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ABSTRACT 
  

In this paper, we introduce a new risk-informed decision-

making methodology for use during early design of complex 

systems. The proposed approach is based on the notion that a 

failure happens when a functional element in the system does 

not perform its intended task. Accordingly, risk is defined 

depending on the role of functionality in accomplishing 

designed tasks. A simulation-based failure analysis tool is used 

to analyze functional failures and their impact on overall system 

functionality. The analysis results are then integrated into a 

decision-making framework that relates the impact of functional 

failures and their propagation to decision making in order to 

guide system level design decisions. With the help of the 

proposed methodology, a multitude of failure scenarios can be 

quickly analyzed to determine the effects of decisions on overall 

system risk. Using this decision-making approach, design teams 

can systematically explore risks and vulnerabilities during early, 

functional stage of system development prior to the selection of 

specific components. Application of the presented method to a 

reservoir system design demonstrates these capabilities. 

 

Keywords: Risk-Based Design, Decision-Based Design, 

Functional Modeling, Simulation-Based Design. 

1 INTRODUCTION  

The identification of risks of losing functionality during the 

earliest stages of designing complex systems is of growing 

importance for risk sensitive industries. Early stage design 

provides the greatest opportunities to explore design 

alternatives and perform trade studies before costly decisions 

are made. The goal of this research is to develop a formal 

framework that enables risk-informed analysis of complex 

system design decisions during the conceptual design phase. 

The analysis of potential failures and associated risks of 

functional losses performed at this earliest stage of design will 

facilitate better design decision making, and thus the 

development of more robust and reliable system architectures 

[1-3]. 

Many methods have been introduced in recent years to 

move risk based analyses and decisions into the early stages of 

design.  The intended goal of what we generally call Risk Based 

Design (RBD) is to use formal methods to understand and 

characterize risk drivers as the design develops and 

incorporates this information into principles, tools, or 

methodologies. The methods are then intended to assist 

designers in making design decisions that reduce risk while 

meeting overall system goals. However, a majority current risk-

based design techniques are reliability analysis and optimization 

methods applied to system design. While of great merit, these 

techniques remain difficult to apply during the earliest, 

functional stage of design, requiring data and models about a 

design at a fidelity level that is not typically available during 

early design stages. As a result, this research is motivated by the 

need to have formal processes and tools to quantify risk as early 

as functional design and to guide design decision making 

accordingly. 

To achieve this goal, one must identify functions, risks, and 

failure modes related to design decisions and enable making 

design decisions and choices based on risk and failure 

information. One way of doing that is by understanding the 

nature of the failure and its impact on the functionality of the 

system. This kind of impact assessment requires establishing the 

relationship between components and their failure modes, the 
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functionality of components, and the propagation of failure 

effects. 

In prior work, we have introduced the Functional Failure 

Identification and Propagation (FFIP) analysis framework that 

integrates all these aspects into a formal framework to enable 

the analysis of functional failures and their impact on overall 

system functionality [3]. In this paper, we extend the analysis 

capabilities of the FFIP framework by: 1) integrating 

quantifiable measures that define risks based on the role of 

functionality in accomplishing design goals, and, 2) relating 

impact analysis results to decision making in order to guide 

system level design decisions based on functional failure 

potential. Specifically, the FFIP analysis results are integrated 

into a decision-making framework that relates the impact of 

functional failures and their propagation to decision making in 

order to guide system level design decisions. The proposed risk 

informed decision making methodology offers opportunities for 

significant reduction in cost, and increases in system safety and 

reliability by enabling early development of preventive 

measures that can effectively and efficiently guard against 

system failures. 

An important aspect of such an impact analysis is the 

determination of redundancy and criticality following failures. 

The level of redundancy of critical systems and the criticality of 

the functions affected by the failure are two crucial pieces of 

information necessary to determine best design decisions and 

thus are modeled in the method presented here. Two examples 

are shown in this paper illustrating how the relationship 

between system redundancy and criticality of functional failures 

can be explored to analyze different design decisions using the 

FFIP-based failure-informed decision making framework.  

2 RELATED WORK 

Risk, reliability, failure analysis, and decision-making 

under uncertainty have received much attention in industry and 

the research community alike.  This section presents a brief 

survey of three fields of direct relevance, namely: Risk 

Assessment, Reliability Based Design, and Decision Based 

Design. This review will be followed by a brief chronological 

summary of the research in function-based failure analysis in 

order to motivate the methodology introduced in this paper. 

2.1 Review of Risk Assessment Methods 

A review of various risk and reliability based assessment 

techniques was presented in prior work [3], and is repeated here 

for completeness. Risk-sensitive industries designing complex 

systems currently employ three major techniques to assess the 

reliability of their products: FMEA, FTA, and PRA. Failure 

Modes and Effects Analysis (FMEA) [4] is a method that 

systematically examines individual system components and 

their failure mode characteristics to assess risk and reliability. 

The FMEA analysis starts with decomposition of the system 

into subsystems and finally into individual components. Ways 

in which each component can potentially fail are then recorded 

and evaluated separately to determine what effect they have at 

the component level, and then at the system level. It is a widely 

used method that is easy to understand and implement. 

However, the analysis requires a detailed level of system 

design, and thus is not optimal to be used during conceptual 

design [3]. Moreover, FMEA does not capture component 

interactions explicitly, and relies heavily on expert knowledge 

to assess failure consequences and their criticality [3]. As a 

result, it is often considered to be a highly subjective method. 

Fault Tree Analysis (FTA) [5] is performed to capture 

event paths from failure root causes to top-level consequences. 

Using this approach, possible event paths from failure root 

causes to top-level consequences can be captured. When 

conducted properly, it is likely to identify more possible failure 

causes than single-component oriented FMEA. However, FTA 

also relies greatly on expert input and shares similar criticism as 

FMEA [3]. Moreover, since the failure domain is represented 

using events in FTA, low-level component interactions and 

dynamics leading to failure are only considered informally, 

during expert identification of event-consequence relationships. 

Formally capturing component interactions and system 

dynamics of complex systems is however crucial for supporting 

design decisions during early concept development of complex 

systems.  

Probabilistic Risk Assessment (PRA) [6] is a method used 

for quantification of failure risk [7].  PRA combines a number 

of fault/event modeling techniques such as master logic 

diagrams, event sequence diagrams and fault trees, and 

integrates them into a probabilistic framework to guide 

decision-making during design. Recently, PRA has been 

extended to include event/behavior simulation into the analysis 

as demonstrated by the SIMPRA tool developed by Mosleh et 

al. [8], but this extension demands a fully-specified system 

model as part of the analysis. Such detailed, high-fidelity 

models of complex systems, however, are not available during 

conceptual design.  

In addition, a variety of diagnostic reasoning tools have 

been proposed for fault assessment and diagnosis of fault 

propagation. Diagnostic reasoning approaches share a common 

process in which a system is monitored and a comparison is 

performed of observed and expected behavior of the system to 

detect anomalous conditions [9]. Model-based approaches to 

diagnosis, on the other hand, rely mostly on qualitative 

knowledge to predict the behavior of a system [10]. When 

observations disagree with the predicted behavior, some 

diagnostic technique is initiated to identify the faults. The 

broadest category for diagnostic reasoning is model-based 

diagnosis (MBD) [11-14]. Among those, directed graphs [15] 

are one of the techniques used to analyze component 

dependencies and fault propagation [16, 17]. Multi-Signal Flow 

Graphs developed by Deb et al. [18] is another comprehensive 

methodology to model cause-effect dependencies of complex 
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systems. Other methods include statistical and probabilistic 

classification methods [19, 20]. As was discussed by Kurtoglu 

and Tumer in [3], while fault propagation analysis tools exist, 

they require designers to explicitly formulate a fault 

propagation model by specifying paths of causal relationships, 

which is not feasible during the early stages of design where 

information about the system specifics is scarce. 

Finally, historical anomaly and lessons learned types of 

databases (LLIS, PRACA, ASIAS, etc.) also provide a way of 

documenting risk and failure information [21]. However, the 

information is system specific (does no capture design context), 

and the methods using these databases do not provide analysis 

capabilities and hence cannot directly be applied design 

decision making. 

Current risk assessment methods share an after-the-fact 

approach that looks at effects and traces them back to the causes 

of those effects. Using the risk-informed decision making 

method presented here, we aim to eliminate or reduce the 

likelihood of reaching certain possible futures by formal 

analysis of risk of failures early in the design process and by 

proper guidance of decisions before the design becomes 

solidified. 

2.2 Review of Reliability-Based Design Methods 

To move risk and failure analysis into the early stages of 

design, reliability based methods have been introduced in recent 

years in various forms.  Many of these efforts have focused on 

using robust design, uncertainty estimation and reliability based 

optimization methods. Examples can be found in [22-33]. 

Robust design techniques focus on system quality by 

minimizing performance variance, whereas reliability-based 

design methods seek to design systems that achieve an 

invariably small, targeted probability of failure, ensuring proper 

system functioning. Among these, reliability based design 

optimization techniques have successfully been used in various 

engineering fields including aerospace engineering [34]. 

The intended goal of these methods is to use formal 

methods to understand and characterize risk drivers as the 

design develops, and incorporate this information into 

principles, tools, or methodologies. The methods are then 

intended to assist designers in making design decisions that 

reduce risk while meeting overall system goals. However, most 

current techniques are reliability analysis methods proposed for 

system design, and hence suffer from the same issues as the 

current reliability assessment methods, in that, they require 

more information and higher-fidelity models than is available 

during functional design.  In particular, this research focuses on 

analyzing the propagation of potential failures and the resulting 

functional losses during the early stages of functional design, 

which are not directly obtainable from such techniques. 

2.3 Review of Decision-Based Design Methods 

Decision-making has been recognized as an integral part of 

the engineering design process in all phases of design. In 

particular, the uncertainty that is associated with the decisions 

made during the early design stages has been acknowledged as 

a major source of risk to the design. To address this issue, 

Decision Based Design (DBD) has emerged as a potential 

solution to optimize decisions made during design [35], and 

hence improve the decision making process through the 

application of rigorous mathematical principles from decision 

theory [36, 37]. The various methods proposed are largely 

based on concepts from game theory, utility theory, voting, and 

preference modeling, and has its roots in decision science, 

economics, and operations research [38-41].  Many design 

researchers have worked on finding utility functions and 

preferences that work for the engineering design process [42-

45].  Furthermore, in a real design environment, numerous 

decisions have to be made with multiple and potentially 

conflicting criteria or attributes of the product [37]. Many of the 

later efforts have addressed this problem by formulating multi-

criteria decision making approaches and incorporating the 

decision theory concepts into multiple-objective optimization 

schemes to help explore the alternative design trade space [23, 

46-48]. 

Decision based design techniques can be used to help with 

objective and structured decision making processes using 

decision-theoretic interpretations of risk and uncertainty 

management in the context of design [49, 50]. However, these 

methods have not seen acceptance in the early stages of 

conceptual design, largely due to the black-box nature of the 

analysis, where the models of connections between functions 

and components are not made explicit.  Of particular interest to 

this research, it is impossible to analyze failure propagation 

paths using DBD methods, making the analysis of potential 

functional losses difficult in the early design stages. 

2.4 Review of Function-Based Analysis Methods 

To address the need to evaluate the potential of failures and 

the resulting functional losses during conceptual design, a body 

of work has emerged that use function-based approaches to 

bridge the gap between risk analysis and conceptual design. The 

emphasis of this body of work is on the use of functional 

descriptions to describe early concepts, leading to various 

function-based analysis approaches. Functional design or 

function based modeling is a natural language for expressing 

designs at the early stages. Early risk analyses start from these 

function-based descriptions to provide insight on risk of 

functional failures.  In this subsection, we provide a brief 

chronological summary of the evolution of these approaches. 

The first effort in the identification of failure modes during 

conceptual design was made possible through the function-

failure design method (FFDM), developed by Tumer and Stone 

[51-53]. This method used a functional model for a system in 
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combination with historical failure information to map the 

functionality of a system to potential failure modes. A standard 

taxonomy to describe functionality, namely the Functional Basis 

[54], was used to model systems and components at the highest 

(functional) level, with the intent of providing generic and 

reusable templates for spacecraft. The method then collected 

failure data from historical databases and expert elicitation, and 

mapped these failures onto function, hence building a 

knowledge base relating failure modes directly to functionality, 

bypassing the need to know the details of the design form or 

solutions. FFDM was successfully applied to the Bell 206 

rotorcraft and spacecraft systems [21, 55, 56]. Inspired by the 

FFDM method, Hutcheson et al. [57-59] later sought to enable 

the design of health monitoring modules concurrently with 

system conceptual design in order to reveal, model, and 

eliminate associated risks and failures. These successful 

applications led NASA to sponsor a research team to conduct 

functional failure analysis for extending these methods to the 

design of prognostic and health management systems for the 

shuttle replacement Crew Launch Vehicle. To add a means of 

quantifying the risk via FFDM, Grantham-Lough et al. [60] 

developed the Risk in Early Design (RED) method that 

formulated a functional-failure likelihood and consequence 

based risk assessment. This approach classified high-risk to 

low-risk function-failure combinations to provide designers 

with a tool that can be used to qualitatively rank/order 

functional failures and their consequences during conceptual 

design.   

A necessary extension of these matrix-based approaches 

was to enable decision-making based on risk during the 

conceptual design of space systems.  A risk based decision 

making method was developed Mehr and Tumer [1] to address 

this need, namely, the Risk and Uncertainty Based Integrated 

and Concurrent (RUBIC) design methodology, fueled by the 

need to assess the risk of integrating prognostic and health 

management capabilities in large aerospace systems, at the 

system design stage.  In this work, risk was defined by a triplet 

of fault type, fault probability, and fault consequential cost, and 

used to determine optimal resource allocation for the detailed 

design phase; however, risk mitigation attributed to the 

prognostic and health management capabilities was not 

explicitly quantified in this formulation. An extension to 

RUBIC was introduced by the same authors in [2] to enable a 

cost-benefit analysis (CBA) of integrating new technologies to 

large complex systems.  The CBA framework provided an 

optimization framework for the allocation and cost justification 

during functional design, based on a formulation using 

probabilistic reliability metrics such as system availability, cost 

of detection, etc. 

Last year, the FFIP method was introduced by Kurtoglu 

and Tumer [3] to significantly extend on the work started with 

these methods, with a number of additional, novel features: 1) 

enabling the computation of component interactions that are 

likely to result in functional failures; 2) allowing the 

identification of not only the functional failures but also their 

propagation paths that are derived from the functional and 

structural topology of a system; 3)  enabling use with a variety 

of systems without being constrained by a database of 

documented, historical failure data.  In FFIP, we combined 

decision-making and automated reasoning driven by functional 

failure analysis. RUBIC, for example, only identified the most 

critical functions to allocate resources to and was not geared 

towards the analysis of design decisions regarding system 

configuration/redundancy. FFDM, and RED were primarily 

driven by historical data and did not necessarily capture the 

propagation aspects of functional failures.  

The FFIP-based failure-informed decision making 

framework, introduced in this paper, does both simulation-

based analysis of functional failure propagation, and association 

of that analysis with the criticality of functional losses to guide 

specific design decisions regarding system configuration. Note 

that, only redundancy decisions are targeted in this paper, 

however, the method is applicable to other design decisions 

governing the configuration of a system. FFIP presents a 

conceptual design tool that enables robust and reliable system 

design and development of complex systems during the stages 

of design where only functionality and basic (generic) 

configuration information is available. 

3 SUMMARY: THE FFIP ANALYSIS FRAMEWORK 

In prior work, we introduced the Functional Failure 

Identification and Propagation (FFIP) framework [3], as a 

significant addition to our prior function-based failure analysis 

work [1, 2, 51-53, 58].  FFIP brought a much-needed formalism 

to effectively analyze the effect of the combination of function 

and configuration on the failure propagation and resulting 

functional losses. There are three major modules to the 

proposed FFIP analysis framework: the system model, the 

behavioral simulation, and the functional-failure logic (FFL) 

reasoner [3]. This section presents these three modules, 

summarized from Kurtoglu and Tumer [3]. 

3.1 System Modeling 

As the first module of the FFIP framework, we represent 

system function, configuration, and behavior by an interrelated 

array of graph-based, elemental component models. The graph-

based modeling approach provides a coherent, consistent, and 

formal schema to capture function-configuration-behavior 

architecture of a system at an abstract level.  

Functional Representation: 

System function is represented using function structures 

[61-63], establishing a formal function-based design paradigm 

based on the concept of functional modeling [52, 54, 63, 64]. 

Functions and flows are represented as verbs and nouns 

respectively (e.g., transfer gas, mix liquid, open gate, display 

warning, record data, etc.).  The flows are broken down into 
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three categories: energy, material, and signal. The Functional 

Basis  (FB) taxonomy, with its hierarchical set of flows and 

functions [52-54], and the functional modeling processes 

proposed in the literature [52, 53, 62, 64] are used to develop 

the functional models for the systems under study.  

Configurational Representation: 

The structure, on the other hand, is captured using 

configuration flow graphs (CFGs) [65]. A CFG strictly follows 

the functional topology of a system and maps the desired 

functionality into the component configuration domain. In a 

CFG, nodes of the graph represent system components, whereas 

arcs represent energy, material or signal flows between them. 

For flow naming, the Functional Basis terminology is adopted, 

while the components of the graph are named using a taxonomy 

of standard components [66]. The component types in a CFG 

can be thought of as generic abstractions of common 

component concepts.  

Note that, the construction of a functional model (FM) and 

the corresponding configuration flow graph (CFG) captures a 

direct mapping between the functional and the structural 

architecture of a system. Each mapping represents a 

transformation that shows how a functional requirement was 

addressed in the actual design by the use of a specific 

component concept. To extract these mappings in a consistent 

manner, the flow information, i.e., the fact that the two graphs 

share the same flow types, is utilized. Accordingly, by 

following the “flow paths”, one can define boundaries that 

isolate the mapping between functional nodes of a function 

structure and component nodes of a configuration flow graph 

[3]. 

Behavioral Representation: 

The behavior of the system is represented using a 

component-oriented modeling approach. The approach involves 

the development of high-level, qualitative behavior models of 

system components in various discrete nominal and faulty 

modes. The transitions between these discrete modes are 

defined by mode transition diagrams. The component behavior 

in each mode is derived from input-output relations and 

underlying first principles. These modular, reusable component 

behavior models follow the form of configuration flow graphs. 

Accordingly, state variables critical to the system behavior are 

incorporated into the representation by associating them with 

their respective (CFG) flows [3]. 

3.2 Behavioral Simulation 

As the second module of the FFIP framework, we present a 

simulator that determines the system behavior under certain 

specified conditions. These conditions are represented by the 

occurrence of events that cause specific component mode 

transitions. During the simulation, both the discrete component 

modes and the set of system state variables need to be tracked. 

Accordingly, the overall system state )(tX  at time t is 

described by: ))(),(()( tvtctX Φ=  (Eqn. 1), where,   

],...,,,[)( 321 Ncccctc =   is a vector of discrete 

component modes where each component Nc ,....,1=  

assumes a discrete mode from its own set of  M modes 

),...,,,( 321 iMiiii ccccc = , and, ],...,,,[)( 321 Kvvvvtv =  is a 

vector of system state variables.  

During conceptual design, the system state variables are not 

known quantitatively. Therefore, these continuous variables are 

discretized into a set of qualitative values. The vector )(tv  then 

defines these qualitative values for each state variable iv  from 

a set of P possible values ),...,,,( 321 iPiiii vvvvv = . For 

example, a liquid flow rate variable may take on values from 

the set of {zero, low, nominal, high}. Similarly, a control signal 

variable may have values of {nosignal, on, off}, etc. 

To start the simulation, the modes of individual 

components (nodes) in the CFG are initialized along with the 

values of system state variables associated with input flows 

(arcs).  Then, the state of the system is simulated by solving the 

continuous-time system in the intervals between discrete events. 

Each time step propagates values of certain state variables 

depending on the mode of components, the behavioral models 

in that particular mode, and the defined component constraint 

relations. When an event occurs, the continuous-time simulation 

is stopped, and the corresponding component mode transition is 

executed. Using this scheme, critical events, consequences of 

which are investigated, can be inserted into the simulation at 

any time step. Following this approach, the simulation may be 

run over a certain number of time steps, or until the system 

reaches a prescribed end state [3]. 

3.3 Reasoning via the Function-Failure Logic 

The last module of the FFIP framework uses a function-

failure logic (FFL) reasoner to determine the state of each 

system function (i.e., whether it is operational, degraded, or 

lost) at any time t given the state of the system 

))(),(()( tvtctX Φ= . The simulation feeds the state of the 

system to the FFL reasoner at the end of each time step and the 

state of each system function is evaluated at these discrete 

points. The FFL reasoner translates the dynamics of the system 

into functional failure identifiers and facilitates the assessment 

of potential functional failures and resulting fault propagation 

paths. 

Note that, FFL allows the assessment of the operability of a 

function to be made based on the values of the input and output 

state variables of the CFG that corresponds to the component by 

which the function is realized. Therefore, capturing the mapping 

between the functional model (function) and the configuration 
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flow graph (behavior) is fundamental to the employment of the 

function failure logic. The reasoner uses a set of form-

independent system function models that describe conditions 

under which functions deviate from their intended operation [3]. 

4 RISK-INFORMED DECISION MAKING USING THE 
FFIP FRAMEWORK 

In this paper, the FFIP framework is extended to enable 

decision-making during early system design based on functional 

failure potential. This section describes the basic steps of 

making design decisions using the proposed method and the 

associated functional risk analysis. This new approach is aimed 

to offer two immediate advantages: 

• It accounts for individual risks in a system derived from 

basic functional elements as well as the combined risk in a 

system resulting from the propagation of functional 

failures, 

• Using the approach, the level of risk mitigation based on 

specific design decisions can be determined by computing 

a decisions’ direct effect on functional failures and the 

impact on the overall system safety. 

The basis for these analyses is a four-step process, which is 

explained next.  

4.1 Step 1: Estimate the “Criticality” of Each System 
Function   

The objective of the first step is to estimate how critical 

each system function is for the system’s operation. These 

criticalities are determined by conducting a “Functional FMEA” 

analysis. Functional FMEA is similar to a traditional FMEA [4], 

however, it is conducted at a functional level as opposed to the 

component level that requires detailed component information, 

which is unavailable during conceptual design.  

Figure 1 shows an example of a Functional FMEA Table 

performed on an Electrical Power System (EPS) of an 

exploration vehicle [67]. The first column of the table in Figure 

1 lists each functional element in the system and the second 

column depicts the component addressing the listed 

functionality. For example, the component “solid-state relay” 

addresses the function “actuate electrical energy”, whereas; the 

component “wire” provides “transfer electrical energy” 

functionality in the system. Note that, each of the functional 

elements may correspond to one or more physical components 

in the system. Similarly, a single component may address one or 

more functional requirements. As described in Section 2, 

building the system functional model and the corresponding 

configuration flow graph enables one to capture the mapping 

between the functional and configurational architecture of the 

system at an abstract, conceptual level. Capturing this mapping 

is critical for accurately reasoning about a system’s potential 

faults since it allows the designers and analysts to establish the 

relationship between functionality, components, and the system 

configuration.  

Listed next in Figure 1 are failure modes of components, 

which capture how components may fail in the system. For 

example, a solid-state relay may fail to open or close, or may 

overheat. The cause, the effect, and the criticality of a failure in 

each mode may potentially be different and are therefore 

defined separately.  These are listed in the fourth, fifth, and 

sixth columns.  

 A 1-4 ordinal scale is used to assess the criticality of 

each failure mode in the system. The definition of these 

criticality ratings are summarized below in Table 1: 

 

Table 1: Criticality Definitions used for Functional  
Failure Modes and Effects Analysis 

 

Criticalities   

4 Potential for immediate physical harm 

3 Potential dangerous mode 

2 Reduced mission performance 

1 Common failures   

 

4.2 Step 2: Determine the “Functional Risk Factor 
(FRF)” of Each System Function 

The objective of the second step is to estimate the 

distribution of risk over functional elements of a system using 

the functional FMEA analysis. Accordingly, the Functional 

Risk Factor (FRF) for each system sub-function is determined 

by comparing the criticality of individual system functions and 

by converting the criticality ratings into a coefficient that is 

normalized based on the combined criticality of all system 

functions. For simplicity, the probability of each functional 

failure mode is assumed to be the same. For example using the 

Functional FMEA Table of Figure 1, the likelihood of ‘Actuate 

Electrical Energy’ function failing under one of the four failure 

modes listed is assumed to be equal to 1/4=0.250. If necessary, 

these probabilities can be estimated using the FFDM method 

described in Section 2.3, or by using an appropriate historical 

database.  

The Functional Risk Factor (FRF) for each system sub-

function is then calculated in two steps: 

1) Calculate the cumulative criticality of each sub-function 

using: 

Cumulative criticality of function j, CCj = Σ pi x Cri 

 where, 

 pi is the probability of failure mode i  

 Cri is the criticality assigned to failure mode i 

 Summed over the failure modes of function j 
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Using this formula, the cumulative criticality of the system 

sub-functions shown in Figure 1 become, 

 Actuate Electrical Energy:   2.00 

 Regulate Electrical Energy:  2.25 

 Import Electrical Energy:   1.00 

 Transfer Electrical Energy:  2.33 

2) Convert the cumulative criticality of each function into a 

functional risk factor using: 

Functional risk factor of function j, FRFj = CCj/Σ CC1..j 

 where, 

 CCj is the cumulative criticality of function j  

Using this formula, the functional risk factors of the system 

sub-functions for the same example become, 

 Actuate Electrical Energy:   0.264 

 Regulate Electrical Energy: 0.297 

 Import Electrical Energy:   0.132 

 Transfer Electrical Energy: 0.307 

 

Basically, the FRF is calculated by normalizing the 

cumulative criticality ratings such that the sum of all functional 

risk factors equals to unity as shown by the electrical power 

system example.  

The individual FRF ratings constitute the relative weight of 

each system function based on overall system risk and provide 

an expected distribution of risk over functional elements. In 

other words, the higher the FRF of a function, the more 

valuable is maintaining that functionality during system 

operations. For example, loosing the ‘regulate electrical energy’ 

function carries higher risk (0.297) then losing the ‘import 

electrical energy’ function (0.132) because when lost, its impact 

on the system is far more critical. 

4.3 Step 3: Determining the “Functional Failure 
Impact (FFI)” of a Critical Scenario using the FFIP 

The objective of third step is to quantify the overall impact 

of functional failures and their propagation on system 

functionality. The basis of this step is to calculate the 

“consequential cost” of functional failures under a critical 

scenario using the FFIP framework described in Section 3. This 

is accomplished by: 

1) Modeling a system of interest using the FFIP framework: 

Any complex electro-mechanical system can be modeled 

using the FFIP framework, which represents system function, 

configuration, and behavior, by an interrelated array of graph-

based models. This graph-based system model constitutes an 

environment where knowledge about system function, behavior, 

and control is integrated and used to automatically predict 

functional failures [3]. 

2) Selecting a scenario of interest: 

These scenarios are determined based on the concept of 

operations of a particular system.  The FFIP framework is 

developed to analyze the consequences of critical what-if 

scenarios in a system governed by the occurrence of specific 

Figure 1: An excerpt of a Functional FMEA Table conducted on an Electrical Power Supply (EPS) sub-system. 

Functional FMEA

Sub-system Name: Electrical Power System (EPS)

Function Component Failure Mode Cause Effect on system Criticality

Actuate Electrical Energy Solid-State Relay Actuator Fail open Multiple Loss of current in branch 2

Actuator Fail close Fault in coil side Loss of ability to break circuit 2

Overheating Overcurrent Eventual loss of relay 2

Uncontrolled state
Noise, improper wiring, damage 

to coil side
Loss of control or current 2

Regulate Electrical Energy AC/DC Charger Trip/fuse blown Overcurrent Loss of charging current 1

Overheating Overcurrent/prolonged charging Damage to charger 2

Isolation failure Damage/internal shorts 120VAC at output 4

Breakdown Multiple Loss of charging current 2

Import Electrical Energy Wall Outlet No current Unplugged Loss of charging 1

Transmit Electrical Energy Wire Rupture Circuit fails open Loss of current in branch 2

Current fluctuations Damage Fluctuations in current through branch 2

Short Circuit is shorted Current surge, damage, overheating 3



 8 Copyright © 2008 by ASME 

component failures [3]. For example, for the EPS system, the 

FFIP can help answer questions like “How does functional 

failures propagate if a wire shorts in the system?” or “What is 

the impact of a AC/DC charger breakdown on overall system 

functionality?”  

3) Running the FFIP analysis using the system model and the 

selected scenario: 

The task of the FFIP framework is to estimate potential 

functional failures and their propagation under critical event 

scenarios using behavioral simulation. This is accomplished 

through a reasoner that translates changes in the system 

behavior into an assessment of the operability of system 

functions. Accordingly, system functions are classified as 

‘operating’, ‘degraded’, or ‘lost’ [3]. Using the simulation 

scheme of the FFIP, functions that can potentially be lost under 

the selected scenario can be computed.  

4) Calculating the “Functional Failure Impact (FFI)” of the 

selected scenario: 

Finally, after the FFIP analysis is run, the Functional 

Failure Impact of the selected scenario can be calculated by 

simply summing over the “Functional Risk Factors (FRF)” of 

all functions that are classified as “lost” during the simulation. 

Naturally, the estimated loss of functions with higher risk 

factors will result in higher functional failure impact for the 

system  (i.e. losing the ‘regulate electrical energy’ function has 

a higher impact on the overall functionality of the system when 

compared to ‘import electrical energy’ function.) 

As stated earlier, this process allows the system designers 

and risk analysts to quantify the overall impact of functional 

failures and their propagation on the functional operability of 

the system. This quantification of the functional failure impact 

is crucial for design decision-making as it constitutes a formal, 

mathematical basis for exploring design decisions relevant to 

risk management in general and for risk mitigation in particular. 

The way in which these design decisions are explored is 

summarized next in Step 4.   

4.4 Step 4: Determining the “Reduction in Risk (RIR)” 
for each Design Decision 

The proposed design methodology is based on the 

assumption that one can reduce the severity of consequences of 

failures by making design decisions to mitigate risks associated 

with certain functional elements in the system. This can be 

done, for example, by placing more sensors in a sub-system, 

designing more redundancy, changing the architecture of the 

sub-system by the addition or removal of certain components, 

or by introducing new technologies. 

The objective of this fourth step is to quantify the level of 

mitigation a designer can achieve by making such design 

decisions. This is accomplished by first calculating the 

consequential cost of functional failures for a modified design 

under the same critical scenario used in Step 3. Accordingly, 

the “Functional Failure Impact of the modified design (FFIm)” 

is computed by making the necessary modeling changes, and by 

running the FFIP analysis under the same scenario for the 

modified design. Finally, one can calculate the “Reduction in 

Risk (RIR)” expressed in percentage by using: 

  

Reduction in Risk, RIR =  (FFIm-FFI)/FFI 

 

The RIR value formally quantifies the amount in risk 

reduction based on a specific design decision. The RIR value 

can be used to determine proper decisions to most efficiently 

mitigate risks associated with functional elements in a design. 

Moreover, it allows system designers to assess system safety 

beginning from very early stages of design, and to explore 

various conceptual design alternatives guided by safety and 

reliability requirements. The next section demonstrates this by 

the application of the proposed approach to the design of a 

hydraulic system. 

5 A CASE STUDY: THE DESIGN OF A RESERVOIR 
SYSTEM  

Figure 2 shows the functional model of a design example 

that will be used in the remainder of this paper to demonstrate 

the application of the proposed approach. This design problem 

involves a hold-up tank example, which is used to regulate the 

liquid amount in an open tank. The hydraulic system consists of 

seven components: a tank, two valves, two pipes, a controller, 

and a level sensor. One of the valves, the outlet valve, is 

manually controlled by an operator. The inlet valve, on the 

other hand, is actuated through a controller based on sensor 

measurements from the level sensor installed on the tank. The 

flow rate of both valves is assumed to be the same. To simplify 

the analysis it is also assumed that the liquid supply to the 

system is uninterrupted. Moreover, control laws are designed 

such that the controller shuts off the inlet valve if the liquid 

level reaches an overflow threshold to prevent a potentially 

hazardous tank overflow. Similarly, the operator is expected to 

shut off the outlet valve if the liquid level reduces below a 

hazardous dry-out threshold. Figure 2 also depicts the schematic 

and the configuration flow graph of the hold-up tank. 

As is shown on the system configuration flow graph of 

Figure 2, there are ten state variables (attached to the arcs of the 

CFG) of the hold-up tank design. Also, the seven components 

of the system have a total of thirteen distinct modes: six 

nominal, and seven fault modes, which are detailed in [3]. Note 

that we will reuse the two critical scenarios from last year’s 

paper. These two scenarios involve malfunctioning of critical 

system components as well as an operator error. In the first 

scenario, the effects of a clogged pipe and a valve failure are 

investigated, whereas in the second scenario, the consequences 

of a sensor failure and an operator error are examined. 
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For illustration purposes, we will analyze two modified 

designs representing different selections for the location of 

necessary safeguards, and the level of system redundancy. The 

schematics corresponding to these modified designs are shown 

in Figure 3. In the first modified design, a decision has been 

made to add a redundant level sensor to the reservoir system. In 

the second modified design, system designers have decided to 

employ a second outlet valve in a series configuration. The 

analysis of these two design decisions for determining how well 

they mitigate functional risks in the system is described next. 

5 RESULTS  

Before we present the results of the simulations on the 

modified designs, we first establish the functional failure impact 

of the two scenarios on the baseline (i.e. original) reservoir 

design shown in Figure 2. 

By following the steps outlined in Section 4, the functional 

risk factors of the ten system functions are calculated to be: 

 

 Import Liquid:    0.043 

 Guide Liquid:   0.086 

 Transfer Liquid:    0.109 

 Store Liquid:   0.131 

 Supply Liquid:    0.131 

 Transfer Liquid:   0.109 

 Guide Liquid:    0.086 

 Export Liquid:   0.043 

 Measure Level:    0.131 

 Process Signal:   0.131 

  

We, then, determine the functional failure impact of the 

two critical scenarios. In the first scenario (detailed in [3]), two 

events are considered: the inlet pipe getting clogged, and the 

outlet pipe failing to close. These events are injected to the 

simulation in the specified order. According to this scenario, the 

system starts out as working nominally until the inlet pipe fails 

“clogged”. The system responds to this component failure 

through the designed control laws and the outlet valve is closed 

as a precautionary measure to prevent a potential dry-out. Later 

in the scenario, the outlet pipe fails to “close”. This causes the 

tank level to drop further resulting in a tank dry-out. The first 
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functional loss occurs for the “transfer liquid” function.  After 

the valve failure, the “guide liquid” function is lost. Finally, the 

‘’supply” and “store liquid” functions are lost as a result of the 

dry-out. These estimates and the time-step of failures are 

illustrated in Figure 4.  

In the second scenario (again described [3]), the system has 

the same initial conditions, however, a different set of critical 

events is considered: a sensor failure and an operator error. In 

this simulation, the system is fully functional until the level 

sensor fails. At this point, the system is working with the inlet 

valve under “nominal on” mode, and the absence of an “on” 

control signal to the valve does not have an immediate negative 

effect on the system. However, later, the operator mistakenly 

shuts off the outlet valve. This causes the liquid level to rise, 

eventually requiring an off signal to be issued for the inlet valve 

to prevent a potential tank overflow. However, since the sensor 

is burst, the rise of the liquid level cannot be detected and 

therefore the inlet valve cannot be shut off. The liquid level 

continues to rise and the tank overflows. In this scenario, the 

first functional loss occurs for the “measure level” function. 

Immediately following this, the “process signal” and the “guide 

liquid” functions are lost.  

Using these results, the functional failure impact of each 

scenario is calculated to be: 

 

  FFI – Scenario I:    0.457  

  FFI – Scenario II:   0.348 

 

After the functional failure impact of the scenarios on the 

baseline design is established, we can determine the reduction 

in risk (RIR) for the two modified designs. To accomplish this, 

the FFIP is run for the same set of scenarios on both modified 

designs and the results are tabulated in Figure 5. 

For the first modified design, the decision to add a 

redundant sensor has no effect on the estimated functional 

failures under the first scenario, and hence the reduction in risk 

(RIR) for this scenario is zero. However, the addition of the 

redundant sensor proves to be extremely effective in mitigating 

the functional failure impact under the second scenario. In this 

scenario, the second sensor allows the ‘measure level’ function 

to remain operational even after the initial sensor failure. 

Moreover, it allows the system to issue a command to close the 

inlet valve. As a result, a potential tank overflow is safeguarded 

against without a single loss of functionality (only redundancy 

is lost in the system). Hence the reduction in risk (RIR) for the 

second scenario is a 100%. 

For the second modified design, the design decision to 

employ a series redundant outlet valve has quite the opposite 

effect under the two scenarios. This time, the decision does not 

help to mitigate any functional risk under the second scenario. 

However, it improves the system safety under the first scenario. 

According to the simulation, the inlet valve fails ‘clogged’ and 

the ‘transfer liquid’ function fails just as it failed for the original 

design. After this, one of the outlet valves fails to close. The 

decision to switch to a series redundant outlet valve 

configuration pays off after this event.  The existence of a 

redundant outlet valve allows the operator to shut-off the 

second outlet valve after the first one fails to close. As a result, 

further drop of the liquid level and a potential system dry-out is 

prevented. At the end, the ‘transfer liquid’ function remains to 

be the only functionality lost in the system. The RIR for this 

scenario becomes 76.149%. 

7 SUMMARY AND CONCLUSIONS  

In this paper, we introduced a new risk-informed decision-

making methodology that can be used during early design of 

complex systems. The proposed approach is based on the notion 
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that a failure happens when a functional element in the system 

does not perform its intended task.  Accordingly, risk is defined 

depending on the role of functionality in accomplishing 

designed tasks.  

A simulation-based failure analysis tool is used to analyze 

functional failures and their impact on overall system 

functionality. The analysis results are then integrated into a 

decision-making framework that relates the impact of functional 

failures and their propagation to decision making in order to 

guide system level design decisions. With the help of the 

proposed methodology, a multitude of failure scenarios can be 

quickly analyzed to determine the effects of decisions on 

overall system risk. Using this decision-making approach, 

design teams can systematically explore risks and 

vulnerabilities during early, functional stage of system 

development prior to the selection of specific components. 

Thus, the proposed method offers opportunities for significant 

reduction in cost, and increase in system safety and reliability 

by enabling early development of preventive measures that can 

effectively and efficiently guard against system failures. 

There are several unique characteristics of the develop 

framework. First, it provides an analytical approach to quantify 

individual risk of basic functional elements in a system as well 

as the combined risk resulting from the propagation of 

functional failures. More importantly, this quantification is 

derived from system specific function-to-configuration relations 

integrating the knowledge of which components are to-be used 

in the system for addressing functional requirements. This is a 

significant extension to the existing function-based failure 

assessment techniques in the literature. Second, the developed 

framework provides the designers with a means to determine 

the level of risk mitigation based on specific design decisions. 

This is accomplished by computing a decision’s direct effect on 

functional failures and the impact on the overall system safety. 

As a result, it allows designers to make decisions about what 

components to use in the system, how to configure them, the 

types and locations of necessary safeguards, and the proper 

level of system redundancy, all guided by potential functional 

failures and their impact on overall system performance as 

determined by reliability and safety requirements.  

There are also several assumptions that the presented 

method is based upon. These assumptions pose certain 

limitations that are left to be addressed in the future research. 

For example, only design decisions targeting system 

redundancy are tackled in this initial implementation. Such 

decisions allow same failure scenarios to be run on the original 

and modified designs. If, however, more complex design 

decisions are made governing the addition or removal of a huge 

number of system components, or the introduction of new 

technologies, the resulting configuration changes may force a 

failure scenario to be obsolete for the modified design. 

Secondly, the current implementation does not account for the 

likelihood of different failure scenarios. In the reservoir design, 

for example, it is inherently assumed that both scenarios have 

the same prior probability of occurrence, which may or may not 

be the case. Incorporating scenario probabilities will help the 

designers to more accurately assess the impact of their decisions 

by allowing them to analyze the combined effect of decisions 

under all potential scenarios. Third, the sequence of events to 

simulate is chosen by the designer. Unavoidably, a designer 

may miss certain sequence of events that could lead to failures. 

Exploring the event sequence space automatically for 

comprehensive coverage of potential failure scenarios is an 

open area of research left for future studies. 

8  REFERENCES 

[1] Mehr, A.F. and Tumer, I.Y., 2006, “Risk based 

decision making for managing resources during the 

design of complex aerospace systems,” ASME Journal 

of Mechanical Design, 128(4): 1014-1022. 

[2] Hoyle, C., Mehr, A.F., Tumer, I.Y., and Chen, W., 

2007, “Cost-benefit analysis of ISHM in aerospace 

systems,” International Design Engineering Technical 

Conferences; Computers in Engineering Conference 

(IDETC/CIE), Accepted, Las Vegas, NV. 

[3] Kurtoglu, T. and Tumer, I.Y., 2007, “A graph based 

fault identification and propagation framework for 

functional design of complex systems,” ASME Journal 

of Mechanical Design, (In print.). 

[4] DoD, D.o.D. Procedures for performing failure mode, 

effects, and criticality anlaysis. 

[5] Vesely, W.E., Goldberg, F.F., Roberts, N.H., and 

Haasi, D.F. (1981), The Fault Tree Handbook, US 

Nuclear Regulatory Commission. 

Figure 5: Tabulated results of the analysis of the two 
design decisions. The RIR percentages are used to 
express how well design decisions mitigate risks 

under critical scenarios. 
 

Design Version Scenario

Functions 

Estimated to 'Fail'

Functional 

Failure

 Impact (FFI)

Reduction 

in 

Risk (RIR in %)

Design Decision N/A

Scenario I

Transfer Liquid

Store Liquid

Supply Liquid

Guide Liquid

0.457 N/A

Scenario II

Guide Liquid

Process Signal

Measure Level

0.348 N/A

Design Decision redundant sensor

Scenario I

Transfer Liquid

Store Liquid

Supply Liquid

Guide Liquid

0.457 0.000

Scenario II None 0.000 100.000

Design Decision series outlet valve config

Scenario I
Transfer Liquid

0.109 76.149

Scenario II

Guide Liquid

Process Signal

Measure Level

0.348 0.000

Modified Design II

FFIP Analysis and Risk Estimates

Baseline Design

Modified Design I



 12 Copyright © 2008 by ASME 

[6] Greenfield, M.A., 2000, “NASA's Use of Quantitative 

Risk Assessment for Safety Upgrades,” IAAA 

Symposium, Rio de Janeiro, Brazil. 

[7] Stamatelatos, M. and Apostolakis, G. (2002), 

Probabilistic Risk Assessment Procedures Guide for 

NASA Managers and Practitioners v1.1, NASA, 

Safety and Mission Assurance. 

[8] Mosleh, A., Groen, F., Hu, Y., Zhu, D., Najad, H., and 

Piers, T. (2004), Simulation-Based Probabilistic Risk 

Analysis Report, Center for Risk and Reliability, 

University of Maryland. 

[9] Giarratano, J.C. and Riley, G.D., 2004, Expert 

Systems:  Principles and Programming, 4th, Boston, 

MA, PWS Publishing Company. 

[10] deKleer, J. and Williams, B.C., 1987, “Diagnosing 

multiple faults,” AI, 32: 97-130. 

[11] Kurien, J. and Nayak, P., 2000, “Back to the Future 

with Consistency-based Trajectory Tracking,” AAAI. 

[12] Williams, B.C. and Nayak, P.P., 1996, “A Model-

based Approach to Reactive Self-Configuring 

Systems,” AAAI. 

[13] Dvorak, D. and Kuipers, B.J., 1989, “Model Based 

Monitoring of Dynamic Systems,” IJCAI. 

[14] Chen, J. and Patton, R.J., 1998, Robust Model-Based 

Fault Diagnosis for Dynamic Systems, Kluwer 

Academic Publishers. 

[15] Sacks, I.J., 1985, “Digraph Matrix Analysis,” IEEE 

Transactions on Reliability, R-34( 5): 437-446. 

[16] Abdelwahed, S., Karsai, G., and Biswas, G. (2003), 

System Diagnosis using Hybrid Failure Propagation 

Graphs, Vanderbilt University. 

[17] Kapadia, R., 2003, “SymCure: A Model-Based 

Approach for Fault Management with Causal Directed 

Graphs,” IEA/AIE 2003, LNAI 2718. 

[18] Deb, S., Pattipati, K.R., Raghavan, V., Shakeri, M., 

and Shrestha, R. (1995). Multisignal flow graphs: a 

novel approach for system testability analysis and 

fault diagnosis. IEEE Aerospace and Electronics 

Systems Magazine, 10: 14-25. 

[19] Berenji, H., Ametha, J., and Vengerov, D., 2003, 

“Inductive Learning For Fault Diagnosis,” 12th IEEE 

International Conference on Fuzzy Systems. 

[20] Yairi, T., Kato, Y., and Hori, K., 2001, “Fault 

Detection by Mining Association Rules from House-

keeping Data,” SAIRAS. 

[21] Tumer, I.Y., Stone, R.B., and Roberts, R.A., 2003, 

“Analysis of JPL's Problem and Failure Reporting 

Database,” Submitted to  ASME Design Engineering 

Technical Conference, Design for Manufacturing 

Conference, Chicago, IL. 

[22] Swaminathan, S. and Smidts, C.S., 1999, “Framework 

for assessing confidence in simulation-based design 

under uncertainty,” Annual Reliability and 

Maintainability Symposium. 

[23] Li, H. and Azarm, S., 2002, “An approach to product 

line design selection under uncertainty and with 

competitive advantage,” Journal of Mechanical 

Design, 122(4): 411-418. 

[24] Grote, G., 2004, “Uncertainty management at the core 

of system design,” Annual Reviews in Control, 28(2): 

267-274. 

[25] Thunnissen, D.P., 2004, “Method for determining 

margins in conceptual designs,” Journal of spacecraft 

and rockets, 41(1): 85-92. 

[26] Martin, J.D. and Simpson, T.W., 2006, “A 

methodology to manage system level uncertainty 

during conceptual design,” Journal of Mechanical 

Design, 128: 959-968. 

[27] Aughenbaugh, J.M. and Paredis, C.J., 2006, “The 

value of using imprecise probabilities in engineering 

design,” Journal of Mechanical Design, 128(July): 

969-979. 

[28] Gu, X., Renaud, J.E., and Penniger, C.L., 2006, 

“Implicit uncertainty propagation for robust 

collaborative optimization,” Journal of Mechanical 

Design, 128: 1001-1013. 

[29] Padhke, M.S., 1989, Quality engineering using robust 

design, Englewood Cliffs, Prentice Hall PTR. 

[30] Parkinson, A., Sorensen, C., and Pourhassan, N., 1993, 

“A General Approach for Robust Optimal Design,” 

Journal of Mechanical Design, 115(1): 74-80. 

[31] Melchers, R.E., 1999, Structural Reliability Analysis 

and Prediction, Chichester, England, John Wiley & 

Sons. 

[32] Du, X., Sudjianto, A., and Huang, B., 2004, 

“Reliability-Based Design under the Mixture of 

Random and Interval Variables,” Journal of 

Mechanical Design, 127(6): 1068-1076. 

[33] Youn, B.D. and Choi, K.K., 2004, “Selecting 

Probabilistic Approaches for Realiability-Based 

Design Optimization,” AIAA Journal, 42(1): 2154-

2161. 

[34] Zang, T.A. (2002), Needs and Opportunities for 

Uncertainty-Based Multidisciplinary Design Methods 

for Aerospace Vehicles, NASA. 



 13 Copyright © 2008 by ASME 

[35] Hazelrigg, G.A., 1988, “A framework for decision 

based engineering design,” Journal of Mechanical 

Design, 120: 653-658. 

[36] Ullman, D.G., 2006, Making Robust Decisions, 

Trafford Publishing. 

[37] Lewis, K.E., Chen, W., and Schmidt, L.C., eds. 

Decision making in engineering design, ed. A. Press, 

2006. 

[38] Saari, D.G., 2001, Decisions and elections: explaining 

the unexpected, New York, NY, Cambridge University 

Press. 

[39] Sidall, J.N., 1972, Analytical decision-making in 

engineering design, Englewood Cliffs, NJ, Prentice-

Hall. 

[40] Hazelrigg, G.A., 1996, System Engineering: An 

approach to information-based design, Prentice-Hall. 

[41] French, S., 1986, Decision theory: An introduction to 

the mathematics of rationality, London, Wiley. 

[42] Jie, W. and Krishnamurty, S., 2001, “Learning based 

preference modeling in engineering design decision 

making,” Journal of Mechanical Design, 123(2): 191-

198. 

[43] Wassenaar, H.J., Chen, W., Cheng, J., and Sudjianto, 

A., 2005, “Enhancing discrete choice demand 

modeling for decision-based design,” Journal of 

Mechanical Design, 127(4): 514-523. 

[44] Marston, M., Allen, J.K., and Mistree, F., 2000, 

“Decision Support Problem Technique: integrating 

descriptive and normative approaches in Decision 

Based Design,” Journal of Engineering Valuation and 

Cost Analysis, 2000(3): 2. 

[45] Allen, B., 2000, “Toolkit for decision-based design 

theory,” Journal of Engineering Valuation and Cost 

Analysis, 3(2): 85-105. 

[46] Tappeta, R.V. and Renaud, J.E., 1997, “Multiobjective 

collaborative optimization,” Journal of Mechanical 

Design, 119(3): 403-411. 

[47] Keeney, R.L. and Raiffa, H., 1993, Decisions with 

multiple objectives: preferences and value tradeoffs, 

New York, NY, Cambridge University Press. 

[48] Thurston, D.L., 1991, “A formal method for subjective 

design evaluation with multiple attributes,” Research 

in Engineering Design, 3(2). 

[49] Wood, W.H. and Agogino, A.M., 2005, “Decision 

based conceptual design: Modeling and navigating 

heterogeneous design spaces,” Journal of Mechanical 

Design, 127(1): 2-11. 

[50] Kalsi, N., Hacker, K., and Lewis, K., 2001, “A 

Comprehensive Robust Design Approach for Decision 

Trade-Offs in Complex Systems Design,” Journal of 

Mechanical Design, 123(1): 1-10. 

[51] Stone, R., Tumer, I., and Stock, M., 2005, “Linking 

Product Functionality to Historic Failures to Improve 

Failure Analysis in Design,” Research in Engineering 

Design, 16(2): 96-108. 

[52] Stone, R., Tumer, I.Y., and Van Wie, M., 2004, “The 

Function Failure Design Method,” Journal of 

Mechanical Design, 127(3): 397-407. 

[53] Tumer, I.Y. and Stone, R.B., 2003, “Mapping 

Function to Failure During High-Risk Component 

Development,” Research in Engineering Design, 

14(1): 25-33. 

[54] Hirtz, J., Stone, R., McAdams, D., Szykman, S., and 

Wood, K., 2002, “A Functional Basis for Engineering 

Design: Reconciling and Evolving Previous Efforts,” 

Research in Engineering Design, 13(2): 65-82. 

[55] Uder, S.J., Stone, R.B., and Tumer, I.Y., 2004, 

“Failure Analysis in Subsystem Design for Space 

Missions,” ASME Design Engineering Technical 

Conferences, Design Theory and Methodology, 

DETC2004/DTM-57338, Salt Lake City, Utah. 

[56] Tumer, I.Y., Stone, R.B., and Bell, D.G., 2003, 

“Requirements for a Failure Mode Taxonomy for Use 

in Conceptual Design,” International Conference on 

Engineering Design, Stockholm Sweden. 

[57] Hutcheson, R. and Tumer, I.Y., 2005, “Function based 

co-design paradigm for robust health management,” 

International workshop on structural health 

management, Palo Alto, CA. 

[58] Hutcheson, R., McAdams, D., Stone, R., and Tumer, 

I., 2006, “A Function-Based Methodology for 

Analyzing Critical Events,” Proceedings of 

IDETC/CIE 2006 DETC2006-99535, Philadelphia, 

PA. 

[59] Hutcheson, R. and Tumer, I.Y. (2005). Function based 

design of a spacecraft power subsystem diagnostics 

testbed. International Mechanical Engineering 

Congress and Exposition, Orlando, FL. 

[60] Grantham Lough, K., Stone, R., and Tumer, I., 2006, 

“The Risk in Early Design (RED) Method:  Likelihood 

and Consequence Formulations,” Proceedings of 

DETC’06, DETC2006-99375, Philadelphia, PA. 

[61] Pahl, G. and Beitz, W., 1996, Engineering Design: A 

Systematic Approach, Springer Verlag. 



 14 Copyright © 2008 by ASME 

[62] Otto, K. and Wood, K., 2001, Product Design: 

Techniques in Reverse Engineering, Systematic 

Design, and New Product Development, New York, 

Prentice Hall. 

[63] Stone, R. and Wood, K., 2000, “Development of a 

Functional Basis for Design,” Journal of Mechanical 

Design, 122(4): 359-370. 

[64] Stone, R., Wood, K., and Crawford, R., 2000, “Using 

Quantitative Functional Models to Develop Product 

Architectures,” Design Studies, 21(3): 239-260. 

[65] Kurtoglu, T., Campbell, M., Gonzalez, J., Bryant, C., 

Stone, R., and McAdams, D., 2005, “Capturing 

Empirically Derived Design Knowledge for Creating 

Conceptual Design Configurations,” Proceedings of 

IDETC/CIE 2005, DETC2005-84405, Long Beach, 

CA. 

[66] Kurtoglu, T., Campbell, M., Bryant, C., Stone, R., and 

McAdams, D., 2005, “Deriving a Component Basis for 

Computational Functional Synthesis,” International 

Conference on Engineering Design, ICED'05, 

Melbourne, Australia. 

[67] Poll, S., Patterson-Hine, A., Camisa, J., Garcia, D., 

Hall, D., Lee, C., Mengshoel, O., Neukom, C., 

Nishikawa, D., Ossenfort, J., Sweet, A., Yentus, S., 

Roychoudhury, I., Daigle, M., Biswas, G., & 

Koutsoukos, X. (2007 May).  "Advanced Diagnostics 

and Prognostics Testbed", 18th International 

Workshop on Principles of Diagnosis, Nashville, TN. 

 

 

 


