the X-15 aircraft in
19674 serves as a reminder that adaptive control is still viewed with some misgivings despite enormous advances in
this technology ever since. The ability for an adaptive control algorithm to modify a pre-existing control design is
considered a strength and at the same time a weakness.

Over the past several years, various model-reference adaptive control (MRAC) methods have been investigated.5–15

The majority of MRAC methods may be classified as direct, indirect, or a combination thereof. Indirect adaptive
control methods are based on identification of unknown plantparameters and certainty-equivalence control schemes
derived from the parameter estimates which are assumed to betheir true values.16 Parameter identification techniques
such as recursive least-squares and neural networks have been used in indirect adaptive control methods.7 In con-
trast, direct adaptive control methods directly adjust control parameters to account for system uncertainties without
identifying unknown plant parameters explicitly. MRAC methods based on neural networks have been a topic of
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great research interest.8–10 In particular, Rysdyk and Calise described a neural net direct adaptive control method for
improving tracking performance.8 This method is the basis for the intelligent flight control system that has been devel-
oped for the F-15 test aircraft by NASA. Johnson et al. introduced a pseudo-control hedging approach for dealing with
control input characteristics such as actuator saturation, rate limit, and linear input dynamics.10 Idan et al. studied
a hierarchical neural net adaptive control using secondaryactuators such as engine propulsion to accommodate for
failures of primary actuators.11 Hovakimyan et al. developed an output feedback adaptive control to address issues
with parametric uncertainties and unmodeled dynamics.12 Cao and Hovakimyan developed anL1 adaptive control
method to address high-gain control.14

While adaptive control has been used with success in a numberof applications, the possibility of high-gain control
due to fast adaptation can be an issue. In certain applications, fast adaptation is needed in order to improve tracking
performance when a system is subject to a large source of uncertainties such as structural damage to an aircraft that
could cause large changes in aerodynamic derivatives. In these situations, a large adaptive gain or learning rate must
be used in the adaptive control in order to reduce the tracking error rapidly. However, there typically exists a balance
between stability and adaptation. It is well known that fastadaptation can result in high-frequency oscillations which
can excite unmodeled dynamics that could adversely affect the stability of an MRAC law. Recognizing this, some
recent adaptive control methods have begun to address high-gain control, such as theL1 adaptive control14 and a
hybrid direct-indirect adaptive control.15 In the former approach, the use of a low-pass filter effectively prevents
any high frequency oscillation that may occur due to fast adaptation. In so doing, the reference model is no longer
preserved and instead must be reconstructed using a predictor model. In the latter approach, an indirect adaptive law
based on a recursive least-squares parameter estimation adjusts the parameters of a nominal controller to reduce the
modeling error, and the remaining tracking error signal could then be handled by a direct adaptive law with a smaller
learning rate.

This paper introduces a new approach to fast adaptation in the MRAC framework. The method is formulated as an
optimal control problem to minimize the tracking errorL2-norm. The optimality condition results in a modification to
the MRAC law by introducing a damping term proportional to persistent excitation. The optimal control modification
is analyzed to determine convergence and stability characteristics. The analysis shows that this modification can
achieve fast adaptation without high-frequency oscillations as in the case with the standard MRAC. Furthermore, the
modification is shown to provide improved stability robustness while preserving the tracking performance.

II. Optimal Control Modification for Fast Adaptation

Fig. 1 - Direct MRAC

A direct MRAC problem as illustrated in Fig. 1 is posed as follows:
Given a nonlinear plant model as

ẋ = Ax+B[u+ f (x)] (1)

wherex(t) : [0,∞) → R
n is a state vector,u(t) : [0,∞) → R

p is a control vector,A∈ R
n×n andB∈ R

n×p are known
plant matrices such that the pair(A,B) is controllable, andf (x) : R

n → R
p is a matched uncertainty that acts as a

disturbance.
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Assumption 1: x(t) ∈Ci (t), i ≥ 1, is smooth int ∈ [0,∞).
Assumption 2: f (x) ∈C j (x), j ≥ 1, is semi-globally Lipschitz. Then there exists a constantL > 0 such that

‖ f (x)− f (x0)‖ ≤ L‖x−x0‖ (2)

for all ‖x‖∞ < εx in t ∈ [0,∞).
It then follows that the partial derivatives off (x) are uniformly bounded and at least piecewise continuous such

that
∥

∥

∥

∥

∂ f (x)
∂x

∥

∥

∥

∥

∞
≤ L (3)

for all ‖x‖∞ < εx in t ∈ [0,∞).
Proposition 1: If u(t) is a stable and bounded controller, then the total derivative of f (x) is also bounded.
Proof: u(t) is bounded if there exists a constantεu > 0 such that‖u‖∞ < εu∀t ∈ [0,∞). u(t) is a stable controller

which implies thatx(t) is bounded and so‖x‖∞ < εx∀t ∈ [0,∞). Since 1)x(t) is at leastC1 smooth by Assumption
1, 2)x(t) is bounded, 3)f (x) is semi-globally Lipschitz, and 4) ifu(t) is bounded; then ˙x(t) is also bounded. Thus,
there exists a constantσxi > 0∈ R, i = 1, . . .n, such that supt |ẋi | ≤ σxi∀t ∈ [0,∞). It then follows that

sup
t

∣

∣

∣

∣

d f (x)
dt

∣

∣

∣

∣

≤
∥

∥

∥

∥

∂ f (x)
∂x

∥

∥

∥

∥

∞
I

n

∑
i=1

sup
t
|ẋi | ≤ LI

n

∑
i=1

σxi = σ f (4)

for someσ f > 0∈ R
p, whereI ∈ R

p is a vector whose elements are all equal to one. Therefore,ḟ (x) ∈ L∞.

�

The objective of the problem is to design a full-state feedback controller that enables the nonlinear plant model to
follow a reference model described by

ẋm = Amxm+Bmr (5)

whereAm ∈ R
n×n is Hurwitz and a known matrix,Bm ∈ R

n×p is also a known matrix, andr (t) : [0,∞) → R
p ∈ L∞ is

a bounded command vector with its time derivative ˙r ∈ L∞ also bounded.
Defining the tracking error ase= xm−x, the goal is then to determine a controller that results in limt→∞ ‖e‖ ≤ εe.

Toward that end, let the controller be comprised of a state feedback, a command feedforward, and an adaptive signal
as follows:

u = Kee+Kmxm+Kr r −uad (6)

whereKe ∈ R
p×n, Km ∈ R

p×n, andKr ∈ R
p×p are known nominal gain matrices, anduad ∈ R

p is a direct adaptive
signal.

Then, the tracking error equation becomes

ė= ẋm− ẋ = (A−BKe)e+(Am−A−BKm)xm+(Bm−BKr) r +B[uad− f (x)] (7)

For bounded tracking error, we chooseAc = A−BKe to be Hurwitz, and the gain matricesKm andKr to satisfy the
model matching conditions so that the nominal plant tracks the reference model

A+BKm = Am (8)

BKr = Bm (9)

The adaptive signaluad can be parameterized by a linear-in-parameters matched uncertainty

uad = Θ>Φ(x) (10)

whereΘ ∈ R
m×p is a weight matrix andΦ(x) : R

n → R
m is a known regressor vector.

Let Θ∗ be a constant ideal weight matrix andΘ̃ = Θ−Θ∗ be a weight variation, thenε is the approximation error
defined as

ε (x) = Θ∗>Φ(x)− f (x) (11)

Assumption 3: The approximation errorε (x) of the matched uncertaintyf (x) by Θ>Φ(x) is bounded and its time
derivative is also bounded; i.e., there exists a constant vectorσε > 0∈ R

p such that

sup
t
|ε̇ (x)| = sup

t

∣

∣

∣

∣

∣

d
(

Θ∗>Φ
)

dt
− d f (x)

dt

∣

∣

∣

∣

∣

< σε (12)
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Assumption 3 essentially implies thatΦ is Lipschitz and its partial derivative is bounded, i.e., there exist a constant
C > 0∈ R such that

‖Φ(x)−Φ(x0)‖ ≤C‖x−x0‖ (13)
∥

∥

∥

∥

∂Φ(x)
∂x

∥

∥

∥

∥

≤C (14)

for all ‖x‖∞ < εx in t ∈ [0,∞).
The tracking error equation can now be expressed as

ė= Ace+B
(

Θ̃>Φ+ ε
)

(15)

An optimal control modification to MRAC for fast adaptation is proposed as follows:
Proposition 2: The following adaptive law provides a weight update law thatminimizes theL2-norm of the

tracking error

Θ̇ = −ΓΦ
(

e>P−νΦ>ΘB>PA−1
c

)

B (16)

whereΓ > 0 ∈ R
m×m is a symmetric positive-definite learning rate or adaptive gain matrix,ν > 0 ∈ R is a positive

weighting constant, andP > 0∈ R
n×n is a symmetric positive-definite matrix that solves the Lyapunov equation

PAc +A>
c P = −Q (17)

whereQ > 0∈ R
n×n is a symmetric positive-definite matrix.

Proof: The adaptive law seeks a solution that minimizes theL2-norm of the tracking error with a cost function

J =
1
2

ˆ t f

0
(e−∆)>Q(e−∆)dt (18)

subject to Eq. (15) where∆ represents the tracking error att = t f .
J is convex and represents the distance measured from the normal surface of a ballBr with a radius∆.

Fig. 2 - Tracking Error Bound

This is an optimal control problem whose solution can be formulated by the Pontryagin’s Maximum Principle.
Defining a Hamiltonian

H
(

e,Θ̃
)

=
1
2

(e−∆)>Q(e−∆)+ p>
(

Ace+BΘ̃>Φ+Bε
)

(19)

where p(t) : [0,∞) → R
n is an adjoint variable, then the adjoint equation is given bythe negative gradient of the

Hamiltonian with respect to the tracking error

ṗ = −∇H>
e = −Q(e−∆)−A>

c p (20)

TreatingΘ̃> as a control variable, then the optimality condition is obtained by the gradient of the Hamiltonian with
respect toΘ̃>

∇HΘ̃> = Φ∇HΘ̃>Φ = Φp>B (21)

The adaptive law can then be formulated by the gradient method as

˙̃Θ = −Γ∇HΘ̃> = −ΓΦp>B (22)
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If e(0) is known, then the transversality condition requires

p
(

t f
)

= 0 (23)

This results in a two-point boundary value problem whereby the adjointp solves Eqs. (20) and (15) simultaneously.
The optimal control problem can be solved using a “sweeping”method17 by letting p = Pe+SΘ>Φ. Then

Ṗe+P
(

Ace+BΘ>Φ−BΘ∗>Φ+Bε
)

+ ṠΘ>Φ+S
d

(

Θ>Φ
)

dt
= −Q(e−∆)−A>

c

(

Pe+SΘ>Φ
)

(24)

SinceΘ>Φ is the linear-in-parameter matched uncertainty off (x), then by Proposition 1 and Assumption 3

sup
t

∣

∣

∣

∣

∣

d
(

Θ>Φ
)

dt

∣

∣

∣

∣

∣

= sup
t

∣

∣

∣

∣

∣

d
(

Θ̃>Φ
)

dt
+ ε̇ (x)+

d f (x)
dt

∣

∣

∣

∣

∣

≤ sup
t

∣

∣

∣

˙̃Θ>Φ+ Θ̃>Φ̇
∣

∣

∣
+ σε + σ f

≤ sup
t

∣

∣

∣
−B>pΦ>ΓΦ

∣

∣

∣
+sup

t

∣

∣

∣
Θ̃>Φ̇

∣

∣

∣
+ σε + σ f (25)

The first term in the last inequality of Eq. (25) is bounded since p must be a stable solution to the optimal control
problem andΦ is also bounded by definition. The second term is also boundedsinceΘ̃ must be bounded if the adaptive
law is stable (an assertion that will be proved later) andΦ̇ is bounded by virtue of Assumption 3. Therefore, there
exists a constant vectorσt > 0∈ R

n such that

sup
t

∣

∣

∣

∣

∣

d
(

Θ>Φ
)

dt

∣

∣

∣

∣

∣

< σt (26)

Equation (24) yields three equations
Ṗ+PAc+A>

c P+Q= 0 (27)

Ṡ+PB+A>
c S= 0 (28)

subject toP
(

t f
)

= 0 andS
(

t f
)

= 0, and

∆ = Q−1

[

PB
(

ε −Θ∗>Φ
)

+S
d

(

Θ>Φ
)

dt

]

(29)

Consider an infinite time-horizon optimal control problem by letting t f → ∞, thenP(t) → P(0) andS(t) → S(0)
and the solutions ofP andSare determined by their steady state values. Thus

PAc +A>
c P = −Q (30)

S= −A−>
c PB (31)

The adjointp now becomes
p = Pe−A−>

c PBΘ>Φ (32)

SinceΘ∗ is constant, theṅΘ = ˙̃Θ. Upon substituting the expression of the adjointp into Eq. (22), the following
adaptive law is then obtained

Θ̇ = −ΓΦ
(

e>P−νΦ>ΘB>PA−1
c

)

B (33)

whereν is introduced as a weighting constant to allow for adjustments of the second term in the adaptive law.
Defining ‖δε‖ = ‖supt |ε|‖ and

∥

∥Θ∗>Φ
∥

∥ =
∥

∥supt
∣

∣Θ∗>Φ
∣

∣

∥

∥, then, forν = 1, the steady state tracking error is
bounded by

‖∆‖ =
λmax(P)‖B‖

λmin(Q)

[

∥

∥

∥
Θ∗>Φ

∥

∥

∥
+‖δε‖+

‖σt‖
σmin(Ac)

]

(34)

whereλmin andλmax denote the minimum and maximum eigenvalues, andσmin denotes the minimum singular value.

�
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Remark 1: The cost function (18) could also be penalized with1
2R

∥

∥Θ̃>Φ
∥

∥

2
> 0. This would result in an additional

term in the adaptive law which would then become

Θ̇ = −ΓΦ
(

e>PB−νΦ>ΘB>PA−1
c B+ Φ>ΘR

)

(35)

R then becomes an additional tuning parameter that can be usedto adjust the adaptive law. Alternatively, the
adaptive law could just only include theR term as

Θ̇ = −ΓΦ
(

e>PB+ Φ>ΘR
)

(36)

We now proceed to prove that the adaptive law (16) is stable asfollows:
Theorem 1: The adaptive law (16) results in stable and uniformly bounded tracking error in a compact set

S =







e∈ R
n : ‖e‖ >

2λmax(P)‖B‖‖δε‖
λmin(Q)

,Θ̃>Φ ∈ R
n :

∥

∥

∥
Θ̃>Φ

∥

∥

∥
>

2σmax
(

B>PA−1
c B

)∥

∥Θ∗>Φ
∥

∥

λmin

(

B>A−>
c QA−1

c B
)







(37)

whereσmax denotes the maximum singular value.
Proof: Choose a Lyapunov candidate function

V = e>Pe+ trace
(

Θ̃>Γ−1Θ̃
)

(38)

whereP solves Eq. (17).
Evaluating the Lie derivative ofV yields

V̇ = e> (AcP+PAc)e+2e>PB
(

Θ̃>Φ+ ε
)

−2trace
[

Θ̃>Φ
(

e>PB−νΦ>ΘB>PA−1
c B

)]

(39)

Using the trace identity trace
(

A>B
)

= BA>, V̇ can be written as

V̇ = −e>Qe+2e>PB
(

Θ̃>Φ+ ε
)

−2e>PBΘ̃>Φ+2νΦ>ΘB>PA−1
c BΘ̃>Φ (40)

The sign-definiteness of the termPA−1
c is now evaluated. We recall that a general real matrixM is positive (nega-

tive) definite if and only if its symmetric partMS = 1
2

(

M +M>)

is also positive (negative) definite. Then, by pre- and
post-multiplication of Eq. (17) byA−>

c andA−1
c , respectively, one gets

A−>
c P+PA−1

c = −A−>
c QA−1

c (41)

SinceA−>
c QA−1

c > 0, we conclude thatPA−1
c < 0. Furthermore,PA−1

c can be decomposed into a symmetric part
M = 1

2

(

PA−1
c +A−>

c P
)

= − 1
2A−>

c QA−1
c < 0 and an anti-symmetric partN = 1

2

(

PA−1
c −A−>

c P
)

. Then,V̇ becomes

V̇ = −e>Qe+2e>PBε −νΦ>Θ̃B>A−>
c QA−1

c BΘ̃>Φ+2νΦ>Θ̃B>NBΘ̃>Φ+2νΦ>Θ∗B>PA−1
c BΘ̃>Φ (42)

Lettingy = BΘ̃>Φ and using the propertyy>Ny= 0 for an anti-symmetric matrixN, V̇ is reduced to

V̇ = −e>Qe+2e>PBε −νΦ>Θ̃B>A−>
c QA−1

c BΘ̃>Φ+2νΦ>Θ∗B>PA−1
c BΘ̃>Φ (43)

and is bounded by

V̇ ≤−λmin(Q)‖e‖2 +2‖e‖λmax(P)‖B‖‖δε‖−νλmin

(

B>A−>
c QA−1

c B
)

∥

∥

∥
Θ̃>Φ

∥

∥

∥

2

+2νσmax

(

B>PA−1
c B

)∥

∥

∥
Θ∗>Φ

∥

∥

∥

∥

∥

∥
Θ̃>Φ

∥

∥

∥
(44)

For uniform boundedness of tracking error, we requireV̇ ≤ 0. Thus, we have

−λmin(Q)‖e‖2 +2‖e‖λmax(P)‖B‖‖δε‖ ≤ 0⇒ ‖e‖ ≥ 2λmax(P)‖B‖‖δε‖
λmin(Q)

(45)
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and

−νλmin

(

B>A−>
c QA−1

c B
)

∥

∥

∥
Θ̃>Φ

∥

∥

∥

2
+2νσmax

(

B>PA−1
c B

)
∥

∥

∥
Θ∗>Φ

∥

∥

∥

∥

∥

∥
Θ̃>Φ

∥

∥

∥
≤ 0

⇒
∥

∥

∥
Θ̃>Φ

∥

∥

∥
≥ 2σmax

(

B>PA−1
c B

)∥

∥Θ∗>Φ
∥

∥

λmin

(

B>A−>
c QA−1

c B
) (46)

We note that ˙e∈ L∞, bute∈ L2∩L∞ if V̇ ≤ 0 since

λmin(Q)

ˆ ∞

0
‖e‖2dt ≤V (0)−V (t → ∞)+2λmax(P)‖B‖‖δε‖

ˆ ∞

0
‖e‖dt

−νλmin

(

B>A−>
c QA−1

c B
)

ˆ ∞

0

∥

∥

∥
Θ̃>Φ

∥

∥

∥

2
dt+2νσmax

(

B>PA−1
c B

)

ˆ ∞

0

∥

∥

∥
Θ∗>Φ

∥

∥

∥

∥

∥

∥
Θ̃>Φ

∥

∥

∥
dt < ∞ (47)

It follows thatV (t → ∞) ≤V (0). Thus,V (t) decreases inside a compact setS ⊂ R
n where

S =







e∈ R
n : ‖e‖ > r1 =

2λmax(P)‖B‖‖δε‖
λmin(Q)

,Θ̃>Φ ∈ R
n :

∥

∥

∥
Θ̃>Φ

∥

∥

∥
> r2 =

2σmax
(

B>PA−1
c B

)∥

∥Θ∗>Φ
∥

∥

λmin

(

B>A−>
c QA−1

c B
)







(48)

but V (t) increases inside the complementary setC =
{

e∈ R
n : ‖e‖ ≤ r,Θ̃>Φ ∈ R

n :
∥

∥Θ̃>Φ
∥

∥ ≤ r2
}

, which contains
e= 0 andΘ̃=0, whose trajectories will all stay inside ofC . It follows by LaSalle’s extensions of the Lyapunov method
thate andΘ̃ are uniformly bounded.

�

Remark 2: The effect of the optimal control modification is to add damping to the weight update law so as to
reduce high-frequency oscillations in the weights. The damping term requires persistent excitation (PE) which is
defined by the product termΦΦ>. With persistent excitation, the weightΘ is exponentially stable and bounded.
This scheme is contrasted to the well-knownσ -16 andε1-18 modification methods and other variances which also add
damping terms to prevent parameter drift in the absence of persistent excitation.18 These adaptive laws are compared
as follows:

Modification Adaptive Law

σ - Θ̇ = −Γ
(

Φe>PB+ σΘ
)

, σ > 0

ε1- Θ̇ = −Γ
(

Φe>PB+ µ
∥

∥e>PB
∥

∥Θ
)

, µ > 0

Optimal Θ̇ = −Γ
(

Φe>PB−νΦΦ>ΘB>PA−1
c B

)

, ν > 0

Table 1 - Modifications to MRAC Law

In the presence of fast adaptation, i.e.,λmin(Γ) � 1, the adaptive law (16) is robustly stable with all closed-loop
poles having negative real values ifν = 1. This can be established as follows:

Theorem 2: For large adaptive gainΓ andΦ>Φ > 0 which implies the PE requirement for parameter convergence,
whenν = 1, the adaptive law (16) results in robustly stable closed-loop tracking error equation

ė= −P−1Qe+B
(

ε −Θ∗>Φ
)

(49)

with a guaranteed phase margin ofπ
2 and a lower bound on the tracking error

‖e‖ ≥ λmax(P)‖B‖
(∥

∥Θ∗>Φ
∥

∥+‖δε‖
)

λmin(Q)
(50)

Proof: The adaptive law (16) can be written as

Γ−1Θ̇ = −Φ
(

e>P−νΦ>ΘB>PA−1
c

)

B (51)
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If Γ � 1 is large, then in the limit asΓ → ∞

e>P−νΦ>ΘB>PA−1
c = 0 (52)

Solving forBΘ>Φ yields

BΘ>Φ =
1
ν

P−1A>
c Pe (53)

Hence, the closed-loop tracking error equation becomes

ė=

(

Ac +
1
ν

P−1A>
c P

)

e+B
(

ε −Θ∗>Φ
)

(54)

which, upon some algebra, can also be written as

ė= −P−1
[

Q−
(

1
ν
−1

)

A>
c P

]

e+B
(

ε −Θ∗>Φ
)

(55)

A>
c P can be decomposed into a symmetric part1

2

(

A>
c P+PAc

)

=− 1
2Qand an anti-symmetric part1

2S= 1
2

(

A>
c P−PAc

)

.
The tracking error equation now becomes

ė= −P−1
[(

1+ ν
2ν

)

Q−
(

1−ν
2ν

)

S

]

e+B
(

ε −Θ∗>Φ
)

(56)

The eigenvalues ofQ are all real positive values and those ofS are purely imaginary. The system is stable for
all values ofν. If ν ≤ 1, the closed-loop complex-conjugate poles move further into the left-half plane and Im[s]
increases with decreasingν. In the limit, whenν → 0 and the adaptive law is reverted to the standard MRAC law,
then Im[s] → ∞ which illustrates a well-known fact that fast adaptation with the standard MRAC law results in high
frequency signals which can potentially lead to instability in the presence of time delay or unmodeled dynamics.
Conversely, ifν becomes large, the effect of adaptation is reduced and in thelimit when ν → ∞, adaptation ceases as
the adaptive law (16) becomes infinitely stiff.

A special case ofν = 1 is considered. The closed-loop poles are all real, negative values with Re[s] =−λ
(

P−1Q
)

.

The system transfer function matrixH (s) =
(

sI+P−1Q
)−1

is strictly positive real (SPR) sinceH ( jω)+H> (− jω) >

0, and thus the system is minimum phase and dissipative.19 The Nyquist plot of a strictly stable transfer function is
strictly in the right half plane with a phase shift less than or equal toπ

2 .19

To compute the tracking error norm, pre-multiplying Eq. (56) by e>P yields

e>Pė= −e>
[(

1+ ν
2ν

)

Q−
(

1−ν
2ν

)

S

]

e+e>PB
(

ε −Θ∗>Φ
)

(57)

Sincee>Se= 0, then

d
dt

(

e>Pe
)

= ė>Pe+eTPė= −
(

1+ ν
ν

)

e>Qe+2e>PB
(

ε −Θ∗>Φ
)

(58)

Choose a Lyapunov candidate functionV = e>Pe, then

V̇ =−
(

1+ ν
ν

)

e>Qe+2e>PB
(

ε −Θ∗>Φ
)

≤−
(

1+ ν
ν

)

λmin(Q)‖e‖2+2‖e‖λmax(P)‖B‖
(∥

∥

∥
Θ∗>Φ

∥

∥

∥
+‖δε‖

)

≤0

(59)
This implies

‖e‖ ≥
(

2ν
1+ ν

)

λmax(P)‖B‖
(
∥

∥Θ∗>Φ
∥

∥+‖δε‖
)

λmin(Q)
(60)

Forν = 1, we obtain Eq. (50).

�
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Remark 3: The adaptive law for fast adaptation results in a LTI representation of the tracking error equation in
the limit whenΓ → ∞, andε andΘ∗are zero. This is a useful feature that can enable the stability of the system to be
analyzed using traditional linear control methods.

The adaptive law (16) causes the tracking error to tend to zero asν → 0 if Γ → ∞ for fast adaptation and the input is
PE. On the other hand, stability robustness requiresν > 0. Thus, a trade-off between tracking performance and stability
robustness exists and, consequently,ν becomes a design parameter to be chosen to satisfy control requirements.

Lemma 1: The equilibrium statey = 0 of the differential equation

ẏ = −Φ> (t)ΓΦ(t)y (61)

wherey(t) : [0,∞) → R, Φ(t) ∈ L2 : [0,∞)→ R
n is a piecewise continuous and bounded function, andΓ > 0∈ R

n×n,
is uniformly asymptotically stable, if there exists a constantγ > 0 such that

1
T0

ˆ t+T0

t
Φ> (τ)ΓΦ(τ)dτ ≥ γ (62)

which implies thaty is bounded by the solution of a linear differential equation

ż= −γz (63)

for t ∈ [ti ,ti +T0], wheret0 = 0, ti = ti−1 +T0, andi = 1,2, . . . ,n→ ∞.
Proof: Choose a Lyapunov candidate function and evaluate its time derivative

V =
1
2

y2 (64)

V̇ = −Φ> (t)ΓΦ(t)y2 = −2Φ> (t)ΓΦ(t)V (65)

Then, there existsγ > 0 for whichV is uniformly asymptotically stable since

V (t +To) = V (t)exp

(

−2
ˆ t+T0

t
Φ> (τ)ΓΦ(τ)dτ

)

≤V (t)e−2γT0 (66)

This implies that

exp

(

−2
ˆ t+T0

t
Φ> (τ)ΓΦ(τ)dτ

)

≤ e−2γT0 (67)

Thus, the equilibriumy = 0 is uniformly asymptotically stable if

1
T0

ˆ t+T0

t
Φ> (τ)ΓΦ(τ)dτ ≥ γ (68)

providedΦ(t) ∈ L2 is bounded.
Theny(t) ∈ L2∩L∞ since

V (t → ∞)−V (0) ≤−2γ
ˆ ∞

0
y2 (t)dt ⇒ 2γ

ˆ ∞

0
y2 (t)dt ≤V (0)−V (t → ∞) < ∞

It follows that
V̇ ≤−2γV ⇒ yẏ≤−γy2 (69)

which implies that the solution of Eq. (61) is bounded from above if y≥ 0 and from below ify≤ 0 by the local solution
of

ż= −γz (70)

for t ∈ [ti ,ti +T0], wheret0 = 0, ti = ti−1 +T0, andi = 1,2, . . . ,n→ ∞.
Now, suppose thatΦ = Φ(y(t)), Eq. (70) still applies. The conditionΦ(y(t)) ∈ L2 is identically satisfied since

y∈ L2∩L∞. To show this, we first evaluatėV as

V̇ = −Φ> (y(t))ΓΦ(y(t))y2 = −2Φ> (y(t))ΓΦ(y(t))V (71)
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which upon integration yields

V (t +To) = V (t)exp

(

−2
ˆ t+T0

t
Φ> (y(τ))ΓΦ(y(τ))dτ

)

≤V (t)e−2γT0 (72)

Thus,V is uniformly asymptotically stable. This then leads to the same result as Eq. (69).
Example: Considerφ (t) = (t +1)−1 ∈ L2. γ is evaluated as

γ =
1
T0

ˆ T0

0
φ2 (τ)dτ =

1
T0 +1

(73)

The solutions of ˙y = −yφ2 (t) andż= −γzwith y(0) = z(0) are

y(t) = y(0)exp

(

− t
t +1

)

(74)

z(t) = y(0)exp

(

− t
T0 +1

)

(75)

If y(0) ≥ 0, y≤ zsinceT0 ≥ t. If y(0) ≤ 0, y≥ z. Soy is bounded from above and below byz.
Lemma 1 is a version of the Comparison Lemma that allows bounds on the solution ofy(t) to be computed from

a differential inequality without the need to compute the solution itself.20 A different version of the proof is also
provided by Nadrenda and Annaswamy.21 Figure 3 illustrates solutions of various differential equations as compared
to solutions of their linear counterparts.
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Fig. 3 - Comparison of Solutions of Differential Equations

�

Lemma 2: The solution of a linear differential equation

ẏ = Ay+g(t) (76)

wherey(t) : [0,∞) → R
n, A ∈ R

n×n is a Hurwitz matrix, andg(t) : [0,∞) → R
n ∈ L∞ is a piecewise continuous,

bounded function, is asymptotically stable and semi-globally bounded from above by the solution of a differential
equation

ż= A
(

z−α
∣

∣A−1c
∣

∣

)

(77)
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whereα ≥ 1∈ R andc = supt |g(t)|.
Proof: For matching initial conditionsy(0) = z(0), the solutions ofy andzare

y = eAty(0)+

ˆ t

0
eA(t−τ)g(τ)dτ (78)

z= eAty(0)−
ˆ t

0
eA(t−τ)αA

∣

∣A−1c
∣

∣dτ (79)

If A−1c > 0, then

y = z+

ˆ t

0
eA(t−τ)αcdτ +

ˆ t

0
eA(t−τ)g(τ)dτ = z+

ˆ t

0
eA(t−τ)A

[

αA−1c+A−1g(τ)
]

dτ (80)

α ≥ 1 can be made large enough forαA−1c+ A−1g(τ) > 0 becauseA−1c > 0 andg is bounded , and since
´ t

0 eA(t−τ)Adτ ≤ 0, then
ˆ t

0
eA(t−τ)A

[

αA−1c+A−1g(τ)
]

dτ ≤ 0 (81)

Therefore,y≤ z.
If A−1c < 0, then

y = z−
ˆ t

0
eA(t−τ)αcdτ +

ˆ t

0
eA(t−τ)g(τ)dτ = z−

ˆ t

0
eA(t−τ)A

[

αA−1c−A−1g(τ)
]

dτ (82)

α can be made large enough forαA−1c−A−1g(τ) < 0 becauseA−1c< 0 andg is bounded, thereforey≤ z. Thus,
y≤ z for all t ∈ [0,∞) and someα ≥ 1.

�

Theorem 3: The steady state tracking error is bounded by

lim
t→∞

sup
t
‖e‖ =

λmax(P)‖B‖
σmin(A>

c P+ νPAc)

[

ν
∥

∥

∥
Θ∗>Φ

∥

∥

∥
+ ν ‖Ac‖

∥

∥A−1
c

∥

∥‖δε‖+
1
γ

∥

∥

∥

∥

(

B>A−>
c PB

)−1
∥

∥

∥

∥

‖β‖
]

(83)

if there exist a constantγ > 0 such thatγ = inft
(

1
T0

´ t+T0
t Φ>ΓΦdτ

)

> 0∈ R and a constant vectorβ > 0∈ R
n where

β = supt
∣

∣Θ̃>Φ̇
∣

∣.
Proof: Sincee∈ L2, x∈ L2, and soΦ(x) ∈ L2 sinceΦ(x) is Lipschitz.β = supx

∣

∣Θ̃>Φ̇
∣

∣ ∈ L∞ is bounded since
Θ̃ is bounded by the adaptive law (16) andΦ̇ ∈ L∞ is also bounded by Assumption 3 because

sup
t

∣

∣

∣
Θ∗>Φ̇

∣

∣

∣
= sup

t

∣

∣

∣

∣

ε̇ (x)+
d f (x)

dt

∣

∣

∣

∣

≤ sup
t
|ε̇ (x)|+sup

t

∣

∣

∣

∣

d f (x)
dt

∣

∣

∣

∣

≤ σε + σ f (84)

Using Lemmas 1 and 2 withα = 1 for simplicity, the adaptive law (16) can be written as

d
dt

(

Θ̃>Φ
)

= ˙̃Θ>Φ+ Θ̃>Φ̇ ≤−γB>Pe+ γνB>A−>
c PB

(

Θ̃>Φ−ϕ −
∣

∣

∣

∣

(

γνB>A−>
c PB

)−1
β

∣

∣

∣

∣

)

(85)

whereϕ = supt
∣

∣Θ∗>Φ
∣

∣.
Using Lemma 2 withα = 1, we write

ė≤ Ac
(

e−
∣

∣A−1
c Bδε

∣

∣

)

+BΘ̃>Φ (86)

Thus, the system dynamics with adaptation are bounded by

d
dt

[

e

Θ̃>Φ

]

≤
[

Ac B

−γB>P γνB>A−>
c PB

][

e

Θ̃>Φ

]

−
[

Ac
∣

∣A−1
c Bδε

∣

∣

γνB>A−>
c PB

[

ϕ +
∣

∣

∣

(

γνB>A−>
c PB

)−1 β
∣

∣

∣

]

]

(87)
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Differentiating Eq. (86) and upon substitution yields

ë≤ Aė− γBB>Pe+ γνBB>A−>
c PBΘ̃>Φ− γνBB>A−>

c PB

[

ϕ +

∣

∣

∣

∣

(

γνB>A−>
c PB

)−1
β

∣

∣

∣

∣

]

(88)

Substituting in Eq. (15), the tracking error equation becomes

ë−
(

A+ γνBB>A−>
c P

)

ė+
(

γBB>P+ γνBB>A−>
c PAc

)

e≤−γνBB>A−>
c PB

[

ϕ +

∣

∣

∣

∣

(

γνB>A−>
c PB

)−1
β

∣

∣

∣

∣

]

+ γνBB>A−>
c PAc

∣

∣A−1
c Bδε

∣

∣ (89)

Equation (89) reveals that the optimal control modificationterm containingν augments the damping of the tracking
error to increase stability robustness of the adaptation. On the other hand, the standard MRAC contributes to the
integral control action of the tracking error, thereby resulting in high frequency signals whenγ is large.

From Eq. (89), we obtain the steady state value and the upper bound on the norm of the steady-state tracking error
as

(

A>
c P+ νPAc

)

lim
t→∞

e≤−νPB

[

ϕ +

∣

∣

∣

∣

(

γνB>A−>
c PB

)−1
β

∣

∣

∣

∣

]

+ νPAc
∣

∣A−1
c Bδε

∣

∣ (90)

lim
t→∞

sup
t
‖e‖ =

λmax(P)‖B‖
σmin(A>

c P+ νPAc)

[

ν
∥

∥

∥
Θ∗>Φ

∥

∥

∥
+ ν ‖Ac‖

∥

∥A−1
c

∥

∥‖δε‖+
1
γ

∥

∥

∥

∥

(

B>A−>
c PB

)−1
∥

∥

∥

∥

‖β‖
]

(91)

Similarly, the steady state value and the upper bound on the norm of Θ̃>Φ are obtained as

−
(

A>
c P+ νPAc

)

A−1
c B lim

t→∞
Θ̃>Φ ≤−νPB

[

ϕ +

∣

∣

∣

∣

(

γνB>A−>
c PB

)−1
β

∣

∣

∣

∣

]

−A>
c P

∣

∣A−1
c Bδε

∣

∣ (92)

lim
t→∞

sup
t

∥

∥

∥
Θ̃>Φ

∥

∥

∥
=

λmax(P)‖Ac‖
σmin(A>

c P+ νPAc)

[

ν
∥

∥

∥
Θ∗>Φ

∥

∥

∥
+‖Ac‖

∥

∥A−1
c

∥

∥‖δε‖+
1
γ

∥

∥

∥

∥

(

B>A−>
c PB

)−1
∥

∥

∥

∥

‖β‖
]

(93)

Thus for fast adaptation with PE, i.e.,γ →∞, the second term on the RHS of Eq. (91) goes to zero, and the tracking
error’s lower bound is dependent onν. If, in addition,ν → 0, then‖e‖ → 0, but if ν → ∞, e∈ L∞ is finite and does
not tend to zero. Thus,ν has to be selected small enough to provide a desired trackingperformance, but large enough
to provide sufficient stability margins against time delay or unmodeled dynamics.

�

III. Application to Flight Control

Fig. 4 - Direct Neural Network Adaptive Flight Control

Consider the following adaptive flight control architecture as shown in Fig. 4. The control architecture comprises:
1) a reference model that translates rate commands into desired acceleration commands, 2) a proportional-integral
(PI) feedback control for rate stabilization and tracking,3) a dynamic inversion controller that computes actuator
commands using desired acceleration commands, and 4) a neural net direct MRAC due to Rysdyk and Calise.8

Adaptive flight control can be used to provide consistent handling qualities and restore stability of aircraft under
off-nominal operating conditions such as those due to failures or damage. A reduced-order equation of the linearized
angular motion of a damaged aircraft can be described by

ẋ = Ax+Bu+Gz+ f (x,u,z) (94)
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wherex =
[

p q r
]>

is a state vector of roll, pitch, and yaw rates;u =
[

δa δe δr

]>
is the control vector of

aileron, elevator, and rudder inputs;z=
[

α β δT

]>
is a trim state vector of angle of attack, angle of sideslip,

and engine throttle;A∈ R
3×3, B∈ R

3×3, andG∈ R
3×3 are known; andf (x,u,z) represents a structured uncertainty

which has a linear form
f (x) = ∆Ax+ ∆Bu+ ∆Gz (95)

where∆A, ∆B, and∆G are changes to theA, B, andG matrices of the aircraft linear plant model.
The objective is to design a dynamic inversion flight controllaw with a direct adaptive control augmentation to

provide consistent handling qualities which may be specified by a reference model according to

ẋm = Amxm+Bmr (96)

whereAm∈R
3×3 is Hurwitz,Bm∈R

3×3 is known,r ∈L2 is a bounded pilot command with its time derivative ˙r ∈L∞
also bounded

Let ẋd be a desired acceleration that comprises the reference model acceleration, a proportional-integral feedback
control, and a neural net adaptive signal

ẋd = Amxm+Bmr +Kp(xm−x)+Ki

ˆ t

0
(xm−x)dτ −uad (97)

whereuad = Θ>Φ with Φ =
[

x> u> z>
]>

.

Assuming thatB is invertible, then the dynamic inversion controller is computed as

u = B−1 (ẋd −Ax−Bu−Gz) (98)

Computing the acceleration error yields

ẋe = −Kpxe−Ki

ˆ t

0
xedτ +uad− f (x,u) (99)

wherexe = xm−x, Kp = diag(kp,1,kp,2,kp,3) > 0, andKi = diag(ki,1,ki,2,ki,3) > 0 are matrices of the proportional and
integral gains for roll, pitch, and yaw.

Am = diag(−ω1,−ω2,−ω3), where, for transport aircraft, the typical values ofωp, ωq, andωr are 3.5, 2.5, and
2.0 rad/s for roll, pitch, and yaw, respectively.15 The PI gains are then set askp, j = 2ξ jω j andki, j = ω2

j , i = 1,2,3,

whereξi is the damping ratio for each mode, with a typical value of 1/
√

2.

Am = −Kp

Defining the tracking error as

e=

[

´ t
0 xedτ

xe

]

(100)

then the tracking error equation is expressed by

ė= Ace+b(uad− f ) (101)

where

Ac =

[

0 I

−Ki −Kp

]

(102)

b =

[

0

I

]

(103)

Let Q = 2I , then the solution of Eq. (17) yields

P =

[

K−1
i Kp +K−1

p (Ki + I) K−1
i

K−1
i K−1

p

(

I +K−1
i

)

]

> 0 (104)
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A−1
c is computed to be

A−1
c =

[

−K−1
i Kp −K−1

i

I 0

]

(105)

Evaluating the termb>PA−1
c b yields

b>PA−1
c b = −K−2

i < 0 (106)

Applying the the adaptive law (16), the weight update law is then given by

Θ̇ = −ΓΦ
(

e>Pb+ νΦ>ΘK−2
i

)

(107)

Thus, the damping term in the adaptive law only depends on theintegral gainKi .
A simulation of pitch rate doublet is performed to illustrate the adaptive law (16) with the optimal control modifi-

cation. The uncertainty is due to airframe structural damage which in this case represents a 25% loss of the left wing
of a generic transport model (GTM) as shown in Fig. 5.

Fig. 5 - Damaged Generic Transport Model
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Fig. 6 - Aircraft Rate Response with PI Control
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Figure 6 is a plot of the aircraft angular rates with only PI control and without adaptive control. Due to the
asymmetric damage, a pitch rate command results in both rolland yaw rate responses due to cross-coupling effects.
The response is completely unacceptable due to the excessive roll and yaw rates.

Figure 7 is a plot of the aircraft angular rates due to the standard direct MRAC (ν = 0) using a learning rate
Γ = 104. The tracking performance drastically improves in all axes. However, high-frequency oscillations can clearly
be seen in the yaw rate response and to a much lesser extent in the pitch and roll channels.. Further increase in the
learning rate results in progressively larger high frequency amplitudes and eventually leads to a numerical instability
whenΓ > 2×104 due to a sampling limitation.
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Fig. 7 - Aircraft Rate Response with Standard MRAC
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Fig. 8- Aircraft Rate Response with Optimal Control Modification
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In contrast, the aircraft rate response for the optimal control modification tracks the reference model very well
as can be seen in Fig. 8. Furthermore, the optimal control modification results in no observable high-frequency
oscillation in spite of the fact that the learning rate is twoorders of magnitude greater than that for the standard direct
MRAC. For this simulation, a value ofν = 0.033 is used. A larger value ofν will degrade the tracking performance
but improve stability robustness. For comparison, the simulation also includes theε1-modification as shown in Fig. 9.
A value ofµ = 0.25 is used with a learning rateΓ = 104. Theε1-modification significantly reduces the high frequency
in the yaw rate response, but at the expense of the tracking performance as the amplitudes in the roll and yaw channels
significantly increase.
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Fig. 9- Aircraft Rate Response withε1-Modification

The simulation illustrates a potential benefit of the optimal control modification for fast adaptation. In practice,
there is a practical limit of how large a learning rate would be. In general, actuator dynamics can impose constraints
on the learning rate. The frequency separation between the adaptation and actuator dynamics can lead to potential
problems. Nonetheless, the optimal control modification demonstrates the tolerance to larger learning rates than the
standard MRAC which can be beneficial when fast adaptation isneeded to deal with large uncertainties.

One of the issues with adaptive control is the lack of metricsto assess stability robustness in the presence of
unmodeled dynamics and or time delay. With fast adaptation,it is known that the direct MRAC results in reduced
phase and time-delay margins.22 Thus, the learning rate must be chosen carefully in order to avoid instability due to
time delay and unmodeled dynamics. The optimal control modification is shown to provide more robustness whenν
approaches unity. Hence, it can also increase a system’s tolerance to destabilizing uncertainties like time delay.

An approximate, simple method for analyzing the stability margin of the optimal control modification is presented.
Since generally a nonlinear adaptive law cannot be analyzedby linear stability concepts, we propose to analyze the
linear bounded differential equations of the system as developed in the previous section. Because the nonlinear adap-
tive law is bounded locally, strictly speaking, we can only analyze the bounded system in a small moving time window
within which theγ parameter is defined.22 Toward that end, pre-multiplying Eq. (88) byb> to take advantage of the
fact thatb>b = I yields

b>ë−b>Acė+ γb>Pe− γνb>A−>
c PbΘ̃>Φ ≤ γνK−2

i ϕ + β (108)

for t ∈ [ti ,ti +T0], wheret0 = 0, ti = ti−1 +T0, andi = 1,2, . . . ,n→ ∞.
Solving forΘ̃>Φ from

b>ė≤ b>Ac
(

e−
∣

∣A−1
c bδε

∣

∣

)

+ Φ̃>Θ (109)

and substituting into Eq. (108) results in

b>ë−
(

b>Ac + γνb>A−>
c Pbb>

)

ė+
(

γb>P+ γνb>A−>
c Pbb>Ac

)

e≤ γνK−2
i ϕ + β − γνK−2

i b>Ac
∣

∣A−1
c bδε

∣

∣ (110)
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Upon evaluation, we get

ẍm− ẍ≤−Kixe−
(

Kp + γνK−2
i

)

ẋe−
(

γP12+ γνK−1
i

)

ˆ t

0
xedτ −

(

γP22+ γνK−2
i Kp

)

xe+ γνK−2
i (ϕ + δε)+β (111)

whereP12= K−1
i = diag

(

k−1
i,1 ,k−1

i,2 ,k−1
i,3

)

, andP22= K−1
p

(

I +K−1
i

)

= diag
(

k−1
p,1+k−1

p,1k−1
i,1 ,k−1

p,2 +k−1
p,2k

−1
i,2 ,k−1

p,3 +k−1
p,3k

−1
i,3

)

.

Referring to Fig. 4, the loop transfer function fromxe to x determines the stability margins of the flight control
system. Thus, definingH (s) as the transfer function matrix fromxe to x, then from Eq. (111),H (s) is obtained as

H (s) =

(

Kp + γνK−2
i

)

s2 +
(

Ki + γP22+ γνK−2
i Kp

)

s+ γP12+ γνK−1
i

s3 (112)

which can be broken into individual loop transfer functionssinceKp, Ki , P12, andP22 are all diagonal matrices which
imply H (s) is also diagonal whose elements are

h j (s) =

(

kp, j + γνk−2
i, j

)

s2 +
(

ki, j + γ p22, j + γνk−2
i, j kp, j

)

s+ γ p12, j + γνk−1
i, j

s3 , j = 1,2,3 (113)

Figure 10 is a plot of the phase margin ofh2(s) for the pitch rate as a function ofν for different values ofγ.
Increasingν is shown to result in an improved phase margin. Atν = 0, the phase margin approaches to zero asγ
increases. At large values ofγ, the phase margin approaches toπ

2 whenν → 1. This is consistent with Theorem 2.
Also it is observed that for some intermediate values ofν < 1, the phase margin is reasonably close toπ

2 . Thus,ν does
not have to be chosen close to unity in order to maintain good phase margin, so long asγ is large.
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Fig. 10 - Phase Margin Analysis of Optimal Control Modification

Figure 11 is a plot of the time delay margin ofh2 (s). Increasingν causes the time delay margin to increase
markedly. Conversely, atν = 0, increasingγ leads to a reduction in the time delay margin, which is well known in
adaptive control. On the other hand, withν > 0 above some small threshold, increasingγ results in an improvement
in the time delay margin. Thus, the optimal control modification improves robustness of the adaptation even in the
presence of fast adaptation.

It should be noted that Figs. 10 and 11 should be viewed in a relative sense rather than an absolute sense. The key
research question is how to selectT0 which is a time window in which the parameterγ is to be computed. In Figs. 10
and 11,γ is computed for the entire time interval which may overestimate both the phase and time delay margins. One
research idea has been suggested to adjust the learning rateperiodically by evaluatingγ for a moving time window
within which the system is bounded by a LTI system based on theComparison Lemma.22
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Fig. 11 - Time Delay Margin Analysis of Optimal Control Modification

Figure 12 illustrates the time delay effect on the optimal control modification. A time delay is introduced between
the aircraft plant input and output to simulate destabilizing uncertainties. For the same learning rateΓ = 104, the
standard MRAC can tolerate up to 0.004 s time delay before theadaptive law goes unstable. With the optimal control
modification, the time delay margin increases to 0.010 s and 0.114 s forν = 0.033 andν = 0.33, respectively. This is
consistent with the general observation in Fig. 11 that increasingν results in an improvement in the time delay margin.
However, this would come at the expense of tracking performance which would become worse asν increases.
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IV. Conclusions

This study presents a new modification to the standard model-reference adaptive control based on an optimal con-
trol formulation of minimizing the norm of the tracking error. The modification adds a damping term to the adaptive
law that is proportional to the persistent excitation. The modification enables fast adaptation without sacrificing ro-
bustness. When the learning rate tends to a very large value,the tracking error equation become approximately linear
in a bounded sense. This is a useful feature that can allow stability of the adaptive law to be studied in the context
of linear time invariant systems. The modification can be tuned using a parameterν to provide a trade-off between
tracking performance and stability robustness. Increasing ν results in better stability margins but reduced tracking
performance. Whenν approaches unity, the system has a phase shift close to 90 degrees. Simulations demonstrate the
effectiveness of the modification, which shows that tracking performance can be achieved at a much larger learning
rate than the standard model-reference adaptive control and that the adaptive law can tolerate a much greater time
delay in the system.
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