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Prognostics and Health Management (PHM) has seen a resurgence recently with new service offerings in industry 

for guaranteed uptime and with military requirements asking for cost-containing condition-based maintenance 

(CBM) implementations. A chief component of PHM is prognostics, which is also its least mature element. 

Prognostics attempts to estimate remaining component life, given that an abnormal condition has been detected. Key 

to useful prognostics is not only an accurate remaining life estimate, but also an assessment of the estimate’s 

confidence. The latter is often times expressed through a probability density function that envelopes the prediction, 

by allowing the computation of confidence bounds around it. It is the uncertainty estimate that poses particular 

challenges to the prediction since it must account for various sources stemming from measurements, state 

estimation, model inaccuracies, future load uncertainty, etc. In this article, we examine these issues using battery 

health management as a test case. 

 

Batteries form a core component of many machines and are often times critical to the well being and functional 

capabilities of the overall system. Failure of a battery could lead to reduced performance, operational impairment 

and even catastrophic failure, especially in aerospace systems. A case in point is NASA’s Mars Global Surveyor 

which stopped operating in November 2006. Preliminary investigations revealed that the spacecraft was commanded 

to go into a safe mode, after which the radiator for the batteries was oriented towards the sun. This increased the 

temperature of the batteries and they lost their charge capacity in short order. This scenario, although drastic, is not 

the only one of its kind in aerospace applications. An efficient method for battery monitoring would greatly improve 

the reliability of such systems. 

 

The phrase “battery health monitoring” has a wide variety of connotations, ranging from intermittent manual 

measurements of voltage and electrolyte specific gravity to fully automated online supervision of various measured 

and estimated battery parameters. In the aerospace application domain, researchers have looked at the various failure 

modes of the battery subsystems. Different diagnostic methods have been evaluated, like discharge to a fixed cut-off 

voltage, open circuit voltage, voltage under load and electrochemical impedance spectrometry (EIS) [1] and 

combining conductance technology with other measured parameters like battery temperature/differential information 

and the amount of float charge [2]. Electric and hybrid vehicles have been another fertile area for battery health 

monitoring [3]. Dynamic models for the lithium ion batteries that take into consideration nonlinear equilibrium 

potentials, rate and temperature dependencies, thermal effects and transient power response have been built [4]. 

Sophisticated reasoning schemes have been applied to feature vectors with the goal of estimating state of charge 

(SOC), state of health (SOH) and state of life (SOL). Not withstanding the body of work done before, it still remains 

notoriously difficult to accurately predict the end-of-life of a battery from SOC and SOH estimates under 

environmental and load conditions different from the training data set. This is where advanced regression, 

classification and state estimation algorithms have an important role to play. We now describe the problem scenario 

and data collection scheme for battery health management used in our case study. 

DATA 

Data have been collected from second generation 18650-size lithium-ion cells (i.e., “Gen 2” cells) that were cycle-

life tested at the Idaho National Laboratory under the Advanced Technology Development (ATD) Program.  This 

program was initiated in 1998 by the U.S. Department of Energy’s Office of Vehicle Technologies to find solutions 

to the barriers that limit the commercialization of high-power lithium-ion batteries for hybrid electric and plug-in 

hybrid electric vehicles. Towards that end, cells are aged under various conditions with the intent of addressing 

some of the key barriers such as poor low temperature performance, abuse tolerance, and accurate life prediction. 



Life testing establishes behavior over time at various temperatures, states of charge and other stress conditions and 

includes both cycle-life and calendar-life testing. Reference performance tests are used to establish changes in the 

baseline performance and are performed periodically during life testing, as well as at the start and end of life testing.  

 

The Gen 2 cell testing involved exhaustive evaluation of baseline and variant cells, distributed amongst three 

national laboratories with a test matrix consisting of three states-of-charge (SOCs) (60, 80, and 100% SOC), four 

temperatures (25, 35, 45, and 55°C), and three life tests, namely calendar-life, cycle-life, and accelerated-life [5]. 

Completion of the tests took up to four years, depending on test and stopping criteria. The data used in this study 

were from cells that were cycle-life tested at 60% state-of-charge (SOC) and various temperatures (25
o
C and 45

o
C). 

Table 1 gives the chemical details of the cells under test. 

 

Table 1 – Li-ion Cell (ATD Gen 2Cell Baseline) Chemistry 

Positive 

Electrode 

8 wt% PVDF binder 

4 wt% SFG-6 graphite 

4 wt% carbon black 

84 wt% LiNi0.8Co0.15Al0.05O2 

Negative 

Electrode 

8 wt% PVDF binder 

92 wt% MAG-10 graphite 

Electrolyte 1.2 M LiPF6 in EC:EMC (3:7 wt%) 

Separator 25 µm thick PE (Celgard) 

 

As part of the reference performance test for these Gen 2 cells, electrical impedance spectroscopy (EIS) 

measurements were periodically taken to determine impedance changes in the electrode-electrolyte interface as a 

function of cell life. EIS measurements were initiated by discharging the cells from a fully-charged state to the 

specified open-circuit voltage (OCV) corresponding to the target SOC. Following an eight to twelve-hour rest at 

OCV, which allowed the cells to reach electrochemical equilibrium, the impedance was measured using a four-

terminal connection over a frequency range of 10 kHz to 0.01 Hz, with a minimum of eight points per decade of 

frequency. This test was performed on all cells at 60% SOC.  

 

All testing was performed with cells placed in environmental chambers to control ambient temperature. The 

chambers control the temperature to within ±3°C, as specified in the test plan [6]. Also, all Gen 2 cells were placed 

in thermal blocks to more uniformly control the cell temperature and minimize temperature transients (see Figure 

1a). Thermocouples were also placed on each cell to monitor temperatures during life testing. Figure 1b shows a 

similar aging setup at the NASA Ames Research Center (ARC) which will be used to further investigate different 

prognostic methodologies. 

   

 
(a)                (b) 

Figure 1 a – Thermal block with cells (INL); b – Prognostic testbed at NASA ARC 

 

The cycle-life test consisted of constant power discharge and regeneration pulses with interspersed rest periods for a 

total duration of 72 seconds, and is repeated continuously while centered around 60% SOC. This profile assumes a 



full size battery pack and needs to be scaled to a cell-size level [5]. It has been demonstrated that battery capacity 

degradation can be characterized through changes in the internal parameters of the battery and these changes can be 

observed as shifts in EIS data plots.  Figure 2 shows the shift in EIS data of a representative Gen 2 cell that was 

cycle-life aged at 25
o
C and 60% SOC. 
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Figure 2 – Shift in EIS Data with Ageing 

 

To describe these parameters the battery operation is expressed in the form of structural and functional models, 

which aid in the construction of the “physics of failure mechanisms” model. Features extracted from sensor data 

comprising of voltage, current, power, impedance, frequency and temperature readings, are used to estimate the 

internal parameters of the lumped parameter battery model shown in Figure 3. The parameters of interest are the 

double layer capacitance CDL, the charge transfer resistance RCT, the Warburg impedance RW and the electrolyte 

resistance RE. The values of these internal parameters change with various aging and fault processes like plate 

sulfation, passivation and corrosion.  
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Figure 3 – Lumped Parameter Model of a Cell 

 

 

Data Processing 

The values of these internal parameters define the shape and position of EIS plots and hence can be extracted from 

these plots as diagnostic features. Figure 4 shows a zoomed in section of the data shown in Figure 2 with the battery 

internal model parameters identified. Since the Nyquist plot of a capacitance and resistance in parallel (CDL and RCT 

as shown in Figure 3) is expected to be a semicircle, we used data from the EIS curves in an automated fashion to fit 

semicircles to the middle portion of the graph. The fitting was performed in the least square sense as shown below: 
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where, Zi,Im and Zi,Re are the imaginary and real parts of impedance of data point i in the EIS plots of Figure 4. The 

center (on the x-axis) and the radius of the fitted semicircle are denoted by c and r respectively. The left intercept of 

the semicircles give the RE values while the diameters of the semicircles give the RCT values. Other internal 

parameters showed negligible change over the aging process and are hence ignored for further analysis. 



 

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026
0

1

2

3

4

5
x 10

-3 60% SOC EIS Impedance at 5 mV (0.1-400 Hz)

Real Impedance (Ω)

Im
a

g
in

a
ry

 I
m

p
e

d
a

n
c
e

 (
- j
 Ω

) Ageing

 
Figure 4 – Zoomed in EIS Plots with Internal Battery Model Parameter Identification 

 

We noted that there was a very high degree of linear correlation between the C/1 capacity (capacity at nominal rated 

current of 1A) and the internal impedance parameter RE+RCT (Figure 5).  We will show how this relationship can be 

exploited to estimate the current and future C/1 capacities. 
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Figure 5 – Correlation between Capacity and Impedance Parameters 

METHODS 

The main objective of this study was to develop prognostics algorithms to predict remaining life of the batteries with 

high confidence. We also wanted to compare various prediction techniques for their strengths and weaknesses in 

addressing the issues of accuracy of predictions and uncertainty management against various trade-offs like 

complexity and computational burden, which may be crucial for some real-time applications. Starting with very 

simple statistical regression techniques, we applied more sophisticated probabilistic regression and advanced state 

estimation based hybrid algorithms to cover a wide range of algorithms. These techniques and corresponding results 

are presented next. 

Statistics based Baseline Model 

We first employed a simple data-driven routine to establish a baseline for battery health prediction performance and 

uncertainty assessment. We then employed more sophisticated models to improve on this baseline. Battery health is 

here directly tied to capacity. The battery is considered to be in a failed state when its capacity has faded by 30%. 

We constrained the problem by making available only information from batteries aged under specific environmental 

conditions to then predict the end-of-life of batteries operating under different environmental conditions (and 

therefore aging at different, unknown rates).  EIS measurements were provided as health monitoring data to help 



with the state assessment. Performance assessment was done at specified intervals by measuring the accuracy of 

prediction. In addition, an uncertainty assessment was carried out to qualify the goodness of the prediction. 

 

For the data-driven approach, one can glean, from the relationship between RE+RCT and the capacity C at baseline 

temperature (25ºC), the equivalent damage threshold in the RE+RCT, i.e., dth=0.033. We also explored more 

sophisticated Robust linear regression techniques like robust MM regression and the robust-LTS (Least Trimmed 

sum of Squares) regression to extract this relationship. These methods are resistant to outliers and robust to 

deviations from a Gaussian distribution. The results obtained with the robust methods are similar to the one obtain 

from the simpler method discussed above and ratify the damage threshold dth=0.033. Next, via extracted features 

from the EIS measurements, RE+RCT can be tracked at elevated temperatures (here 45 deg C). Ignoring the first two 

data points (which behave similar to what is considered as “wear-in” pattern in other domains), a
 
second degree 

polynomial is used at the prediction points to extrapolate out to the damage threshold. Confidence bounds are 

projected to the damage threshold to show the uncertainty distribution around the prediction. Figure 6 illustrates that 

the prediction accuracy at prediction point t=32 weeks is rather poor. The prediction is late by 7.55 weeks and the 

associated uncertainty has extremely wide tails, particularly on the right side. In contrast, prediction accuracy 

performed at t=48 weeks is almost perfect, with an error of only 0.01 weeks (with the caveat that this is not likely a 

generalizable accomplishment). The resulting uncertainty distribution is much narrower, although it is still 

somewhat large on the right. Therefore, we establish that simpler methods can yield a fairly good estimate in 

situations like these. However, the confidence in these predictions is rather low and may not be favorable in critical 

applications. 

 

    
(a)                (b) 

Figure 6 – Extrapolation to damage threshold and resulting uncertainty distribution; 6a: Regression on 

RE+RCT; 6b: Predictions shown superimposed to capacity 

 

Probabilistic Regression Model 

 

We then explored a Gaussian Process Regression (GPR) method to estimate the end-of-life. GPR is a probabilistic 

technique for nonlinear regression that computes posterior degradation estimates by constraining the prior 

distribution to fit the available training data [7]. It provides variance around its mean predictions to describe 

associated uncertainty in the predictions. We used GPR to regress the evolution of internal parameters (RE+RCT) of 

the battery with time at 45ºC. Relationship between these parameters and the battery capacity was again learned 

from experimental data at 25ºC. We found that GPR, being a probabilistic approach, fails to learn internal parameter 

evolution with only a few data points for learning when exposed to data up to only t =32 weeks. As shown in Figure 

7a, the prediction at t = 32 weeks fails to follow the actual trend and hence leads to extremely late end-of-life 

predictions. However, with some more learning data up to t = 48 weeks it picks up the trend fairly well and 

corresponding end-of-life probability density function (pdf) is shown in Figure 7b. The end-of-life prediction at t = 

48 weeks is 70 weeks with an error of +6 weeks of late prediction. These predictions got more accurate and precise 

as more data were made available for learning. Therefore, we conclude that although more sophisticated approaches 

like GPR are helpful in characterizing the uncertainty in the predictions, they need sufficient statistical data to 



properly learn the nonlinear dynamics of the process. 

 

 
(a)                (b) 

Figure 7 a – Predictions improve significantly as more training data is available; b – End-of-life predictions 

for battery capacity using GPR at week 48 

 

Particle Filter Model 

 

The behavior of the previous methods indicates that the regression techniques fail to learn non-linear trends in the 

absence of full-range training data. For such situations one must be able to track trends as they change and modify 

predictions to conform to established degradation models. With this goal in mind, we then examined the state of the 

art in prediction technology, i.e., particle filters. Particles filters not only use the information available from the 

process measurements but also incorporate any models available for the process. In this application, we combine 

them with relevance vector machines (RVMs). The process is broken down into an offline and an online part. 

During offline analysis, regression (specifically, relevance vector machine regression) is performed to find 

representative ageing curves. Exponential growth models, as shown in equation 2, are then fitted on these curves to 

identify the relevant decay parameters like C and λ: 

),exp( tC λθ −=             (2) 

where, θ is a internal battery model parameter like RCT or RE. The overall model development scheme is depicted in 

the flowchart of Figure 8. 
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Figure 8 – Schematic of Decay Model Development 

Particle Filters Background 

Bayesian techniques provide a general rigorous framework for dynamic state estimation problems. The core idea is 

to construct a pdf of the state based on all available information. For a linear system with Gaussian noise, the 

method reduces to the Kalman filter. The state space pdf remains Gaussian at every iteration and the filter equations 

propagate and update the mean and covariance of the distribution. For nonlinear systems or non-Gaussian noise, 

there is no general analytic (closed form) solution for the state space pdf. The most popular solution to the recursive 

nonlinear state estimation problem is the extended Kalman filter (EKF). In that approach the estimation problem is 

linearized about the predicted state so that the Kalman filter can be applied. The desired pdf is approximated by a 



Gaussian, which may have significant deviation from the true distribution causing the filter to diverge.  

 

In contrast, for the Particle Filter (PF) approach [8], the pdf is approximated by a set of particles (points) 

representing sampled values from the unknown state space, and a set of associated weights denoting discrete 

probability masses. The particles are generated and recursively updated from a nonlinear process model that 

describes the evolution in time of the system under analysis, a measurement model, a set of available measurements 

and an a priori estimate of the state pdf. In other words, PF is a technique for implementing a recursive Bayesian 

filter using Monte Carlo (MC) simulations, and as such is known as a sequential MC (SMC) method. 

 

Implementation 

 

The state and measurement equations that describe the battery model are given below: 

z0 = C ; Λ0 = Λ 

zk = zk-1.exp(-Λk)+ ωk 

Λk = Λk-1 + νk 

xk = [zk ; Λk] 

yk = zk + υk              (3) 

where, the vector  comprises of RE and RCT, and matrices C and Λ contain their decay parameters C and λ values 

respectively. The z and Λ vectors are combined to form the state vector x. The measurement vector y comprises of 

the battery parameters inferred from measured data. The values of the C and Λ vectors (for both RE and RCT) learnt 

from RVM regression are used to initialize the particle filter. The noise samples ω, ν and υ are picked from zero 

mean Gaussian distributions whose standard deviations are derived from the given training data, thus 

accommodating for the sources of uncertainty in feature extraction, regression modeling and measurement. System 

importance resampling of the particles is carried out in each iteration so as to reduce the degeneracy of particle 

weights. This helps in maintaining track of the state vector even under the presence of disruptive effects like 

unmodeled operational conditions (in our case, high temperatures). 

 

The system description model developed in the offline process is fed into the online process where the particle 

filtering prognosis framework is triggered by a diagnostic routine. The algorithm incorporates the model parameter 

as an additional component of the state vector and thus, performs parameter identification in parallel with state 

estimation. Predicted values of the internal battery model parameters are used to calculate expected charge 

capacities of the battery. The current capacity estimate is used to compute the SOC while the future predictions are 

compared against end-of-life thresholds to derive RUL estimates. Figure 9 shows a simplified schematic of the 

process described above. 
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Figure 9 – Particle Filter Framework 

 

For the test data, the estimated λ value for the RCT growth model (equation 2) is considerably larger than of the 

training data (collected at 25
o
C), i.e., λtest = 0.1123 compared to λtrain = 0.0125. Remaining-useful-life (RUL) is 

derived by extrapolating out the capacity estimates into the future (Figure 10) until predicted capacity hits a certain 

predetermined end-of-life threshold. The weight vector of the PF algorithm is used to calculate the RUL distribution. 

 



 
Figure 10 – Particle Filter Prediction 

 

The particle filter approach yields RUL error of 5.8545 weeks early at 32
nd

 week and an error of 2.59 weeks early 

for predictions made at 48
th

 week. In comparison to other approaches discussed earlier, PF results better accuracy. 

More importantly, early predictions are considered more favorable than late predictions to avoid any unanticipated 

failures. The results also show that the RUL pdf improves in both accuracy (closeness of the mean to the actual 

RUL) and precision (narrowness of the pdf, indicating higher confidence in the mean value) as more measurements 

are included. This indicates that Bayesian statistical approaches are well suited to handle various sources of 

uncertainties since they define probability distributions over both parameters and variables and integrate out the 

nuisance terms. 

DISCUSSION 

We consider batteries representative of complex systems whose internal state variables are either inaccessible to 

sensors or hard to measure under operational conditions. The work presented here exemplifies how more detailed 

model information and more sophisticated prediction techniques can improve both the accuracy as well as the 

residual uncertainty of the prediction. The more dramatic performance improvement between various prediction 

techniques is in their ability to learn complex non-linear degradation behavior from the training data and discarding 

any external noise disturbances. An algorithm that manages these sources of uncertainty well can yield higher 

confidence in predictions, expressed by narrower uncertainty bounds. We observed that the particle filter approach 

results in RUL distributions narrower by several σs (if approximated as Gaussian) as compared to other regression 

methods. On the other hand it requires a more complex implementation and computational overhead over these 

methods. This illustrates the basic tradeoff between modeling and algorithm development effort and prediction 

accuracy and precision. For situations like battery health management where the rate of capacity degradation is 

rather slow, one can rely on simple regression methods that tend to perform well as more data is accumulated and 

still predict far enough in advance to avoid any catastrophic failures. Techniques like GPR or even the baseline 

approach can offer a suitable platform in such situations by managing the uncertainty fairly well with much simpler 

implementations. Other situations, on the other hand, may allow much smaller prediction horizons and hence require 

precise techniques like PFs. 

 

In this study we conclude that there are several methods one could employ for battery health management 

applications. Based on end user requirements and available resources a choice can be made between simple or more 

elegant techniques. Particle Filter based approach emerges as winner when accuracy and precision are considered 

more important than other requirements.  
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