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Abstract Prognostics is an emerging concept in condition 

based maintenance (CBM) of critical systems. Along with 

developing the fundamentals of being able to confidently 

predict Remaining Useful Life (RUL), the technology calls for 

fielded applications as it inches towards maturation. This 

requires a stringent performance evaluation to establish the 

ingenuity and significance of the concept. Prognostics 

concepts lack standard definitions and suffer with ambiguous 

and incoherent interpretations. Applications vary in end-user 

requirements, time scales, available information, domain 

dynamics, etc. to name a few that have prevented from 

establishing any standards. The research community has used 

a variety of metrics based on respective requirements. Very 

little attention has been focused on establishing a common 

ground to compare different efforts. This paper presents a 

thorough review of various domains like medicine, weather, 

finance, nuclear, automotive, aerospace, electronics etc. that 

employ prediction related tasks and use a variety of 

performance metrics to evaluate these methods. Differences 

and similarities between these domains and health 

maintenance have been analyzed to help understand what 

performance evaluation methods may or may not be 

borrowed. Further, these metrics have been categorized in 

several ways that may be useful in deciding upon a suitable 

set based on the nature of a specific application. Some 

important prognostic concepts have been defined using a 

notational framework that enables interpretation of different 

metrics coherently. Last, but not the least, a list of metrics has 

been suggested to assess critical aspects of RUL predictions 

before they are fielded in real applications. 

Introduction 

Prognosis is emerging at the forefront of Condition 

Based Maintenance (CBM) of critical systems giving 

rise to the term Prognostic Health Management (PHM). 

However, there are major challenges in building a 

successful prognostics system that can be deployed in 

field applications [1]. Research efforts are focusing on 

developing algorithms that can provide a Remaining 

Useful Life (RUL) estimate, generate a confidence 

bound around the predictions, and can be integrated 

with existing diagnostic systems. A key step in 

successful deployment of a PHM system is prognosis 

verification. Since prognostics is still considered 

relatively immature as compared to diagnostics, more 

focus so far has been on developing prognostic methods 

rather than evaluating and comparing their 

performances. Tests are conducted based on specific 

requirements to declare the goodness of the algorithms 

but little or no effort is made to generalize the 

performance over variety of other situations. Hence, 

there is no direct way of comparing different efforts if 

one needs to identify the most suitable algorithm from 

a list of several. This calls for a set of general metrics 

that can be used in a standardized manner.  

Furthermore, different users of prognosis have 

different requirements; hence these verification 

metrics should be tailored for each end user (customer 

based verification) [2]. This poses a conflicting 

requirement to the idea of generalization of metrics. 

This confusion has prevailed for sometime in the 

CBM/PHM community and there is a need to classify 

various metrics into categories catering to different 

requirements. In this paper we have attempted to 

evaluate the verification process such that it can 

provide a structure for how to choose performance 

metrics for specific tasks and also compare an 

algorithm with other competing ones. 

In this paper we provide a concise review on a variety 

of domains that involve prediction tasks of some sort. 

All these domains have fielded prognostics/forecasting 

applications and have, therefore, implemented 

performance metrics that evaluate and compare one 

system with another. These metrics have been 

consolidated and categorized into several categories 

based on different criteria that may be useful to the 

CBM/PHM community. For the sake of consistency 

and clear description, a notational framework has been 

introduced and included along with basic prognostics 

related terms and definitions. The various metrics 

collected have been briefly explained and discussed as 

to how they can be of use to PHM applications. 

Finally, a set of metrics is suggested that may be used 

to evaluate and compare different algorithms in a 

standardized manner. 

Motivation 

For end of life predictions of critical systems, it 

becomes imperative to establish a fair amount of faith 

in the prognostic systems before incorporating their 

predictions into the decision making process.  A 

maintainer needs to know how good the prognostic 



 

estimates are before he can optimize the maintenance 

schedule. Without any reasonable confidence bounds a 

prediction completely looses its significance. 

Confidence bounds are a function of uncertainty 

management capabilities of an algorithm whereas 

performance metrics provide a means to establish sanity 

of any claims regarding such confidence bounds. 

Therefore, these algorithms should be tested rigorously 

and evaluated on a variety of performance measures 

before they can be certified. Furthermore, metrics help 

establish design requirements that must be met. In the 

absence of standardized metrics it has been difficult to 

quantify acceptable performance limits and specify 

crisp and unambiguous requirements to the designers. 

Standardized metrics will provide a lexicon for a 

quantitative framework for requirements and 

specifications. 

There are a number of other reasons that make the 

verification process important. In general three broad 

categories, scientific, administrative, and economic, 

have been identified for such reasons [3]. Performance 

evaluation allows comparing different schemes 

numerically and provides an objective way to measure 

how changes in training, equipment or prognostics 

models (algorithms) affect the quality of predictions. 

This provides a deeper understanding from the research 

point of view and yields valuable feedback for further 

improvements. One can identify bottlenecks in the 

performance and guide research and development 

efforts in the required direction. As these methods are 

further refined, quantitatively measuring improvement 

in predictions generates scores that can be used to 

justify for research funding in areas where either PHM 

has not yet picked up or where better equipment and 

facilities are needed. These scores can also be translated 

into costs and benefits to calculate Return-on-

Investment (ROI) type indexes to justify their fielded 

applications. Therefore, it is essential to devise metrics 

that can measure performance of various algorithms 

before any implementation can be fielded successfully. 

Performance evaluation is usually the foremost step 

once a new technique is developed. In many cases 

benchmark datasets or models are used to evaluate such 

techniques on a common ground so they can be fairly 

compared. Prognostics, in most cases, has neither of 

these options. Various research teams have shown how 

to evaluate their algorithms using a set of performance 

metrics but there have been inconsistencies in the 

choice of such metrics. This makes it incredibly 

difficult to compare various algorithms even if they 

have been declared successful based on their respective 

evaluations. It is an accepted fact that prognosis 

methods are application oriented and that it is difficult 

to develop a generic algorithm useful in every situation. 

Likewise, the methods to evaluate such algorithms are 

expected to be different. Furthermore, there has been 

an inconsistency in terminology used in different 

applications that leads to confusion in even the basic 

definitions. So far very little has been done to identify 

a common ground to test and compare different 

algorithms. In a survey on data driven methods for 

prognostics [4], it can be easily seen that there is a lack 

of standardized methodology for performance 

evaluation and in many cases performance evaluation 

is not even formally addressed. Even the ISO standard 

[5] for prognostics in condition monitoring and 

diagnostics of machines lacks a firm definition of such 

metrics. However, there must be a way to establish a 

common ground that can give a fair idea of how an 

algorithm fares w.r.t. others. Therefore, in this paper 

we have attempted to review various domains where 

prognostics type applications exist and have matured 

to a point of being fielded. We have also reviewed the 

state-of-the-art in PHM technology and tried to 

structure the verification methods in a logical fashion.  

Prognostics Terms and Definitions 

In this section we describe some commonly used 

terms in prognostics. Similar terms have been used 

interchangeably by different researchers and in some 

cases the same term has been used to represent 

different notions. This list is provided to reduce 

ambiguities that may arise by such non-standardized 

use. 

Assumptions: 

� Here prognostics is considered to be the 

remaining useful life estimation based on the 

current state assessment and expected future 

operational conditions of the system. 

� It is possible to estimate a health index as an 

aggregate of features and conditions 

� RUL estimation is a prediction/ forecasting/ 

extrapolation process. 

� Algorithms under consideration are capable of 

generating a single RUL value for each 

prediction. E.g., algorithms that produce RUL 

distributions can be adapted to compress the 

distribution to a single estimated number for 

comparison purposes.  

� All systems are under continuous monitoring and 

have the measurement capability that can acquire 

data as fault evolves. 

Glossary 

RUL: Remaining Useful Life 

UUT: Unit Under Test 



 

i : Index for time instant ti 

EOL: End-of-Life - Time index of actual end of life 

EOP: End-of-Prediction – earliest time index, i,  when 

prediction has crossed the failure threshold 

0: Time index for time of the birth of the system, t0  

F: Time index for the time when fault occurs, tF 
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Figure 1: Illustration depicting some important prognostic 

time definitions and prediction concepts. 

Definition 1 - Time Index: The time in a prognostics 

application can be discrete or continuous. We will use a 

time index i instead of the actual time, e.g., i=10 means 

t10.  This takes care of cases where sampling time is not 

uniform. Furthermore, time indexes are invariant to 

time-scales. 

Definition 2 - Time of Detection of Fault: Let D be the 

time index (tD) at which the diagnostic or fault detection 

algorithm detected the fault. This process will trigger 

the prognostics algorithm which should start making 

RUL predictions shortly after the fault was detected as 

soon as enough data has been collected. For some 

applications, there may not be an explicit declaration 

of fault detection, e.g., applications like battery health 

management, where prognosis is carried out on decay 

process. For such applications tD can be considered 

equal to t0 (time of birth) i.e., we expect to trigger 

prognosis as soon as enough data has been collected 

and not wait for an explicit diagnostic flag (Figure 2). 

Definition 3 - Time to Start Prediction: We will 

differentiate between the time when a fault is detected 

(tD) and the time when the system starts predicting (tP). 

For certain algorithms tP = tD but in general tp > tD as 

these algorithms need some time to tune with 

additional fault progression data before they can start 

making predictions (Figure 2). In cases where a data 

collection system is continuously collecting the data 

even before a fault is detected, enough data is already 

available to start making predictions right away and 

hence tP = tD. 
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Figure 2: Features and conditions for lth UUT. 

Definition 4 - Prognostics Features: Let )(if
l

n
 be a 

feature at time index i, where n = 1, 2, … , N is the 

feature number, and l = 1, 2, … , L is the UUT index 

(an index identifying the different units under test). In 

prognostics, irrespective of the analysis domain, i.e., 

time, frequency, wavelet, etc., features take the form 

of time series and they can be physical variables, 

system parameters or any other measurable quantity 

on the system that provides/aides the prognosis. The 

features can be also referred to as a feature vector F
l
(i) 

of the l
th

 UUT at time index i. 

Definition 5 - Operational Conditions: Let )(ic
l

m
 be 

an operational condition at time index i, where m = 1, 

2, … , M is the condition number, and l = 1, 2, … , L 

is the UUT index. The operational conditions describe 

how the system is being operated and is sometimes 



 

referred to as the load on the system. The conditions 

can also be referred to as a vector C
l
(i) of the l

th
 UUT at 

time index i. 

Definition 6 - Health Index: Let )(ih
l  be a health index 

at time index i for UUT l = 1, 2, … , L. h can be 

considered a normalized aggregate of health indicators 

(relevant features) and operational conditions.  

Definition 7 - Ground Truth: Let )(* ih
l  be the 

computed health (ground truth) at time index i  for 

UUT l = 1, 2, … , L after a run to failure test. This 

health index represents an aggregate of information 

provided by features and operational conditions up to 

time index i 

Definition 8 - Point Prediction: Let )|( ii
lπ  be a point 

prediction at time index i given information up to time 

tj. )|( ii
lπ  for i = EOL represents the critical threshold 

for a given health indicator. Predictions can be made in 

any domain, features or health. E.g. in some cases it is 

useful to extrapolate features and then aggregate them 

to compute health and in other cases features are 

aggregated to a health and then extrapolated to estimate 

RUL. 

Definition 9 - Trajectory Prediction: Let )(ilΠ  be the 

trajectory of predictions at time index i such that 
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Figure 3: Illustration showing a trajectory prediction. 

Predictions may modify every time instant and hence the 

corresponding RUL estimate. 

Trajectory prediction may be carried out in any domain, 

e.g. feature or health index. A general schematic has 

been shown in Figure 4. 

Definition 10 - RUL Estimation: Let )(ir
l  be the 

remaining useful life estimation at time index i given 

that the information (features and conditions) up to time 

index iand an expected operational profile for the future 

are available. As shown in Figure 4, prediction is made 

at time ti and it predicts the RUL given information up 

to time i for the UUT l = 1, 2, … , L. RUL will be 

estimated as 
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Figure 4: Comparing RUL predictions from ground truth (tp 

∈  [70,240], tEOL = 240, tEOP > 240). 

Forecasting Application Classification 

Based on our survey of several forecasting application 

domains, we identified two major classes of 

forecasting applications (Figure 5).  

Forecasting Applications
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Nominal data only
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Discrete predictions
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Prediction

Trajectory 

Prediction

A prediction threshold exists

Use monotonic decay models

Weather, Finance

Quantitative

Qualitative

Non-monotonic models

No thresholds

Statistics can 

be applied

Model-based + 

Data-driven

Medicine, Mechanical 

systems, structures

Electronics, Aerospace

Aerospace, Nuclear

Predict numerical values

Increasing or

decreasing trends

Event predictions

Decay predictions

Economics, Supply Chain

Future behavior predictions

 

Figure 5. Different categories of the forecasting applications 

In one class of applications a prediction is made on a 

continuous basis, and the trend of data is generally 

non-monotonic. These predictions may be discrete 

(e.g. forecasting market demand for a particular 



 

month) or continuous (e.g. variation of temperature 

over the period of next week). These predictions can be 

quantitative (e.g. prediction exact numbers) or 

qualitative (e.g. high or low demands) in nature. These 

applications like weather and finance have been in 

existence since a long time and have matured to a good 

extent. The intent is to learn from such domains and 

adapt methods to our needs.   The other class of 

applications involve where a critical threshold exists 

such that the system under test is declared to have died 

if it crosses the threshold. These applications usually 

can be modeled using decay models. Here the task of 

prognostics is to predict a Remaining Useful Life 

(RUL) estimate. In some cases, where enough history 

data exists (e.g. medicine) or can be experimentally 

generated (e.g. mechanical systems) for nominal and 

failure conditions, a variety of data-driven or statistical 

techniques can be applied. In such situations it is also 

relatively easy to evaluate the performance by 

comparing the prediction a posteriori. However, there 

are critical applications where run-to-failure 

experiments can not be afforded and very little failure 

history data is available (e.g. aerospace). In such cases a 

variety of methods based on data-driven and model-

based techniques have been proposed. It becomes 

extremely tricky and difficult to assess the performance 

in such cases due to absence of knowledge about the 

future outcomes. Methods are tested on experimental or 

simulated data and are expected to perform on real 

systems. Unfortunately algorithm performance does not 

always translate meaningfully from one dataset to 

another or one domain to another. Therefore, a standard 

set of metrics independent of application domain would 

be very desirable. 

Forecasting Domains Reviewed 

In this section we provide a concise assessment of 

prediction performance assessment methods in various 

domains. Specific relevant performance metrics have 

been listed in the next section. 

Aerospace: The aerospace industry is likely the field 

with the most vibrant research and development activity 

in prognostics today. This happened for a good reason – 

systems health inspections on spacecraft and aircraft are 

often difficult and costly, and sometimes impossible. 

The consequences of a premature failure can, however, 

be dire.  

Prognostic algorithms are beginning to be applied to 

monitoring condition of aircraft structures, avionics, 

wiring, control actuators, power supplies, and 

propulsion systems. Prognostic functionality is being 

incorporated into the health management system of the 

latest military aircraft (Joint Strike Fighter) and civilian 

(Boeing 747) aircrafts, in order to reduce the overall 

lifecycle cost and increase flight readiness. Companies 

such as Boeing, Moog, Impact Technologies, and 

Ridgetop Corporation, among others, have established 

dedicated prognostics research groups.  Active work 

on aerospace prognostics is also being conducted by 

government and academic organizations - NASA, Air 

Force Research Laboratory, DARPA, Georgia Institute 

of Technology, and Vanderbilt University, among 

others. 

The aerospace industry has also led in developing the 

metrics to evaluate prognostic algorithms. Most of the 

metrics have, historically, focused on the technical 

merits of prognostic techniques, such as accuracy and 

reliability, although in the recent years more attention 

have been given to those accessing the business merits 

(ROI, Total Value, and others). As the prognostic 

systems make their way into the commercial aerospace 

sector, they are expected to help with maintenance 

scheduling, optimal operating mode determination, 

and asset purchasing decisions. 

Electronics: Prognostics for electronics is currently 

less advanced than prognostics for mechanical 

systems. Many researchers in electronics prognostics 

therefore take their inspiration from previous work in 

mechanical prognostics, and use similar algorithms 

and similar metrics, including the usual accuracy 

metrics [6-8]. Some of the work in electronics 

prognostics emphasizes the potential cost savings 

provided by prognostics, and therefore relies on 

cost/benefit metrics such as ROI [9-11], life cycle cost 

[12], and MTBF/MTBUR ratio [13]. Methods used for 

data collection include measuring the temperatures of 

components [14, 15], installing "canaries" (electronic 

devices that are designed to fail before the operational 

devices do) [15], collecting data about operational 

conditions such as vibration [7], usage hours [15], or 

ambient temperature, using strain gauges to measure 

the strain on solder joints [16], and detecting when the 

performance of a system degrades (for example, when 

more correctable errors begin to occur) [14]. 

Medicine: Medicine is a field where diagnostics and 

prognostics have a long tradition. Indeed, medicine 

has a large body of tests and indicators that are used 

commonly to aid in decision-making such as blood 

pressure and cholesterol levels.  The field has come to 

trust these prognostic indicators when they have been 

subject to the double blind clinical trial. While this test 

is not perfect, it provides a metric against which other 

results can be compared. Although prognostics is a 

common tool in medicine, the most significant 

constraint is the way how prognostic results are 

measured. Typically, survival rates are quantized into 

increments such that the problem boils down to a 

classification problem. For example, one would 



 

typically measure the number of cancer survivors past, 

say, 10 years, and then assess whether the prediction 

was correct or not. Despite that constraint, there are a 

number of ancillary metrics that have been in use which 

quantify the quality of a prediction in the context of a 

regression problem. 

Nuclear: With increasing energy demands nuclear 

power plants play an important role in the energy 

sector. Average life of a nuclear reactor being 20-30 

years, efforts are underway to extend the life of these 

reactors using advanced monitoring and maintenance 

techniques. Where advanced diagnostics has been 

implemented in the US and Europe, prognostics is still 

at conceptual levels. Most metrics developed so far 

have been to establish a profitable business case rather 

than maturing prognostics itself [17, 18]. Data records 

like overall plant operating efficiency and maintenance, 

machinery repair records, etc. are used to derive cost-

benefit analysis for prognosis. For instance, improved 

thermal efficiency is translated into gas cost savings 

and increase in available capacity translated into 

savings from not using the spare unit, etc. However, the 

lack of prognosis deployment has resulted in very little 

research in improving the prognosis itself and hence not 

many verification schemes. 

Finance: In the area of finance and economics, we 

encountered various metrics that are used to evaluate 

future predictions. In most cases these metrics are 

sophisticated estimates of accuracy and precision. 

Metrics like bias, standard error, and variance have 

been further modified into estimates like Mean Squared 

Error (MSE), Average Percentage Error (APE),Mean 

Average Percentage Error (MAPE), MAD, ADE, etc. 

on the other hand we also encountered various tests that 

establish the trust in predictions. Tests like Henriksson 

and Merton test, Chi-squared test, Timmerman’s test, 

Theil’s U-statistic, etc. are some to name a few. In 

general a trajectory is usually predicted and the 

performance is assessed on a continuous basis as actual 

results become available. 

Weather: Forecasting weather patterns has probably 

been one of man's earliest attempts at modeling and 

prediction, and continues to be just as significant today 

as it was before. Various modeling and forecasting 

methodologies have evolved from the study of weather 

as well as a variety of metrics to compare these 

techniques. However, the essence of the widely used 

metrics can be grouped in two categories: those that 

measure bias or error with respect to a baseline, and 

those that measure resolution or the ability of the 

forecast to distinguish between different outcomes. The 

baselines to be used as a basis of comparison can also 

vary between aggregate weather history (over the last 

10 years, for example), current measurements or even 

reference forecasts. This kind of approach is well 

suited to a field where measurements have improved 

in accuracy but our understanding of weather patterns 

is still evolving. 

Automotive: Fault prognostics have recently become 

a vital part of on-board diagnostics (OBD) of the latest 

vehicles. "The goal of this technology is to continually 

evaluate the diagnostics information over time in order 

to identify any significant potential degradation of 

vehicle subsystems that may cause a fault, to predict 

the remaining useful life of the particular component 

or subsystem and to alert the driver before such a fault 

occurs." Mostly, the approach consists of trending of 

residuals extracted from diagnostic information. The 

metrics used are mainly accuracy measures like MSE 

or Gaussian pdf overlaps. The overall methodology is 

data-driven and suitable where extensive baseline data 

is available. 

Prognostics Metrics Classifications 

A variety of prognostics metrics are used in the 

domains reviewed above. Depending on the end use of 

the prognostic information, basic accuracy and 

precision based metrics are transformed into more 

sophisticated measures. Several factors were identified 

that classify these metrics into different classes. In this 

section we attempt to enumerate some of these 

classifications. 

Functional Classification 

The most important classification is based on the 

information these metrics provide to fulfill specific 

functions. In general we identified three major 

categories, namely: (1) Algorithm performance 

metrics, (2) Computational performance metrics, and 

(3) Cost-benefit metrics. As evident from their names 

these metrics measure success based on entirely 

different criteria. As shown in Figure 6, the 

algorithmic performance metrics can be further 

classified into four major subcategories. 

Performance Metrics

Algorithm Performance

Computational Performance

Cost-benefit

Accuracy

Precision

Robustness

Trajectory

 



 

Figure 6. Functional classification of prognostics metrics. 

End User based classification 

Prognostics information may be used by different 

people for entirely different purposes. In general, end 

users of prognosis may be classified in the following 

five categories as shown in Table 1. 

Table 1. Classification of prognostic metrics based on end 

user requirements. 
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Classification Based on Predicted Entity 

Within PHM applications, we identified three major 

classes of the forms of prediction outputs and hence the 

corresponding metrics. Prognostics performance can be 

established based on different forms of the prediction 

outputs, e.g. future health index trajectory at tP, an RUL 

estimate at tP, or a on a RUL trajectory as it evolves 

with time. Some algorithms provide a distribution over 

predicted entities to establish confidence in predictions. 

Metrics to evaluate such outputs differ in form than 

those required for single value predictions. In other 

cases such a distribution is obtained from multiple 

UUTs, e.g. from fleet applications. The basic form of 

the metrics used for various categories may be similar, 

but the underlying information conveyed is usually 

different in a statistical sense.  Figures 7-9 illustrate 

some representative eamples. 
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Figure 7(a) Predictions are made in the health domain for a 

single UUT. A health trajectory is predicted  to consider 

evolution of fault in the system. (b) Predictions can be in the 

form of distributions with associated confidence bounds.  
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Figure 8 (a) Each prediction in health domain appears as a 

point prediction in the RUL domain, which then may be 

compared with ground truth (b) RUL predictions may be 

obtained with corresponding confidence limts. 

0 50 100 150 200 250
0

100

200

Time Index (i)

R
U

L

0 50 100 150 200 250
0

100

200

Time Index (i)

0 50 100 150 200 250
0

100

200

Time Index (i)  

                   (a)                                                 (b) 

Figure 9 (a) A further assessment can be made on how well 

an algorithm’s RUL estimate evolves over time and 

converges to the true value as more data becomes available. 

(b) Such RUL trajectories may be accompanied by 

corresponding error bars as well. 

Prognostics Metrics 

Computational Metrics 

Most of the publications in the area of prognostic 

algorithms for aerospace make no mention of 

computational performance. Many authors have been 

able to avoid the question of computational 

performance so far because they have not yet deployed 

their systems. We feel that assessing the computational 

performance of prognostic algorithms is very 

important, especially for applications that intend to 

monitor real-time data to make safety-critical 

decisions, such as deciding when it is necessary to 

shut down an engine or to land an aircraft to perform 

critical maintenance. In this section, we suggest 

several metrics that could be used to measure 

computational performance of prognostic algorithms, 



 

all of which are already widely used to measure the 

computational performance of other types of 

algorithms. 

In theoretical computer science, the computational 

complexity of algorithms is usually described using 

“Big O” notation [19]. This notation describes the 

amount of time needed for the algorithm to run, as 

function of the size of the input, and does so 

asymptotically, ignoring constant factors. For example, 

if the time performance of an algorithm is O(n
2
), then 

the time needed to run the algorithm increases 

quadratically with the size of the input. Big O notation 

allows the comparison of different algorithms to be 

independent from the particular software 

implementations and from the hardware on which the 

algorithms are run. 

To measure the combined performance of an algorithm, 

its software implementation, and the hardware on which 

it is run, once can measure either central processing unit 

(CPU) time or elapsed time. CPU time measures the 

amount of time that the CPU spends executing the 

software, and does not include the time that the CPU 

spends running other software (in a time-shared 

system), or the time that the CPU spends waiting for 

input or output (I/O). The advantage of measuring CPU 

time instead of elapsed time is that it is more 

repeatable. Elapsed time (also known as “wall-clock 

time”) simply measures the amount of time that it takes 

for an algorithm to run, including I/O time. It is not 

appropriate to use elapsed time as a metric on a time-

shared (multi-user) system, since in that situation the 

activities of other users can affect the elapsed time. 

CPU time and elapsed time are both appropriate for 

applications in which the prognostic algorithm is run in 

“batch mode” on recorded data. They can answer the 

question of whether the software will run fast enough to 

produce results within a reasonable amount of time. 

For applications in which the data is processed in real-

time, the more relevant question is whether or not the 

software can keep up with the real-time data stream. A 

metric that can be used to answer this question is how 

many samples per second the software (running on a 

particular hardware configuration) can handle. For 

example, an application may require the software to be 

able to process real-time sensor data at 100 samples per 

second (100 Hz). 

Besides time, the other major consideration in 

computational performance is space. Often if makes 

sense to separately measure the amount of main 

memory [such as dynamic random access memory 

(DRAM)] used, and the amount of storage (such as disk 

space or flash RAM) used. In both cases, one can either 

report the asymptotic space complexity using Big O 

notation, or the number of bytes used by a particular 

implementation. Space usage is particularly important 

in embedded applications, such as when the algorithm 

is run on the flight computer of an aircraft of 

spacecraft, since these on-board computers usually 

have very limited space available. 

Recommendations 

A survey of wide variety of domains reveals that some 

metrics are common to most applications whereas 

some are very domain specific.  In this section we pick 

metrics that we consider very relevant to prognostics 

and also make a recommendation for few new ones 

that evaluate several key aspects of prognostics. 

As far as algorithmic performance metrics are 

concerned, the metrics based on accuracy and 

precision dominate the list. They provide the simplest 

assessment of prediction assessment. Of course, 

simple error measures can then be combined into more 

sophisticated ones to cater specific needs. Whereas in 

diagnostics the aim is to classify a fault or precursor of 

a fault, a prognostics problem tries to make a judgment 

about the remaining life of a component. Starting with 

the assumption that remaining life estimates will 

essentially never be completely on the mark, and using 

the fact that this is not required in most cases, the 

metric takes advantage of the acceptable tolerance 

around the actual remaining life. Here, one needs to 

keep in mind that the utility of the error is most often 

not symmetric with respect to zero (where the error is 

defined as the difference between actual remaining life 

and estimated remaining life). For instance, if the 

prediction is too early, the resulting early alarm forces 

more lead-time than needed to verify the potential for 

failure, monitor the various process variables, and 

perform a corrective action. On the other hand, if the 

failure is predicted too late, it means that this error 

reduces the time available to assess the situation and 

take a corrective action.  The situation deteriorates 

completely when the failure occurs before a prediction 

is made that advises of critical system state. Therefore, 

given the same error size, it is in most situations 

preferable to have a positive bias (early prediction), 

rather than a negative one (late prediction). Of course, 

one needs to define a limit on how early a prediction 

can be and still be useful. Therefore, two different 

boundaries for the maximum acceptable late prediction 

and the maximum acceptable early one can be 

established. Any prediction outside of the boundaries 

will be considered either a false positive or a false 

negative. One can define the prediction error [20] as 

the difference between actual time to failure and 

predicted time to failure Figure 10.  
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Figure 10. Conceptual prediction results and error assessment 

In particular, focus will be on two instances of the 

error:  

1. E(tc) - prediction error at the time tc when the 

critical zone (for example, within the next 

mission) is reached, and 

2. E(tEOL) - prediction error at the time when the 

failure occurs.  

Incorrect classifications are typically classified as false 

negatives (FN) and false positive (FP). In the context of 

late or early predictions, these categorizations are based 

on the magnitude of deviation from true time of failure. 

Therefore, one can define the following limits as the 

maximum allowed deviations from the origin: 

False Negatives A prediction is considered a false 

negative if one fails to correctly predict a failure more 

than tfn time units later than the actual time to failure, 

i.e., E(tc) < -tfn time units. Note that a prediction that is 

late more than tc time units is equivalent to not making 

any prediction and having the failure occurring. 

False Positives A prediction is considered a false 

positive if we fail to correctly predict a failure if the 

prediction is more than tfp time units earlier than the 

actual time to failure, i.e., E(tc) > tfp time units. This is 

considered to be excessive lead time, which may lead to 

unnecessary corrections. 

Conclusions 

In this paper we have provided a concise review of 

several domains and collected a variety of commonly 

used metrics to evaluate prediction performance.  A list 

of concepts specific to CBM/PHM requirements has 

been compiled and put these concepts into a notational 

framework to facilitate unambiguous descriptions.  

Several possible categorizations of these metrics have 

been formulated and provided to enhance the 

understanding of commonalities and differences 

between varied usages of similar methods. Towards 

the end some new metrics have been suggested that 

specifically cater to the PHM requirements. Although 

an effort has been made to cover most requirements, a 

further refinement in concepts and definitions is 

expected as prognostics matures. With this effort a 

discussion has been opened within the research 

community to standardize the performance evaluation 

of the prognostic systems.  
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Table 2. List of metrics for algorithm performance evaluation 

 

Metric Name Definition Description 
Range of 

Values 

Selected 

References 
 

Accuracy 
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Weighs exponentially the errors in RUL predictions and 

averages over several UUTs; where, D0 is a normalizing 

constant whose value depends on the magnitudes in the 

application. 
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Averages the errors in predictions made at all subsequent times 

after prediction starts. This metric can be further averages bias 

over all UUTs to establish overall bias. 
[0,∞] [1]  
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Exponentially weighs RUL prediction errors through an 

asymmetric weighing function. Penalizes the late predictions 

more than early predictions. 
[0,∞] [1]  

Anomaly 

correlation 

coefficient 

(ACC) 
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where, Z is a weather variable (e.g. rainfall) and the 

subscripts F, V and C denote forecast (prediction), 

validation dataset (ground truth) and climate (history 

data) respectively.  

Measures correspondence or phase difference between 

forecast and observations, subtracting out the 

climatological mean at each point, rather than the 

sample mean values. The anomaly correlation is 

frequently used to verify output from numerical weather 

prediction (NWP) models. ACC is not sensitive to 

forecast bias, so a good anomaly correlation does not 

guarantee accurate forecasts. In the PHM context, it can 

be used to correct long term predictions using 

autocorrelation regression over a few time steps after 

prediction. However, the method requires computing a 

baseline from history data. 
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where FPt  = user defined acceptable early prediction 

Assesses unacceptable early prediction of the predictor 

at specified time instances. User must set acceptable 

range for prediction 

[0,∞] [20]  
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where FNt  = user defined acceptable late prediction 

Assesses unacceptable late prediction of the predictor at 

specified time instances. User must set acceptable range 

for prediction 
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Robustness 
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Measures how sensitive a prognostic algorithm is to changes 

in input changes or external disturbances. Can be assessed 

against any performance metric of interest. ∆M is the distance 

measure between two successive outputs for metric M’s value 

and ∆input is distance between two successive inputs. 

[0,1]   

Reliability 

diagram 

 

∑ −
k

kk po
 is a measure of the deviation from the 

diagonal and can be used as a score. 

The reliability diagram plots the observed frequency 

against the forecast probability, where the range of 

forecast probabilities is divided into K bins (for 

example, 0-5%, 5-15%, 15-25%, etc.). The sample size 

in each bin is often included as a histogram or values 

beside the data points. Reliability is indicated by the 

proximity of the plotted curve to the diagonal. The 

deviation from the diagonal gives the conditional bias. If 

the curve lies below the line, this indicates 

overforecasting (probabilities too high); points above 

the line indicate underforecasting (probabilities too 

low). The flatter the curve in the reliability diagram, the 

less resolution it has. This metric is useful in comparing 

RUL predictions made for a batch of systems based on 

the aggregate health indicators for the group. 
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The area under the ROC curve can be used as a score. 

ROC measures the ability of the forecast to discriminate 

between two alternative outcomes, thus measuring 

resolution. It is not sensitive to bias in the forecast, so 

says nothing about reliability. A biased forecast may 

still have good resolution and produce a good ROC 

curve, which means that it may be possible to improve 

the forecast through calibration. The ROC can thus be 

considered as a measure of potential usefulness. 

[0 1] 

Perfect 

score = 1 

[21, 22]  

      

 

Table 3. List of metrics based on economic aspect of prognosis 

 

Metric Name Definition Description Range of Selected  



 

Values References 

Cost/Benefit 

Return on Investment (ROI) gain/investment 

An investment in prognostics is expected to save money on maintenance and 

possibly prevention of downtime or lost hardware over the life of the system. 

The gain is the amount of money saved as a result of using prognostics, and the 

investment is the cost of developing and installing the prognostic system. The 

ROI (which is usually annualized) can be seen as the interest rate that a bond 

would have to pay to provide the same financial return. An investment should 

only be made if its ROI is at least as high as those of other potential investments 

with similar risk. 

[-∞,∞] [9-11]  

Life-cycle cost 
acquisition cost + 

operations cost 

As a metric, compare the life cycle cost of the system (which includes the cost of 

building it or acquiring it and the cost of operating it) with and without 

prognostics. Total Value is the change in life cycle cost. ROI will be positive if 

adding prognostics reduces life cycle cost. 

[0, ∞] [12]  

MTBF/MTBUR ratio (mean time 

between failure / mean time between 

unit replacement) 

MTBF/MTBUR 

This metric measures the ratio between how long a component lasts and how 

long it is used before replacing it. Prognostics should enable the reduction of this 

ratio by allowing components to be used longer, until they are closer to failure, 

which would save money. 

[0, ∞] [13]  

      

 

Table 4. New performance metrics suggested for prognostics in CBM/PHM domain 

 

Metric Name Definition Description 
Range of 

Values 

Related 

References 
 

New Metrics for Prognostics 

Prognostic 

Horizon 
H(i)=j-i 

This metric is mentioned in the “Electronics 

Prognostics R&D Needs Definition” presentation, but 

not explicitly defined.  We suggest the following 

definition: 

Prognostic Horizon is the difference between the 

current time index i and the largest time index, j, that 

the algorithm can make a prediction for, provided the 

data accumulated up to the time index i. 
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set on a metric M. 
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The metric estimates sensitivity of another metric 

(accuracy, timeliness, etc) to the changes in the data 

set sampling frequency.  The estimate is done using a 

reference frequency that can, for example, be the 

recommended design frequency for the particular 

algorithm 
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This metric is suggested for use when two or more 

different datasets are employed to train or evaluate the 

prognostic system and the equivalency of these sets 

needs to be estimated.    This may become relevant 

when the data is obtained on differently configured 

equipment or from related, but sufficiently distinct 

fields (e.g. the same engine type deployed on a 

military transport versus a civilian airliner). 

 

Feature length, sampling rate, standard deviation, and 

min/max values are the suggested components for this 

metric; this can, however, be tailored to the specific 

application. 

 

This metric can be used as a part of the more 

encompassing Experiment Equivalency Metric or in 

conjunction with other metrics in this table - to 

provide a quantitative assessment of the data sources 

used to calculate them. 

   

History Size 

Required 
HS=n; ( )∞∈ ,1n  

Indicates how many consecutive sets of feature values 

are required to be known at any given time for the 

algorithm to function properly 

[1,∞]   



 

 


