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Abstract. Because of their small size and high reliability, microelectromechani-
cal (MEMS) devices have the potential to revolution many areas of eaigie

As with conventionally-sized engineering design, there is likely to be a déman
for the automated design of MEMS devices. This paper describes oentsta-

tus as we progress toward our ultimate goal of using an evolutionaryithigor
and a generative representation to produce designs of a MEMS dexdcsua-
cessfully demonstrate its transfer to an actual chip. To produce detighare
likely to transfer to reality, we present two ways to modify evaluation of desig
The first is to addocation noise differences between the actual dimensions of
the design and the design blueprint, which is a technique we have usedrfor o
work in evolving antennas and robots. The second method is t@@dtdresgo
model the warping that occurs during the extreme heat of fabricatiofuture

we expect to fabricate and test some MEMS resonators that are evnlveid
way.

1 Introduction

Microelectromechanical systems (MEMS) are devices thaegsly range from 20
micrometers to 1 millimeter. These micro-sized devices @frgreat interest in the
aerospace community because of their small size and higtbilaly [13]. Along with
the desire for improved performance and increased contglekMEMS devices, there
is a corresponding need for automated design and optiraizatiethodologies that al-
low a designer to explore more of the potential design space.

Already automated design systems based on evolutionaoyidims (EAs) have
been used for antennas [8], flywheels, load cells [15], &s1§%2], robots [4], and more
[1, 2]. In the domain of MEMS, there have been examples ofgBiAs for automated
mask-layout and process synthesis [6, 7, 10] and to procheeldésigns of simulated
MEMS devices [5, 16—18]. Both Kamalian et al. [5] and Zhoulefl®, 17] employed
an EA to optimize the size, orientation and number of segmiatt make up the legs
of a meandering resonator. While the simulated performarfideoevolved designs
was impressive, the designs themselves were charactdrizedute angles between
the beams comprising the resonator legs, making them wadeifor fabrication. In
addition, constraints placed on intersections betweembeaeant that not all geno-
types produced valid designs, reducing the overall effeghopulation size. For this



work they used an open-source MEMS simulation system c&8I@@AR and did not
fabricate evolved designs.

Previously we evolved a MEMS meandering resonator usinqnargdive represen-
tation [9] and compared our evolved solutions with that dleotwork [5, 16, 17]. In this
paper we describe our work toward evolving MEMS designsdbritation. To improve
the likelihood of a successful transfer to reality, we prése/o methods for evaluating
candidate designs. The first method is to include fabrioatmise in evaluation and this
consists of evaluating a design multiple times with pertidns in the design to reflect
the slight errors in where parts and edges are located whesigrdis manufactured.
We have used this technique previously in evolving antemmasrobots in simulation
that have been successfully transferred to reality [4, Bk $econd method is a kind of
domain specific version of manufacturing noise that is gjuetci the domain of MEMS
devices and consists of adding the effects of prestrességigmto model the warping
that occurs during the extreme heat of fabrication. Usimphiioations of with/without
these two types of manufacturing noise we have evolved desifia MEMS resonator.
Having reached this stage, the next step for future work véngesome of our evolved
designs fabricated and then testing these designs to detehow well they match the
simulated results.

2 Method

To demonstrate the effectiveness of using EAs to autonigtidasign MEMS devices
we selected the problem of producing the design of a 2D meamgesonator. A me-
andering resonator consists of a central mass suspendgatbyfaur ‘legs,’ each leg is
comprised of a series of beams terminated by an anchor. €hisalis a useful first-step
toward demonstrating the use of automated design algasitbrproducing MEMS de-
signs since it is fairly simple to fabricate and does not negextensive circuitry to test.
Further, a MEMS resonator is a step on the path toward pradulcMEMS gyroscope,
which would be of great use for NASA missions. In the rest a$ thection we de-
scribe the generative representation for encoding MEM$cdsythe method by which
a MEMS design was tested and evaluated, and the EA used fdeslign automation.

2.1 Generative Representation

A MEMS resonator consists of a proof mass and its supporégsg.IHere we fixed the
size of the proof mass to a 492 um square and evolved the desitie legs supporting
it. Specifically, a generative representation was used toam the construction of a
single leg design and then four copies of this were attachi&sed points on the proof
mass. At the other end of each “leg” a 100 um square anchor l@ae¢ The entire
device was assumed to have a fixed thickness of 25 um and toah&iécon-On-
Insulator (SOI) material composition.

The generative representation for a resonator’s legs statsbf a variable length
sequence of leg-construction operators. These operaterga.ri ght, go_l eft,
go_strai ght, go_strai ght w, term nat e, begi n_branch, end_br anch,
begi n_repeat , andend_r epeat . The operatorgo_st r ai ght _w,go_l eft, and
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Fig.1. The “legs” of the resonator were constructed by sequentially readiegatgrs in the
evolved encoding and executing them. Once one leg was produceel atfdéional copies were
placed about the central mass.



go_ri ght each contain a 4-bit beam width specification, which wasaadtbto vary
between 4 and 20 um. The operatir_st r ai ght does not allow for a width change
and was biased to have a higher frequency tganst r ai ght _w since excessive
changes in beam width are less amenable to fabrication.dardo maintain Man-
hattan (right angle) geometry, these construction opesatreate extensions straight
ahead, turn right or turn left. Each leg was constructed kgceting the sequence of
operators, resulting in the outward construction of a legfia predetermined corner of
the center mass. Construction would end when the readinjdre@ountered either the
end of the operator sequence drer m nat e instruction. Once all the operators are
executed, a 100 um square anchor is placed at the distalnesnoif the leg and then
three additional copies of this leg are place at the otherergrof the proof mass.

The initial frequency of each instruction in the populatias well as the likelihood
that any given byte would mutate into a given instructions\aebitrarily set at 0.5625
for go_straight instruction, and 0.0625 for all other instrucBomote that the higher
combined probability of the gstraight and gostraightw instructions meant that any
given section of a leg was more likely to go straight than tatAlso, preliminary work
indicated that good designs were more likely to be achielvbgbre was a bias towards
left turns, hence, the initial population (and any subsatjoritations) was so biased.

In the process of executing a leg-construction progranrethee some conditions
under which operators were ignored. Operators that wikitae collision with the cen-
tral mass or trace over an existing pather were ignored. Bataiors that create loops
resulting from the intersection of two beams at right angVese allowed. To meet the
size constraints of possible fabrication processes, theldégy of an individual was
constrained to a square area 3.5 times the width of the prastrand if, while con-
structing the leg, the boundary of this area is encountéhedinstruction was ignored.
In addition, legs were not allowed to extend into the areara/ige finger structures
resided.

An example of creating a design using this language for coathg resonator legs
is shown in the sequence of images in Figure 1 and is the refsesiecuting the follow-
ing sequence of operators:

go.strai ght go_strai ght begi n.branch go.l eft go_strai ght

goright go.strai ght go.right branch_end go_strai ght
The first two operators will create an initial extension foe ieg, Figure 1(a). Next, the
begi n_bl ock operator marks this location as a branch point. Executiegfterators
go_l eft go_strai ght go_ri ght go_strai ght adds two more segments, Fig-
ure 1(b). The next operatago_r i ght , adds another segment to the leg, Figure 1(c),
and then theend_br anch operator moves the location for new construction back to
the branch point. Finally, the execution@d_st r ai ght adds a branched segment to
the leg and results in the design shown in Figure 1(d).

Randomly created individuals consisted of a sequence cdi2am operators and
this size was allowed to vary through recombination. In tiddj because the instruction
set constrained the orientation of beams to right anglésvalved devices exhibited
Manhattan geometry. This not only simplified the beam ietisn tests, but also pro-
duced designs that were more amenable to fabrication, igpilde potential kinks and
sharp acute angles found in previous evolved designs [3,8]6—



2.2 Cost Function and Evaluation

To evaluate resonator designs, ANSYS Multiphysics is useshddel them. After a
given individual's encoding is converted into a geomethnys tdesign is translated into
a set of ANSYS commands specifying the device structure lamdraterial properties
as well as the fixed anchor locations. Each time an individiged evaluated, an AN-
SYS geometry file would be created and a command line verdidgkNgYS would
be invoked by the EA to evaluate it. At the end of an analysNSAXS writes out the
resonance frequency and displacement normal of the ceftgs,which was then read
in by the EA and this analysis was used to calculate the cs¢ ¥ar the individual.

To reduce the amount of computational time necessary tuaiah given design,
a simplification was made to the non-evolved part of the devResonator designs are
intended to have 100 fingers attached to the proof mass, Wittn§ers on opposite
sides. On the simulated designs, this was reduced to 10 §ingéh 5 on each side. So
that this change in the number of fingers would have minimakiot on the analysis, the
area of each finger was increased to maintain the same massandnt of inertia as
the fully specified, 100 finger case. With this simplificatismulating a single MEMS
resonator design took approximately 30 seconds and oner@volutionary runs took
between 1 to 2 days.

Once simulated, a design was evaluated using the followgsgfanction:

|F, — Fy 1— Dy
+
F /D% + D3 + D%,
Here, F} is the target frequency (10 kHzJ, is the observed frequency, afdly, Dy,

and D are the observed axes displacements. With this cost func@mres can range
from 0.0 (ideal) to 2.0 (worst).

Score=

(1)

2.3 Location Noise and Prestress

One of the main challenges with evolving physical designsirimulation is setting up
the system such that evolved designs successfully tratusfiee real world. Since there
is no prior work demonstrating this, the objective of thisriwevas to test different
strategies to determine the best approach for producingmiethat successfully trans-
fer. To improve the likelihood that evolved designs wouldrkvim reality comparable
to how they are predicted to perform by the modeling systemtned two different
approaches of putting manufacturing variability in evéiluga design.

In fabricating a MEMS device there is some location noisavbeth where an edge
is located in the design and where it ends up occurring in thesipal device. Pre-
viously, we have had experience in evolving physical olsjectd have overcome this
manufacturing noise by including it in part of the evaluat[d, 8]. To include location
noise in the evaluation of an individual, its design is eaédd multiple times, each time
with a slight variation to it based on a model of the expecttation in manufacturing
or fabrication. The assigned cost of an individual is thestiecore of the different trials
and provides a lower-bound expectation of what to expedtlghthis design actually
be manufactured.



Here we implemented our noise model by testing newly cregugigiduals three
times, each time with a different variation in fabricati&xisting, high quality individ-
uals that are still in the population are regularly re-tdstance it is desirable to get a
more accurate estimate of the best designs but only negassgat a rough estimate of
the less promising designs.

In addition to variation in the location of edges, anothatakality that occurs in the
MEMS fabrication process is a kind of warping, or stress, len ¢hip due to the heat
of the fabrication process. To mimic this deformation duéatarication prestresy we
used ANSYS to create a temperature gradient across thesfhikie structure to create
the required prestress deformation.

Evaluation with prestress and location noise both incr@é@saluation time signif-
icantly. While a typical MEMS design is evaluated in about,3dding the prestress
calculation doubled that time to roughly 60s. Adding looathoise to the evaluation
process meant multiple simulations, and this increaseldi@tian time linearly: 3 sim-
ulations of the device took 3 times as long as a single sinoumlat

24 ALPS

The EA used for the experiments is the Age-Layered Popui&@ioucture (ALPS) [3].
Unlike a traditional EA, ALPS maintains several layers daliiiduals of different age
levels and continuously introduces new, randomly gendratdividuals into the first
layer. It has been shown to work better than the canonical ¥Aditer avoiding pre-
mature convergence [3, 11, 14]. Using it here allowed us écausmall population size,
necessary to minimize the number of expensive evaluatishie avoiding problems
of the population prematurely converging on a poor solution

The ALPS EA which we used consisted of a steady-state paradith 5 age lay-
ers. The evolutionary runs using simple evaluation, pesstrand both prestress and
location noise used a population size of 25 individuals. kterided for the evolution-
ary run with location noise to also use 25 individuals butcaese of a typo in the
configuration file, it was set to 35 individuals.

3 Evolutionary Results

The goal of our experiments was to evolve a design for a MEM&ndering resonator
whose proof mass resonated at 10 KHz in the x direction (firstieh Because the
overall objective of this project is to evolve designs thataessfully transfer from sim-
ulation to reality, we are interested in finding a method faaleating a MEMS device
in simulation that accurately predicts its performancegiality. In the previous section
we described two modifications to the basic method of evisigat MEMS resonator in
ANSYS: putting noise in the design and using prestress.eSime use of location noise
and prestress was independent of each other, candidatedimals could be evaluated
in four different ways: no noise and no prestress; noise bytrestress; no noise with
prestress; and with both noise and prestress. Due to tim&tredmts, our experiments
consisted of one run of each of these four configurations.
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Fig. 2. Graphs of two of the four different evolutionary runs for evolving a M& resonator: (a)
simple evaluation model; and (b) evaluation with location noise but no pssstre
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evaluation with prestress but no location noise; and and (b) evaluation wgkida noise and
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Fig.5. The complete die layout, suitable for fabricated, with two copies of eadvex/design.

The graphs in Figure 2 and 3 show both the best and the aveegigerpance of evo-
lutionary runs using each combination of with/without ldoa noise and prestress. The
graph in Figure 2(a) plots the performance using the simpheuation model, neither
location noise or prestress. This graph shows that after @mlouple of generations a
good resonator design is found. The results of an evolutjona using the approach of
multiple evaluations with location noise are shown in Feg@¢b). Again, good results
were obtained after only a few generations, but it can be Hestrthe best individual
from generation 5 receives a much worse cost score as thi oése-testing. Also,
this evolutionary run had the fewest number of trials beeatiwas run on our slowest
processor. The results of using prestress to evaluatergesighown in Figure 3(a). In
this graph we can see that after about 8 generations a claggitoum design is found.
Finally, the results of an evolutionary run using both nase prestress are shown in
the graph in Figure 3(b). The best designs evolved with edtheofour methods for
evaluating a design are shown in Figure 4.

4 FutureWork

The next step in this project is to select a fabrication pssce either commercial or
academic — and have some of these designs fabricated. Tarpriep this next step we
selected the best resonator designs from each of the fals {8ee Figure 4) and put



two copies of each in a sample MEMS layout file. In additiongsithere was additional
space available, a fifth design was included and this wasabensl best design from
the location noise and prestress run. An image of the ovesatiple layout is shown in
Figure 5, and this shows the 10 resonators laid out on an 8nBmioy design space. In
future we hope to have this, or something similar, fabridated then have the resulting
chips tested to determine how well they transferred to teali

5 Summary

MEMS technologies appeal to many areas of engineering kecalitheir low-cost,
miniature form-factor, high precision and reliability. Vége working toward demon-
strating the ability to produce actual MEMS devices in whioh design was created by
an evolutionary algorithm and a generative representa@um current stage is that of
evolving designs in simulation. To improve the likelihoddt evolved MEMS designs
successfully transfer to reality, we presented two modifica for evaluating candidate
designs. The first method was to evaluate a design multiplestivith differences in the
design dimensions. Thilscation noisdan the dimensions is intended to encompass the
actual likely differences between what is specified in theeptint and what is produced
in the fabrication process. The second was to appstresgo the design, to incorpo-
rate the effects of warping due to the high temperaturedwedoin manufacturing.

For the four combinations of with/without location noisedaprestress, we per-
formed evolutionary runs to evolve a MEMS meandering resmmaVe presented re-
sults for a single run of each setting which showed that alf fippproaches are capable
of producing a resonator design of the appropriate frequenc

The next step of this project is to demonstrate the abilitguocessfully go from
designs produce from evolution in simulation to correctlyrking designs in reality. We
showed a sample layout file with resonator designs produgdaadifferent evaluation
methods and now we are ready to select a fabrication proogsisaave our chips tested.
In future, we expect to report on how well our methods workgovducing real-world
MEMS chips.
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