
Integrated Flight Dynamic Modeling of Flexible Aircraft wi th
Inertial Force-Propulsion-Aeroelastic Coupling

Nhan Nguyen∗

NASA Ames Research Center
Moffett Field, CA 94035

This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures cou-
pled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in
flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling
method that describes the elasticity of a flexible, twisted,swept wing using an equivalent beam-rod model. The
structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending,
and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration.
The structural deflections create an effective aeroelasticangle of attack that affects the rigid-body motion of
flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerody-
namic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to
couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by
including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in
the standard state-space form for six degree-of-freedom flight dynamics.

I. Introduction

Modern aircraft are increasingly designed to be highly maneuverable in order to achieve high-performance mission
objectives. Toward this goal, aircraft designers have beenadopting light-weight, flexible, high aspect ratio wings in
modern aircraft. Aircraft design concepts that take advantage of wing flexibility to increase maneuverability have been
investigated. By twisting a wing structure, an aerodynamicmoment can be generated to enable an aircraft to execute a
maneuver in place of the use of traditional control surfaces. For example, a rolling moment can be induced by twisting
the left and right wings in the opposite direction. Similarly, a pitching moment can be generated by twisting both
wings in the same direction. Wing twisting or warping for flight control is not a new concept and was used in the
Wright Flyer in the 1903. The U.S. Air Force conducted the Active Flexible Wing program in the 1980’s and 1990’s to
explore potential use of leading edge slats and trailing edge flaps to increase control effectiveness of F-16 aircraft for
high speed maneuvers.1 In the recent years, the Active Aeroelastic Wing research program also investigated a similar
technology to induce wing twist in order to improve roll maneuverability of F/A-18 aircraft.2

Structural deflections of lifting surfaces interact with aerodynamic forces to create aeroelastic coupling that can
affect aircraft performance. Understanding these effectscan improve the prediction of aircraft flight dynamics and can
provide insight into how to design a flight control system that can reduce aeroelastic interactions with a rigid-body
flight controller. Generally, high aspect ratio lifting surfaces undergo a greater degree of structural deflections than
low aspect ratio lifting surfaces. In general, a wing section possesses a lower stiffness than a horizontal stabilizer or a
vertical stabilizer. As a result, its natural frequency is normally present inside a flight control frequency bandwidththat
potentially can result in flight control interactions. For example, when a pilot commands a roll maneuver, the aileron
deflections can cause one or more elastic modes of the wings toexcite. The wing elastic modes can result in changes
to the intended aerodynamics of the wings, thereby potentially causing undesired aircraft responses. Aeroservoelastic
filtering is a traditional method for suppressing elastic modes, but this usually comes at an expense in terms of reducing
the phase margin in a flight control system.3 If the phase margin is significantly reduced, aircraft responses may
become more sluggish to pilot commands. Consequently, witha phase lag in the control inputs, potential pilot-
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induced oscillations (PIOs) can occur. Numerous studies have been made to increase the understanding of the role of
aeroservoelasticity in the design of flight control systems.3–6,15

Aeroelasticity remains a fertile field of research in spite of many early contributions to this field dated back to the
1930’s. In the early days of National Advisory Committee forAeronautics (NACA), numerous studies on aeroelas-
ticity by investigators, such as Theodorsen and Garrick, had made significant advances in this field.7–11 Theodorsen’s
theory of unsteady aerodynamics still remains an essentialtool for aeroelastic analysis. Recently, interests in coupled
flight-structural dynamics have seen a renewal. Due to flexibility of modern aircraft structures, flight dynamic models
of rigid-body aircraft have limitations and cannot accurately predict behaviors of flexible aircraft when elastic modes
participate in the rigid-body motion. Recently, some investigators have investigated theoretical approaches to devel-
oping integrated flight dynamics with aeroelasticity. Shearer develops an integrated flight dynamic model for a rep-
resentative High Altitude Long Endurance (HALE) vehicle.13 Meirovitch and Tuzcu also develop another integrated
approach to flight dynamics of flexible aircraft.14,15 In both of these approaches, detail inertial-aeroelastic-propulsive
force coupling in the governing structural dynamic partialdifferential equations were not made available.

The purpose of this study is to produce a modeling capabilityfor integrated flight dynamics of flexible aircraft
that can better predict some of the complex behaviors in flight due to multi-physics coupling. Some of the important
features in the present method are: inertial force couplingdue to aircraft rigid-body acceleration, bending-torsion
coupling due to wing pre-wist, aeroelastic-propulsive force coupling due to engine mounting on flexible wing struc-
tures, and lastly an extension of Theodorsen’s theory to include chordwise bending in the aeroelastic angle of attack.
Through the use of generalized coordinates that represent elastic deflections, the standard flight dynamic equations for
six degree-of-freedom motion are modified to include effects of aeroelasticity and propulsive forces on flexible wings.

II. Reference Frames

Fig. 1 - Aircraft Reference Frames

Figure 1 illustrates three orthogonal views of a typical aircraft. Several reference frames are introduced to facilitate
the rigid-body dynamic and structural dynamic analysis of the lifting surfaces. For example, the aircraft inertial
reference frame A is defined by unit vectorsa1, a2, anda3 fixed to the non-rotating earth. The aircraft body-fixed
reference frame B is defined by unit vectorsb1, b2, andb3. The reference frames A and B are related by three
successive rotations: 1) the first rotation abouta3 by the heading angleψ that results in an intermediate reference
frame A

′
defined by unit vectorsa

′
1, a

′
2, anda

′
3 (not shown), 2) the second rotation abouta

′
2 by the pitch angleθ

that results in an intermediate reference frame B
′
defined by unit vectorsb

′
1, b

′
2, andb

′
3 (not shown), and 3) the third
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rotation aboutb
′
1 by the bank angleφ that results in the reference frame B. This relationship canbe expressed as
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The left wing elastic reference frame D is defined by unit vectors d1, d2, andd3. The reference frames B and
D are related by three successive rotations: 1) the first rotation aboutb3 by the elastic axis sweep angle3π

2 −Λ that
results in an intermediate reference frame B” defined by unit vectorsb”

1, b”
2, andb”

3 (not shown), 2) the second rotation
about negativeb”

2 by the elastic axis dihedral angleΓ that results in an intermediate reference frame D
′
defined by unit

vectorsd
′
1, d

′
2, andd

′
3 (not shown), and 3) the third rotation aboutd

′
1 by an angleπ that results in the reference frame

D. This relationship can be expressed as
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Generally, the effect of the dihedral angle can be significant. A full analysis with the dihedral angle can be
performed but can also result in a very complex analytical formulation. Thus, to simplify the analysis, the dihedral
effect is assumed to be negligible in this study. The right wing reference frame C can be established in a similar
manner. In the analysis, the aeroelastic effects on the fuselage, horizontal stabilizers, and vertical stabilizer arenot
considered, but the analytical method can be formulated foranalyzing these lifting surfaces if necessary. In general,a
whole aircraft analysis approach should be conducted to provide a comprehensive assessment of the effect of flexibility
on aircraft stability. Such an analysis is feasible in the current framework as described in this study.

III. Elastic Analysis

In the subsequent analysis, the combined motion of the left wing is considered. The wing has a varying pre-
twist angleγ (x) common in many aircraft. Typically, the wing pre-twist angle varies from being nose-up at the wing
root to nose-down at the wing tip. The nose-down pre-twist atthe wing tip is designed to delay stall onsets. Under
aerodynamic forces and moments, wing structural deflections introduce strains in the wing structure. For high aspect
ratio wings, an equivalent beam approach can be used to analyze structural deflections with a reasonable accuracy.
The equivalent beam approach is a typical formulation in many aeroelasticity studies.12,16 Experimental validation
can show that equivalent beam approach is accurate for an aspect ratio as low as 3:1. The internal structure of a wing
typically comprises a complex arrangement of load carryingspars and wing boxes. Nonetheless, the elastic behavior
of a wing can be captured by the use of equivalent stiffness properties. These properties can be derived from structural
certification testing that yields information about wing deflection as a function of loading.

Consider an airfoil section on the left wing as shown in Fig. 2undergoing bending and twist deflections.
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Fig. 2 - Left Wing Reference Frame

Let (x,y,z) be the coordinates of a point Q on the airfoil. Then
[

y

z

]

=

[

cosγ −sinγ
sinγ cosγ

][

η
ξ

]

(3)

whereη andξ are local airfoil coordinates, andγ is the wing section pre-twist angle, positive nose-down.
The axial or extensional deflection of a wing is generally very small and therefore can usually be neglected. LetV

andW be chordwise and flapwise bending displacements of point Q, respectively, and letΘ be a torsional twist angle
about thex-axis, positive nose-down. Then, the rotation angle due to the structural deformation can be expressed as

δ (x,t) = Θd1−Wxd2 +Vxd3 (4)

where the subscriptsx andt denote the partial derivatives ofV , W , andΘ.
Let (x1,y1,z1) be the coordinates of point Q on the airfoil in the reference frame D. Then the coordinates(x1,y1,z1)

are computed using the small angle approximation as11
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Differentiatingx1, y1, andz1 with respect tox yields

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Neglecting the transverse shear effect, the longitudinal strain is computed as

ε =
ds1−ds

ds
=

s1,x

sx
−1 (7)

where

sx =
√
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(8)
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√
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Using the Taylor series expansion, it can be shown that for small a andb
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2
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(10)
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Therefore, the longitudinal strain is expressed as

ε =
s1,x
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−1≈
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γ ′Θx
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For a small wing twist angleγ, the longitudinal strain is further simplified as

ε = −yVxx − zWxx +
(
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′
Θx (12)

The moments are now computed as
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where the area moments of inertia and the bending-torsion coupling constantsB1, B2, andB3 are defined as
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The strain analysis shows that for a pre-twisted wing the flexural deflectionsV andW are coupled to the torsional
deflectionΘ via the slope of the wing pre-twist angle. This coupling is usually not present in the Euler-Bernoulli beam
formulation, and can be significant if the termγ ′

is dominant as in highly twisted wings such as turbomachinery rotor
blades.

IV. Inertial Coupling

During a high-g maneuver, rigid-body acceleration of an aircraft due to the Coriolis effect can generate inertial
forces on lifting surfaces. For highly flexible wings, the inertial forces can couple with the structural deflection.
In particular, if an aircraft experiences a very rapid roll rate, the inertial forces created by the roll acceleration can
cause natural frequencies to change due to the stiffness contribution of the roll acceleration. This is a well-known
phenomenon for rotary wing structures, whereby the rotation contributes to the apparent structural stiffness which is
known as rotational stiffening. Generally, the roll motionof an aircraft has a greater rotational stiffening effect than
the pitch and yaw motions due to a larger moment arm, which is the wing span.

For the analysis, only the roll motion of an aircraft is considered. The kinematic relationship is to be developed
to establish the velocity and acceleration due to rigid-body aircraft motion at a reference point on the wing. The
velocity establishes aeroelastic angle of attack that is used to develop aeroelastic forces and moments. Similarly, the
acceleration establishes the inertial force coupling withthe wing elasticity.

A. Kinematics

Working in the left wing reference frame D, we define points O,P, and Q as the center of gravity of the aircraft, the
origin of the reference frame D of the left wing, and the reference point of a mass particle on the airfoil section as
shown in Fig. 2. Then the position vectors from O to P and from Pto Q are defined as

rOP = rOP
x b1 + rOP

y b2 + rOP
z b3 = xPd1 + yPd2 + zPd3 (16)

rPQ = x1 (x,t)d1 + y1(x,t)d2 + z1(x,t)d3 (17)
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
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
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Using Kane’s dynamical notations, the velocity of the center of gravity, point O, and the angular velocity of the
aircraft are defined as

AvO = ub1 + wb3 (19)
AωB = pb1 = ωxd1 + ωyd2 (20)

whereu andw are the axial and vertical velocity components at point O , respectively;p is the roll rate; andωx andωy

are the angular rates in the reference frame D
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]

(21)

The acceleration of the center of gravity and angular acceleration of the aircraft are computed as
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ẇ






(24)

The velocity of point Q is contributed by the structural deflection and is computed as

AvQ = AvO + AωB ×
(

rOP + rPQ)

+
D∂ rPQ

∂ t
= vQ
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z d3 (25)

wherevQ
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z are the velocity components in the left wing reference frameD
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The acceleration of point Q is also contributed by the structural deflection and is computed as
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andax, ay, andaz are the structural-deflection induced acceleration components in the reference frame D
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It is observed that angular rates and accelerations are coupled with the structural deflection to give rise to additional

acceleration components on a wing structure.
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B. Inertial Forces and Moments

For simplicity, we assume that the neutral axis coincides with the elastic axis. This is a reasonable approximation
and good results have been obtained with this assumption.When the neutral axis is offset from the elastic axis, the
expressions for inertial forces and moments can be quite complex. The offset between the neutral axis and elastic axis
is evaluated as

[

ey

ez

]

=
1
A

∫∫
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y

z

]

dydz =

[

0

0

]

(30)

The inertial forces at the elastic center due to the structural deflection per unit length are then computed as
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wherea∗x, a∗y , anda∗z are the rigid-body acceleration components at the elastic center







a∗x
a∗y
a∗z






=







aO
x + ω̇yzP −ωyw+ ωxωyyP −ω2

y (xP + x)

aO
y − ω̇xzP + ωxw−ω2

x yP + ωxωy (xP + x)

aO
z + ω̇xyP − ω̇y (xP + x)−

(

ω2
x + ω2

y

)

zP






(32)

The inertial moments due to the structural deflection per unit length are now computed as
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
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V. Aeroelastic Analysis

The relative velocity of the air approaching a wing section includes the contribution from the wing structural
deflection that results in changes in the local angle of attack. Since aerodynamic forces and moments are dependent
on the local angle of attack, the wing structural deflection will generate additional elastic forces and moments. The
local angle of attack depends on the relative approaching air velocity as well as the rotation angleφ from Eq. (4).
The relative air velocity in turn also depends on a structural-deflection induced velocity. The oscillation of the airfoil
results in an unsteady circulation. Kussner showed that thevelocity at the 3/4-chord point determines the circulation
force on an oscillating airfoil.17 This is in contrast to the lift due to circulation that acts atthe 1/4-chord point in a
steady motion.

Fig. 3 - Airfoil Coordinates

Referring to Fig. 3, we adopt the convention used in Theodorsen’s theory of unsteady aerodynamics whereby the
chord of an airfoil has a length 2b and the elastic center is located at a distance−ab from the mid-chord, where the
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parametera is between -1 and 1 anda is negative when the elastic center is forward of the mid-chord, which is usually
the case for a conventional airfoil16,17 . The local velocity is computed by evaluating the velocity of point Q in Eq.
(25) with the coordinates at the 3/4-chord pointyC =

(

1
2 −a

)

bcosγ andzC =
(

1
2 −a

)

bsinγ in the reference frame D






vC
x

vC
y

vC
z






=







−usinΛ+ ωy (zP + zC +W + yCΘ)− yCVx − zCWx

−ucosΛ−ωx (zP + zC +W + yCΘ)+Vt − zCΘt

−w+ ωx (yP + yC +V − zCΘ)−ωy (xP + x− yCVx − zCWx)+Wt + yCΘ






(34)

In order to compute the aeroelastic forces and moments, the velocity must be transformed from the reference
frame D to the airfoil local coordinate reference frame defined by(µ ,η ,ξ ) (see Fig. 2). Then the transformation can
be performed using three successive rotation matrix multiplication operations as







vC
µ

vC
η

vC
ξ






=







1 0 0

0 1 Θ + γ
0 −Θ− γ 1













1 0 Wx

0 1 0

−Wx 0 1













1 Vx 0

−Vx 1 0

0 0 1













vC
x

vC
y

vC
z






=







v∗µ
v∗η
v∗ξ






+







∆v∗µ
∆v∗η
∆v∗ξ






(35)

wherev∗µ , v∗η , andv∗ξ are rigid-body velocity components given by







v∗µ
v∗η
v∗ξ






=







−usinΛ+ ωy (zP + zC)

−ucosΛ− γw−ωx (zP + zC)

−w+ γucosΛ+ ωx (yP + yC)−ωy (xP + x)






(36)

and∆v∗µ , ∆v∗η , and∆v∗ξ are the induced velocity components due to the structural deflection given by







∆v∗µ
∆v∗η
∆v∗ξ






=







Vxv∗η +Wxv∗ξ + ωy (W + yCΘ)− yCVx − zCWx

−Vxv∗µ + Θv∗ξ −ωx (W + yCΘ)+Vt − zCΘt

−Wxv∗µ −Θv∗η + ωx (V − zCΘ)−ωy (−yCVx − zCWx)+Wt + yCΘt






(37)

A. Aeroelastic Angle of Attack

Referring to Fig. 4, the local aeroelastic angle of attack onthe airfoil section is due to the velocity componentsvC
η and

vC
ξ and is computed as

αc =
vC

ξ

vC
η

=
v∗ξ
v∗η

+
v∗η ∆v∗ξ − v∗ξ ∆v∗η

v∗2
η

(38)

Fig. 4 - Aeroelastic Angle of Attack

Let α∗ be a local rigid-body angle of attack. Thenα∗ is computed as

α∗ =
v∗ξ
v∗η

=
−w+ γucosΛ+ ωx (yP + yC)−ωy (xP + x)

−ucosΛ− γw−ωx (zP + zC)
≃ α

cosΛ
− γ − ωx (yP + yC)−ωy (xP + x)

ucosΛ
− αωx (zP + zC)

ucos2 Λ
(39)

where we recognize thatα is the aircraft angle of attack which is defined as

α =
w
u

(40)
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Let αe be the local elastic angle of attack. Thenαe is computed as

αe =
v∗η∆v∗ξ − v∗ξ ∆v∗η

v∗2
η

=
v∗η

[

−Wxv∗µ −Θv∗η + ωx (V − zCΘ)−ωy (−yCVx − zCWx)+Wt + yCΘ
]

v∗2
η

−
v∗ξ

[

−Vxv∗µ + Θv∗ξ −ωx (W + yCΘ)+Vt − zCΘt

]

v∗2
η

(41)

Upon evaluation, we get

αe ≃
[

Vx

( α
cosΛ

− γ
)

−Wx

]

[

tanΛ− ωy (zP + zC)

ucosΛ

]

−Θ

− ωx (V − zCΘ)−ωy (−yCVx − zCWx)+Wt +(yC + α∗zC)Θt + α∗ωx (W + yCΘ)−α∗Vt

ucosΛ
(42)

Then, the local aeroelastic angle of attack is expressed as

αc = α∗ + αe (43)

The termsVt ,Wt , andΘt contribute to aerodynamic damping forces which can be significant in aeroelastic analysis.
If p = 0 andγ is small, then the elastic angle of attack is approximately equal to

αe = Vx

( α
cosΛ

− γ
)

tanΛ−Wx tanΛ−Θ−
Wt +

(1
2 −a

)

bΘt −α∗Vt

ucosΛ
(44)

which agrees with the well-known Theodorsen’s result for a straight wing withΛ = 0.17

B. Aeroelastic Forces and Pitching Moment

In unsteady aerodynamics, the lift force is comprised of noncirculatory and circulatory components. The non circu-
latory component is due to the apparent mass and inertia effects which are generated when the wing has a non-zero
acceleration. This acceleration causes the surrounding air which has a finite mass to generate inertial forces that oppose
the acceleration. The circulatory component is more important for wing sections. This is due to the vortical strength
of circulation that generates lift. In unsteady aerodynamics, the vortices are shed in the flow in a complex fashion.
Unsteady thin-airfoil theories developed by Theodorsen and Peters can be used to estimate the effect of unsteady shed
vorticity. The former theory is appropriate for classical flutter analysis while the latter is a finite-state theory castin
the time-domain and is appropriate for time-domain analysis.18

The total aeroelastic forces and pitch momenting at the elastic center are the sum of the noncirculatory and circu-
latory components and are expressed as







f a
y

f a
z

ma
x






=







f n
y

f n
z

mn
x






+







f c
y

f c
z

mc
x






(45)

where the superscriptsa, n, andc denote aeroelastic, noncirculatory, and circulatory, respectively.

1. Noncirculatory Forces and Pitching Moment

The noncirculatory unsteady forces are due to the apparent air mass effect which is based on the acceleration of the air
mass enclosed by a circular cylinder whose diameter is the airfoil chord. These noncirculatory forces are computed
from the acceleration in the reference frame D acting at the mid-chord as

[

f n
y

f n
z

]

= −ρ∞πb2

[

ay (ȳ, z̄)

az (ȳ, z̄)

]

= −ρ∞πb2×

×
[

−ω̇x (W + ȳΘ)−ω2
x (V − z̄Θ)+ ωxωy (−ȳVx − z̄Wx)+Vtt − z̄Θtt −2ωx (Wt + ȳΘt)

ω̇x (V − z̄Θ)− ω̇y (−ȳVx − z̄Wx)−
(

ω2
x + ω2

y

)

(W + ȳΘ)+Wtt + ȳΘtt +2ωx (Vt − z̄Θt)−2ωy (−ȳVxt − z̄Wxt)

]

(46)
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where ¯y = −abcosγ, z̄ = −absinγ, andρ∞ is the air density.
In addition, the structural rotation of the wing induces a downwash component

∆v∗ξ ≃−ucosΛαe (47)

whereu is the free-stream air speed, which generates a noncirculatory force acting at the 3/4-chord point equal to

f n
ξ = −ρ∞πb2

∂∆v∗ξ
∂ t

≃ ρ∞πb2ucosΛ
∂αe

∂ t
(48)

The angular acceleration of the wing twist also induces a nose-down pitching moment at the mid-chord

mn
x =

1
8

ρ∞πb4 ∂ 2αe

∂ t2 (49)

Hence, the total noncirculatory forces and pitching momentat the elastic center are computed as






f n
y

f n
z

mn
x






=









f n
y − f n

ξ sinγ
f n
z + f n

ξ cosγ
ȳ f n

z − z̄ f n
y +

(1
2 −a

)

b f n
ξ + mn

x









(50)

If p = 0 andγ is small, the noncirculatory forces and pitching moment areapproximately equal to






f n
y

f n
z

mn
x






= −ρ∞πb2







Vtt + γabΘtt + γucosΛ ∂αe
∂ t

Wtt −abΘtt −ucosΛ ∂αe
∂ t

−ab(Wtt −abΘtt − γVtt)−
(

1
2 −a

)

bucosΛ ∂αe
∂ t − 1

8b2 ∂ 2αe
∂ t2






(51)

Equation (51) is in agreement with the well-established results in aeroelasticity.17

2. Circulatory Aeroelastic Forces and Pitching Moment

The circulatory lift, drag, and pitching moment based on theTheodorsen’s theory are given by

d
dx







L

D

M






= ρ∞bu2cos2 Λ

















CL

CD

2bCm






+C (k)αe







CL,α

CD,α

0

















(52)

The 2-D section lift, drag, and pitching moment coefficientsCL, CD, andCm due to the rigid-body angle of attack
are defined as







CL

CD

Cm






=







CL,0 +CL,αα∗ +CL,δaδa

CD,0 +CD,α α∗ +CD,δaδa + KC2
L

Cm,AC +Cm,δaδa






(53)

whereδa is the aileron deflection,K is the induced drag constant, andCm,AC is the quarter-chord pitching moment
coefficient which is positive nose up and independent of the angle of attack.

The functionC (k) is called the Theodorsen’s function which is a complex-valued function of the reduced frequency
parameterk

k =
bω

ucosΛ
(54)

whereω is the flutter or aeroelastic mode frequency.

C (k) can also be expressed in terms of Hankel functions of the second kindH(2)
n (k) as

C (k) =
H(2)

1 (k)

H(2)
1 (k)+ iH(2)

0 (k)
= F (k)− iG(k) (55)

whereF (k) > 0 andG(k) > 0.
Whenk = 0, the airfoil motion is steady andC (k) is real and unity. Ask increases, there is a phase lag introduced

as the magnitude ofG(k) increases as shown in Figs. 4 and 5. The limiting values ofF (k) andG(k) are 1/2 and 0 as
k → ∞.17
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Fig. 5 - Theodorsen’s Function
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Fig. 6 - Theodorsen’s Function Phase lag

The aerodynamic forces and moment on a 2-D wing section acting at the elastic center in the reference frame D
are determined by







f c
y

f c
z

mc
x






=

d
dx







−Lsin(αc + γ)+ Dcos(αc + γ)

Lcos(αc + γ)+ Dsin(αc + γ)

−M−
(1

2 + a
)

b [Lcosαc + Dsinαc]






(56)

as illustrated in Fig. 7.

Fig. 7 - Airfoil Forces and Moment
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For a small elastic angle of attack, the circulatory unsteady aerodynamic forces and moment are approximated as






f c
y

f c
z

mc
x






= ρ∞bu2cos2 Λ

















Cy

Cz

2bCx






+C (k)αe







Cy,α

Cz,α

2bCx,α

















(57)

whereCy, Cz, andCx are the force and moment coefficients due to rigid-body aerodynamics







Cy

Cz

Cx






=







−CL sin(α∗ + γ)+CD cos(α∗ + γ)

CL cos(α∗ + γ)+CD sin(α∗ + γ)

−Cm −
(1

4 + a
2

)

[CL cosα∗ +CD sinα∗]






(58)

andCy,α , Cz,α , andCx,α are the derivatives of the force and moment coefficients withrespect to the angle of attack







Cy,α

Cz,α

Cx,α






=







−(CL,α +CD)sin(α∗ + γ)+ (CD,α −CL)cos(α∗ + γ)

(CL,α +CD)cos(α∗ + γ)+ (CD,α −CL)sin(α∗ + γ)

−
(

1
4 + a

2

)

[(

c∗L,α + c∗D

)

cosα∗ +(CD,α −CL)sinα∗
]






(59)

C. Aerodynamic Damping

Dynamic stability of a system is dependent on dissipative forces acting on it. The dissipative forces contribute posi-
tively to damping of the system. Dynamically stable systemsrequire positive damping. Aeroelastic forces give rise to
the aerodynamic damping mechanism that influences aerodynamic stability of an oscillating wing or a flight vehicle.
Positive aerodynamic damping results in aerodynamically stable operation. Conversely, negative aerodynamic damp-
ing causes flutters and self-excited vibrations. Flutter boundaries are defined by air speed at which the aerodynamic
damping crosses from a positive value to a negative value.

Consider the case whenp = 0 andγ = 0, the damping forces are obtained from the noncirculatory and circulatory
components of the aeroelastic forces as






f d
y

f d
z

md
x






= ρ∞b2ucosΛ

(

αVxt tanΛ
cosΛ

−Wxt tanΛ−Θt

)







−πγ
π

π
(1

2 −a−aγ2
)

b






+ ρ∞bu2cos2 ΛC (k)αe







Cy,α

Cz,α

2bCx,α







(60)
For a harmonic motion, the structural deflections may be expressed as







Θ
W

V






=







ΦΘ (x)

ΦW (x)

ΦV (x)






eiωt (61)

whereΦΘ, ΦW , andΦV are the elastic mode shapes of the torsion, flapwise bending,and chordwise bending modes,
respectively.

Then, the elastic angle of attack may be expressed as

αe = (αr + iαi)eiωt (62)

whereαr andαi are the real and imaginary parts ofαe

αr =
αΦ′

V tanΛ
cosΛ

−Φ
′
W tanΛ−ΦΘ (63)

αi = −ω

[

ΦW +
(1

2 −a
)

bΦΘ −α∗ΦV

ucosΛ

]

(64)

where the prime denotes derivative with respect tox.
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The damping forces and pitching moment are then obtained as the imaginary part of the circulatory aeroelastic
forces and pitching moment






f d
y

f d
z

md
x






= ρ∞b2ucosΛαrω ieiωt







−πγ
π

π
(

1
2 −a−aγ2

)

b






+ρ∞bu2cos2 Λ [−G(k)αr + F (k)αi] ieiωt







Cy,α

Cz,α

2bCx,α






(65)

which can also be written as







f d
y

f d
z

md
x






= ρ∞b2ucosΛ

(

αVxt tanΛ
cosΛ

−Wxt tanΛ−Θt

)

















−πγ
π

π
(1

2 −a−aγ2
)

b






− G(k)

k







Cy,α

Cz,α

2bCx,α

















+ ρ∞bucosΛF (k)

[

−Wt −
(

1
2
−a

)

bΘt + α∗Vt

]







Cy,α

Cz,α

2bCx,α






(66)

It should be noted that the sign of the aerodynamic damping isinfluenced by the sign ofCL,α +CD. While CD

is always positive,CL,α can be negative when the airfoil is stalled. Therefore, it ispossible that the aerodynamic
damping can become negative. If the overall damping which includes structural damping that inherently exists in
the wing structure transitions from a positive value to a negative value, the ensuing motion will be aerodynamically
unstable due to positive work inputs to the wing by the air. For example, the generalized damping coefficient for the
flapwise bending, by neglecting the termCD,α −CL and the contributions from chordwise bending and torsion, may
be estimated as

ζW ≃ ρ∞ucosΛF (k)
∫

b(CL,α +CD)cosα∗ (x) [ΦW (x)]2 dx

2ω
∫

ρA [ΦW (x)]2 dx
(67)

It is obvious that ifCLα becomes negative then if it possible forζW to be negative. The aerodynamic damping for
the torsion is more complex. In general, the aerodynamic damping for the combined bending-torsion motion must be
analyzed by matrix analysis

VI. Gravity and Propulsive Forces and Moments

The gravity and propulsive forces are significant contributing active forces acting on the aircraft airframe. These
forces can influence structural deflections of a wing. For high-aspect ratio, flexible wings, gravity can significantly
offset wing bending deflections at low airspeed. Similarly,the engine thrust force can also affect twist and bending
deflections of flexible wings.

A. Propulsive Forces and Moments

To deal with the propulsive force, we assume that the left engine produces a thrust vector aligned with theb1-direction
at the thrust center E in the rigid-body aircraft reference frame B. Point E is assumed to be located relative to point P
at x = xE , y = yE , andz = zE forward and below the elastic center of the wing section in the reference frame D. Since
the engine is mounted on a flexible wing, then the thrust center E is dependent on the wing structural deflections.

Since the engine thrust is a concentrated force, it can be formulated as a distributed force using the Dirac delta
function which is defined as

δ (x− x0) =







∞ ,x = x0

0 ,x 6= x0

(68)

such that for an arbitrary functiong(x), then
∫

g(x)δ (x− x0)dx = g(x0) (69)
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Then, the distributed forces in the reference frame D due to the small structural rotation angleδ are computed
using three successive rotation matrix multiplication operations as







f e
x

f e
y

f e
z






≈ δ (x− xE)T







1 0 0

0 1 −Θ
0 Θ 1













1 0 −Wx

0 1 0

Wx 0 1













1 −Vx 0

Vx 1 0

0 0 1













−sinΛ
−cosΛ

0







≈ δ (x− xE)T







−sinΛ+Vx cosΛ
−cosΛ−Vx sinΛ
−Wx sinΛ−ΘcosΛ






(70)

whereT is the engine thrust.
The distributed thrust forces are transformed back into theaircraft reference frame B as







f e
x

f e
y

f e
z






≈ δ (x− xE)T







−sinΛ −cosΛ 0

−cosΛ sinΛ 0

0 0 −1













−sinΛ+Vx cosΛ
−cosΛ−Vx sinΛ
−Wx sinΛ−ΘcosΛ






≈ δ (x− xE)T







1

−Vx

Wx sinΛ+ ΘcosΛ







(71)
The left engine thrust force can now be obtained by integration as

TL =

∫

δ (x− xE)T [b1−Vxb2− (Wx sinΛ+ ΘcosΛ)b3]dx = T [b1−Vxb2 +(Wx sinΛ+ ΘcosΛ)b3]x=xE
(72)

It can be observed that the structural deflections at the thrust center generate additional thrust force components
in theb2- andb3-directions. Thus, the coupled effect between the propulsive force and structural deflections can be
significant if the wing is highly flexible and the engine thrust is large.

The distributed moments due to the propulsive force in the reference frame D are computed as






me
x

me
y

me
z






=







yE f e
z − zE f e

y

−zE f e
x

−yE f e
x






= δ (x− xE)T







(zE − yEWx)sinΛ+(−zEVx − yEΘ)cosΛ
zE (sinΛ−Vx cosΛ)

yE (Wx sinΛ+ ΘcosΛ)






(73)

B. Gravity Forces and Moments

The gravity can exert significant forces and moments on a wing. The gravity forces include the weight of the wing
including fuel, and the engine weight. The distributed gravity forces can be expressed in the reference frame D as







f g
x

f g
y

f g
z






≈ [ρAg + δ (x− xE)mEg]







sinθ sinΛ−cosθ sinφ cosΛ
sinθ cosΛ+cosθ sinφ sinΛ

−cosθ cosφ






(74)

whereρ is the mass density of the wing including fuel,A is the cross sectional area, andmE is the engine mass.
Assuming that the center of gravity of the wing and fuel coincides with the elastic axis, and the center of gravity

of the engine coincides with the thrust center, then the distributed moments due to gravity in the reference frame D are
computed as







mg
x

mg
y

mg
z






= δ (x− xE)mEg







−yE cosθ cosφ − zE (cosΛ+cosθ sinφ sinΛ)

−zE (sinθ sinΛ−cosθ sinφ cosΛ)

−yE (sinθ sinΛ−cosθ sinφ cosΛ)






(75)

VII. Coupled Structural Dynamic Equations

The equilibrium conditions describe the force and moment balance of all forces and moments acting on a wing.
The resulting force and moment equilibrium conditions are given by

∂
∂x







Fx

Fy

Fz






+







fx

fy

fz






=







0

0

0






(76)
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∂
∂x







Mx

My

Mz






+







mx

my

mz






+







FzVx −FyWx

−FxWx + Fz

−FxVx + Fy






=







0

0

0






(77)

where fx, fy, fz, mx, my, andmz are distributed forces and moments due to inertial, aeroelastic, gravity, and propulsive
effects

f(x,y,z) = f i
(x,y,z) + f a

(x,y,z) + f g
(x,y,z) + f e

(x,y,z) (78)

m(x,y,z) = mi
(x,y,z) + ma

(x,y,z) + mg
(x,y,z) + me

(x,y,z) (79)

The shear forcesFy andFz can be eliminated by solving the last two equations in Eq. (77). Neglecting nonlinear
terms, the equilibrium conditions can be written as

∂Mx

∂x
+ mx −m∗

yVx + m∗
zWx = 0 (80)

∂ 2My

∂x2 +
∂my

∂x
− fz +

∂
∂x

(

Wx

∫ x

0
f ∗x dσ

)

= 0 (81)

∂ 2Mz

∂x2 +
∂mz

∂x
− fy +

∂
∂x

(

Vx

∫ x

0
f ∗x dσ

)

= 0 (82)

where the superscript * denotes rigid-body forces and moments, andσ is a dummy variable that replacesx.
The resulting equations are three structural dynamic partial differential equations that relate the flapwise bending,

chordwise bending, and torsion with the coupled effects under consideration. The integral term involving the rigid-
body inertial forcef ∗x can be important if the inertial acceleration of the aircraft is significant. This term gives rise to
the rotational stiffening effect when the angular speed of awing structure is large.

A. Example

Consider a flight vehicle with non-twisted, unswept wingsγ = 0, Λ = 0, on a horizontal flight,θ = 0, making a
constant roll ratep maneuver. The rigid-body and elastic angles of attack from Eqs. (39) and (42) reduce to

α∗ = α +
−p(xP + x)

u
(83)

αe = −Wx
pzP

u
−Θ−

Wt +
(1

2 −a
)

bΘt

ucosΛ
(84)

Neglecting the chordwise bending motion and the damping forces, then the structural dynamic equations for flap-
wise bending and torsion are

− (GJΘx)x −ρ p2IzzΘ + ρIxxΘtt + ρ∞πb3
[(

3
8
−a +2a2

)

bΘtt +

(

1
2
−2a

)

Wtt

]

−ρ∞b2u2cos2 ΛF (k)Cz,α

(

1
2

+ a

)

(

Wx
pzP

u
+ Θ

)

+ ρ∞b3 G(k)
k

Cz,α

(

1
2

+ a

)[

Wtt +

(

1
2
−a

)

bΘtt

]

= ρ∞bu2cos2 Λ2bCx (85)

(EIyyWxx)xx + ρA
(

Wtt − p2W
)

+

(

ρ p2IyyWx −ρIyyWxtt +Wx

∫ x

0
ρAa∗xdσ

)

x

+ ρ∞πb2
[(

1
2
−2a

)

bΘtt +2Wtt

]

+ ρ∞bu2cos2 ΛF (k)Cz,α

(

Wx
pzP

u
+ Θ

)

−ρ∞b2Cz,α
G(k)

k

[

Wtt +

(

1
2
−a

)

bΘtt

]

= −ρAa∗z + ρ∞bu2cos2 ΛCz −ρAgcosφ (86)
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For a quasi-steady-state motion when the wing responds statically to the inertial, aeroelastic, and propulsive forces,
by setting all the partial time derivative terms to zero in the above equations, one obtains

−(GJΘx)x −ρ p2IzzΘ−ρ∞b2u2cos2 ΛCz,α

(

1
2

+ a

)

(

Wx
pzP

u
+ Θ

)

= ρ∞bu2cos2 Λ2bCx (87)

(EIyyWxx)xx −ρAp2W +

(

ρ p2IyyWx +Wx

∫ x

0
ρAa∗xdσ

)

x
+ ρ∞bu2cos2 ΛCz,α

(

Wx
pzP

u
+ Θ

)

= ρA
(

ẇ+ p2zp
)

+ ρ∞bu2cos2 ΛCz −ρAgcosφ (88)

B. Solution Methods

Structural dynamic problems are generally solved by the finite-element analysis (FEA) method. The FEA method
formulates a structural dynamic problem described by a system of partial differential equations as a matrix equation
in terms of the mass matrix, stiffness matrix, and force vector in the form of19

[

−ω2(

Mi + Mn)−ωG(k)H +(Ks + Kc)
]

U = F (89)

whereMi is an inertial mass matrix,Mn is an apparent mass matrix due to noncirculatory forces,Ks is a structural
stiffness matrix,Ke is an aeroelastic stiffness matrix due to circulatory forces, F is a force vector,H is a matrix due
to the phase lag resulting from vortex shedding, andU is a solution vector. Due to the aeroelasticity, the matrices
H andKc are non-symmetric, but they can be decomposed into symmetric and skew-symmetric matrices. Only the
symmetric matrices are retained for the solution.16

Equation (89) is a generalized nonlinear eigenvalue problem due to the presence ofG(k) which is a nonlinear
function of ω . Thus, the eigenvalue solution is an iterative process by first guessing fork, and then solving an
generalized quadratic eigenvalue problem forω , which in turn is used to updatek. An alternate approach is to simply
ignoreG(k) sinceG(k) is a small value. The eigenvalue problem then reverts to the standard form which can easily
be solved.

There are two types of problems: 1) static aeroelasticity and 2) dynamic aeroelasticity. The static aeroelasticity
describes physical effects that do not involve dynamic responses of a wing structure such as divergence and control
reversal. The wing-deflected shape can influence the aerodynamics of a vehicle. The static deflection can be large
if the wing structure is highly flexible. The static problem can be formulated as a coupled fluid-structure interaction
problem. The vehicle is modeled by computational fluid dynamics (CFD) method for aerodynamic calculations of
coefficients and derivatives. The results are used as inputsto the FEA model to compute the vehicle deflected shape.
This shape is then used as the new input to the CFD model and theprocess is repeated until the solution converges.

The dynamic aeroelasticity describes flutter behaviors andtransient responses of a wing structure that is subject
to wind gusts or instantaneous control surface deflections.Dynamic responses of the wing structure can affect the
overall vehicle control and stability. The solution of the dynamic problem can be solved by implementing the modal
decomposition method on the eigenvalue solution of the FEA.Elastic modes can be described by a set of uncoupled,
scalar second-order differential equations that can be readily analyzed.

For a symmetric aircraft configuration for which both wings are identical, two types of elastic modes are present.
Symmetric modes are those for which the structural deflections of both wings are in the same sense. Anti-symmetric
modes are those that exhibit structural deflections in an opposite sense between the left and right wings. Figure 8
illustrates symmetric and anti-symmetric modes.
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Fig. 8 - Symmetric and Anti-Symmetric Modes

Because of the symmetry that exists at the fuselage centerline, only one wing can be analyzed with appropriate
boundary conditions.20 The fuselage and tails contribute to the elastic modes as a concentrated mass, half of which is
located at each of the wing roots. Then for symmetric modes, the boundary conditions at the wing roots must match
the bending displacement slopes for both left and right wings, and are given by

[

Wx (0,t)

Vx (0,t)

]

=

[

0

0

]

(90)

The torsion boundary condition for symmetric modes is null which corresponds to a free-free boundary condition.
For anti-symmetric modes, the boundary conditions at the wing roots must be zero







Θ(0,t)

W (0,t)

V (0,t)






=







0

0

0






(91)

To be more precise, the entire aircraft structure includingwings, fuselage, and tails can be discretized and solved
by the FEA. In particular, the whole-aircraft analysis becomes necessary if the aircraft configuration is asymmetric.

The structural deflections are obtained from the FEA solution and can be expressed as






Θ(x,t)

W (x,t)

V (x,t)






=







Θ̄(x)

W̄ (x)

V̄ (x)






+

m

∑
j=1

q j (t)







ΦΘ, j (x)

ΦW, j (x)

ΦV, j (x)






+

n

∑
j=1

r j (t)







ΨΘ, j (x)

ΨW, j (x)

ΨV, j (x)






(92)

where the overbar symbol denotes static solutions,Φ(Θ,W,V ), j andΨ(Θ,W,V ), j are normalized eigenvectors,q j andr j

are generalized coordinates for thej − th symmetric and anti-symmetric modes that solve a set of uncoupled scalar
differential equations

mgen
j q̈ j + cgen

j q̇ j + kgen
j q j = ggen

j (u̇, ẇ,u,w, ṗ, p,δa) , j = 1, . . . ,m (93)

mgen
j r̈ j + cgen

j ṙ j + kgen
j r j = hgen

j (u̇, ẇ,u,w, ṗ, p,δa) , j = 1, . . . ,n (94)

The scalar quantitiesmgen, cgen, andkgen are called generalized mass, damping, and stiffness matrices, respectively,
andggenandhgen are called the generalized forces. They can be computed using the standard procedure in elementary
vibration theory.
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VIII. Flight Dynamics of Flexible Aircraft

A flexible aircraft has various elastic modes that can participate in the motion to affect its flight characteristics.
Wing elastic modes constitute significant structural dynamics of flexible aircraft. In addition, fuselage bending modes
are also known to affect pitch characteristics. There are other elastic modes such as those due to horizontal stabilizers
and vertical stabilizer. In totality, all these componentscontribute to flight characteristics and should be includedin
the equations of motion. The coupled flight-structural dynamics can be quite complicated when all elastic modes are
accounted for. In this study, we will only focus on the coupling of wing elastic modes and rigid-body flight dynamics.

A. Aeroelastic Forces and Moments in Aircraft Reference Frame

We define the elastic angle of attack as a function of the structural deflections as

αe (Θ,Wx,Vx) =
[

Vx

( α
cosΛ

− γ
)

−Wx

]

[

tanΛ− ωy (zP + zC)

ucosΛ

]

−Θ (95)

Wing structural deflections affect the lift characteristics of an aircraft. Assuming both the left and right wings are
of the same geometry, then the elastic angle of attack contributes to the static and dynamic forces and the moments in
the aircraft reference frame B as







∆X̄ (u,w, p,α,θ ,φ ,δa)

∆Z̄ (u,w, p,α,θ ,φ ,δa)

∆M̄ (u,w, p,α,θ ,φ ,δa)






= 2

∫ L

0
ρ∞bu2cos2 Λαe

(

Θ̄,W̄x,V̄x
)







−Cy,α cosΛ
−Cz,α

−2bCx,α cosΛ






dx (96)







∆XS
j (u,w, p,α,θ ,φ ,δa)

∆ZS
j (u,w, p)

∆MS
j (u,w, p)






= 2F (k)

∫ L

0
ρ∞bu2cos2 Λαe

(

ΦΘ, j,ΦW, j ,ΦV, j
)







−Cy,α cosΛ
−Cz,α

−2bCx,α cosΛ






dx (97)

[

∆Y A
j (u,w, p,α,θ ,φ ,δa)

∆LA
j (u,w, p)

]

= 2F (k)
∫ L

0
ρ∞bu2cos2 Λαe

(

ΨΘ, j,ΨW, j,ΨV, j
)

[

Cy,α sinΛ
−2bCx,α sinΛ

]

dx (98)

whereX , Y , andZ are the aircraft axial, side, and normal forces,L, M, andN are the aircraft rolling, pitching, and
yawing moments, the overbar symbol denotes static forces and moments, and the superscriptΦ andΨ denote dynamic
forces and moments corresponding to symmetric and anti-symmetric modes, respectively.

It can be seen that symmetric modes affects forces and moments in the longitudinal direction. On the other hand,
anti-symmetric modes affects the lateral motion of the aircraft. The aeroelastic forces and moments contribute to
the flight dynamics of an aircraft in such a way that elastic deflections can adversely affect the rigid-body aircraft
responses and can result in elastic mode interactions with aflight control system. These interactions necessitate the
use of aeroelastic mode filters in the flight control design inorder to attenuate structural dynamic responses of flexible
aircraft lifting surfaces.

B. Propulsive Forces and Moments in Aircraft Reference Frame

In addition, the elastic modes also affect the propulsive forces and moments generated by wing-mounted engines. The
propulsive force for the left engine is given by Eq. (72). Assuming a twin-engine aircraft configuration, the propulsive
force for the right engine is given by

TR = T [b1−Vxb2 +(Wx sinΛ−ΘcosΛ)b3]x=xE
(99)

whereV , W , andΘ are defined according to the right wing reference frame C suchthatV andΘ are in the opposite
sense to those deflections in the reference frame D, i.e.,V is positive towards the leading edge andΘ is positive nose
up.

The total static and dynamic propulsive forces are then computed to be

XT = 2T (100)
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[

∆Y TA
j

∆ZT S
j

]

= 2T

[

−Ψ′
V, j

Φ′
W, j sinΛ+ ΦΘ, j cosΛ

]

x=xE

(101)

where the superscriptTS andTA denote thrust forces due to symmetric and anti-symmetric modes, respectively. Thus,
symmetric modes create a normal force and anti-symmetric modes create a side force due to the combined thrust of
the two engines.

The propulsive moment is computed as

M =
(

rE
x b1− rE

y b2 + rE
z b3

)

×TL +
(

rE
x b1 + rE

y b2 + rE
z b3

)

×TR (102)

where
(

rE
x ,rE

y ,rE
z

)

are the coordinates of the right engine thrust center relative to the aircraft center of gravity in the
reference frame B.

Upon evaluation, this yields the total static and dynamic propulsive moments

MT = 2TrE
z (103)







∆LTA
j

∆MT S
j

∆NTA
j






= 2T









rE
z Ψ′

V, j − rE
y

(

Ψ′
W, j sinΛ+ ΨΘ, j cosΛ

)

−rE
x

(

Ψ′
W, j sinΛ+ ΨΘ, j cosΛ

)

−rE
x Ψ′

V, j









x=xE

(104)

It can be seen that symmetric modes result in an additional pitching moment, whereas anti-symmetric modes create
both rolling and yawing moments.

C. Equations of Motion

The flight dynamic equations with elastic mode and propulsive force interactions can now be written as

m(u̇− rv + qw+ gsinθ ) = XT + C̄Lq̄Ssinα − C̄Dq̄Scosα cosβ + ∆X̄ +
m

∑
j=1

∆XS
j q j (105)

m(v̇+ ru− pw−gcosθsinφ) = C̄Y q̄S− C̄Dq̄Ssinβ +
n

∑
j=1

(

∆Y TA
j + ∆YA

j

)

r j (106)

m(ẇ−qu + pv−gcosθcosφ) = −C̄Lq̄Scosα − C̄Dq̄Ssinα cosβ + ∆Z̄ +
m

∑
j=1

(

∆ZT S
j + ∆ZS

j

)

q j (107)

L = C̄l q̄Sb̄+
n

∑
j=1

(

∆LTA
j + ∆LA

j

)

r j (108)

M = C̄mq̄Sc̄+ MT + ∆M̄ +
m

∑
j=1

(

∆MT S
j + ∆MS

j

)

q j (109)

N = C̄nq̄Sb̄+
n

∑
j=1

∆NTA
j r j (110)

where the coefficients with the overbar are for the aircraft,q̄ is the dynamic pressure, ¯c isthe mean aerodynamic chord,
b̄ is the wing span,S is the reference wing area, andβ is the angle of sideslip.

These equations constitute six degrees of freedom dynamicsthat are coupled with structural dynamics equations
from Eqs. (93) and (94), which are obtained from the FEA. In analyzing the elastic modes, only the first few significant
modes whose natural frequencies are within a flight control frequency bandwidth are usually considered. These elastic
modes can become excited by the flight control surface deflections. Examining Eqs. (105) to (110) reveals that
symmetric modes only affects longitudinal dynamics of aircraft. On the other hand, anti-symmetric modes play a role
in both lateral and directional dynamics.
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IX. Conclusions

This paper has presented an integrated flight dynamic modeling method for flexible aircraft. The method combines
structural dynamics of an equivalent beam model of a flexiblewing with rigid-body flight dynamics that accounts for
coupled effects due to aeroelasticity, inertial forces, and propulsive forces. A formulation of aeroelastic angle of
attack for the combined chordwise bending, flapwise bending, and torsion is developed that extends Theodorsen’s
theoretical result. The structural dynamic equations can be solved using the finite-element method to determine static
and dynamic structural deflections as functions of aircraftstates. The elastic modes are decomposed into symmetric
and anti-symmetric modes with associated generalized coordinates. The standard flight dynamic equations for six
degree-of-freedom motion then includes the generalized coordinates as additional state variables. These equations
become coupled with a set of uncoupled second-order differential equations in terms of the generalized coordinates
that describe the elastic responses of the wing structure. These equations must be solved simultaneously to obtain a
solution that describes the combined motion of flexible aircraft.
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