

 1

Polymorphic Control Reconfiguration in an Autonomous
UAV with UGV Collaboration

Corey Ippolito
Adaptive Control and Evolvable Systems Group

NASA Ames Research Center
Moffett Field, CA 94035

650-604-1605
corey.a.ippolito@nasa.gov

Sungmoon Joo

Department of Aeronautics and Astronautics
Stanford University
Stanford, CA, 94305

650-387-4715
joosm@ Stanford.edu

Khalid Al-Ali, Yoo Hsiu Yeh

Carnegie Mellon Innovations Lab
Carnegie Mellon University West Cost Campus

Moffet Field, CA 94035
650-861-6000, 361-655-6873

alali@cmu.edu, yoohsiu.yeh@west.cmu.edu

Abstract—The emergence of distributed technologies as a
reliable infrastructure for real-time control is enabling a new
generation of distributed plug-and-play control architectures
and methodologies; increasingly common are control
systems that pass real-time data across traditional system
boundaries to utilize distributed remote sensing, processing,
and actuation. The Polymorphic Control Systems (PCS)
project formalizes constructs that permits topological
reconfiguration of control systems that span multiple
heterogeneous systems and multiple communication
mediums, towards the goal of control coordination and
strategy optimization in a multi-system environment,
increased resilience to failure and uncertainty, increased
overall and individual performance, and better utilization of
available resources. This paper presents the concepts
behind PCS, and presents results from a flight test
experiment involving distributed reconfiguration of an
autonomous landing controller in a collaborative multi-
vehicle environment. These flight test experiments
demonstrate one of the goals of polymorphic
reconfiguration: providing emergency assistance and
collaborative coordination between multiple systems to
achieve safely the mission critical objectives, where a
system failure would have resulted in the loss of the
aircraft.1,2

TABLE OF CONTENTS

1. INTRODUCTION..1
2. POLYMORPHIC CONTROL SYSTEMS2
2.1 MODELING SYSTEMS IN PCS..............................3
1
1 IEEEAC paper #1645, Version 8, Updated December 13, 2007
2 U.S. Government work not protected by U.S. copyright.

2.2 TOPOLOGICAL CONSTRUCT 4
2.3 PHYSICAL LAYER ... 5
3. FLIGHT TEST EXPERIMENTS................................ 5
3.1 EXPLORATION AERIAL VEHICLE UAV.............. 6
3.2 MOBILE AUTONOMOUS EXPLORER UGV 7
3.3 AUTOLANDING SYSTEM...................................... 8
3.4 PCS ANALYSIS.. 9
4.0 FLIGHT TEST RESULTS..................................... 11
4.0 CONCLUSION... 12
ACKNOWLEDGMENT....................................... 12
REFERENCES... 14
BIOGRAPHY .. 14

1. INTRODUCTION

The continuing maturation of distributed wireless
technologies is evident in the growing proliferation of
active research which is springing from these areas, such as
distributed sensor networks, control systems, and distributed
plug-and-play avionics infrastructures [1]-[6]. Much of this
research is spurred by the proliferation of low-cost secure
wireless communication hardware, such as wireless
Ethernet hardware and next generation wireless cellular
technology, resulting in the emerging ubiquity of wireless
technologies in our everyday lives and in a growing number
of domains. In particular, these recent advances are
enabling new methods and techniques of control
reconfiguration utilizing remote avionics, actuation, and
sensing. Distributed plug-and-play concepts can be applied
[1][4] to establish dynamic distributed avionics networks as
the backbone for communications in a single vehicle or
across multiple vehicle systems with the goal of enhanced
performance, resilience, and fault-tolerance. These dynamic

 2

networks have been shown to allow for the instantaneous
restructuring of coordinated control systems topologies in a
group of vehicles that could include delocalized sensor,
actuator, and controller components to establish highly
unusual control configurations, providing fault-tolerance to
a wider class of vehicle system failures that previous
approaches were ill-equipped to handle. Control systems in
these dynamic networks could conceivably be capable of
instantaneous polymorphic change - that is, the
instantaneous and fundamental restructuring of the
controller form and function. Polymorphic control
architectures could provide on the fly reconfiguration to
optimize a controller topology given radical changes in the
environment. The Polymorphic Control Systems project
seeks to research and formulate concepts for analysis and
synthesis of component-based control systems towards the
realization of polymorphic control concepts, with the
ultimate goal of increased performance, resilience, and
fault-tolerance.

This paper presents results from PCS inspired flight test
experiments conducted in 2007 at NASA Ames Research
Center in Moffett Field, California. These experiments
involved coordinated control between ground vehicle assets
at a landing site and an autonomous unmanned aerial
vehicle experiencing a mid-flight emergency landing, but
without sufficient onboard sensing to conduct a safe
landing. The lack of sufficient observability through its
onboard systems forces the aircraft to consider wireless
communication medium for closed loop control, utilizing
the in situ resources of the airfield – in this case, an
autonomous ground vehicle with a sensor suite designed for
vision-based navigation of the UGV. Through polymorphic
restructuring of both the onboard flight system and the
ground vehicle system, and utilizing secure communication
over wireless 900Mhz ISM-band, the ground rovers provide
vision-based guidance and sensing to the aircraft.

2. POLYMORPHIC CONTROL SYSTEMS

The Polymorphic Control Systems approach applies control
theoretic analysis and synthesis techniques to a
mathematical construct that describes the composition and
function of a distributed component-based system
conducive to vehicle control system formulation and
implementation, and implements these strategies on an
embedded system architecture. The requirements for this
approach can be conceptually divided into three main
constituents: a physical layer, a topological construct, and
an analysis/synthesis approach.

Topological
Construct

Analysis and
SynthesisPhysical Layer

Figure 1. Conceptual Components of PCS

The physical layer refers to the actual implementation of the
distributed embedded plug-and-play environment that
allows for immediate on-the-fly reconfiguration over local
and global vehicle systems. The physical layer comprises a
number of technologies and mediums, including protocols
for communication, the physical communication buses (e.g.,
Spacewire, MIL-STD-1553, etc.), various computing
hardware communicating over the buses, wireless
communication transceivers and radios, and the actual
implementation of the algorithms that result from the PCS
design process.

The PCS research utilizes the Reflection Architecture [8] - a
plug-and-play middle-ware communications layer for real-
time embedded systems - as the main protocol for inter-
component communication. Reflection provides a large set
of capabilities and functionality for component-based plug-
and-play that meets the requirements of the physical layer
PCS definitions [1]. The benefits of component-based
approaches to development of large scale systems [9][10],
and vehicle systems in particular [11], are well documented
(see treatment in [1]). Reflection operates over a number of
mediums, including the wireless mediums (900MHz,
802.11x) and wired buses (RS-232/422, Ethernet) used for
these flight test experiments.

The topological construct defines the PCS component
model: a mathematical description of a plug-and-play
architecture as conceived for the purposes of PCS system
formulation, analysis, and implementation. This layer
defines a topological construct capable of describing a large
class of control configurations, which must also allow for
modeling and analysis of real-world properties of
distributed computing architectures such as latency,
bandwidth limitations, errors and uncertainty in the data
signals. The PCS formulation provides concise definitions
for a component-based plug-and-play system focusing on
structural/topological definition and operations. The
constructs model component-based intercommunications
largely through a signal-routing architecture model, which
is compatible with the implementation of Reflection in the
physical layer.

The analysis/synthesis approach defines the analytical and
synthesis engines required to solve PCS problems posed in
the context of the topological construct, which in turn
generates control algorithms and procedures to implement

 3

these results. Subsequently, the algorithms are implemented
on the physical layer.

2.1 MODELING SYSTEMS IN PCS

A component is a distinct, composable transform block
whose interface is defined by its input and output
characteristics, and whose implementation is strictly
encapsulated. As an example, consider a linear time-
invariant (LTI) dynamic system whose evolution is
described by the vector-valued relationships shown in
Figure 2. The vector x is composed of a set of state
parameters, the set (A,B,C,D) are matrices that represent
static properties of the component, both of which are
encapsulated by the component in the PCS definition along
with the system of equations (although the parameters can
be exposed in the interface at the discretion of the
developer). The set of input variables and output variables,
u and y respectively, represent the interface of the
component (in the example, shown as u∈ℜn,y∈ℜm).

()
()⎩

⎨
⎧

=
=

iiii

iiii

uxgy
uxfx

,
, Component i

u1

u2

y1

y2

un Ym

… …()
()⎩

⎨
⎧

+=
+=

iiiii

iiiii

DuCxuxg
BuAxuxf

,
,

Figure 2. LTI System Represented in PCS.

Complex dynamic systems are often decomposed into
smaller functional blocks that can be characterized by their
input and output relationships for the sake of
interconnection and dataflow analysis. For instance, the
linear system shown in Figure 2 may be decomposed as
follows:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

2221

1211

2

1

2221

1211

2

1

u
u

BB
BB

x
x

AA
AA

x
x

 111111 uDxCy += (1)
By defining vectors z1 and z2, the equation in (1) can be
expanded to two distinct interconnected systems, such as:

⎪
⎩

⎪
⎨

⎧

+=
+=

++=

111111

1211211

21111111

uDxCy
uBxAz

zuBxAx

⎩
⎨
⎧

+=
++=

2122122

12222112

uBxAz
zuBxAx

 (2a,b)

This componentized decomposition is represented in
graphical form that specifies the input/output characteristics
of the component, shown in Figure 3.

Expansion

Component i
u1 y1

un Ym

… …
iii

iii

DuCxy
BuAxx

+=
+=

Component 1
y1

Ym

…
…

Component 2

u1

un

…
…
Z2_1

Z2| Z2|

111111

1211211

21111111

uDxCy
uBxAz

zuBxAx

+=
+=

++=

2122122

12222112

uBxAz
zuBxAx

+=
++=

Z2_1

Z2| Z2|

…
Z1_1

Z1| Z1|

Z1_1

Z1| Z1|

…

Figure 3. Expansion of an LTI System Component.

Similarly, consider a system of n components defined either
by the general dynamic system formulation, or the LTI
system formulation, as shown in Figure 2. These systems of
interconnected components can be contracted into a single
formulation of interconnected systems, for instance through
an evolved system approach [7] as shown in eq 3. Below.
Here, εij is a parameter which controls the evolution of the
component systems.

()
()

() ()

[] 10,...

,,

,
,

1

1

≤≤=

+=

⎩
⎨
⎧

=
=

∑
=

ij
T

L

L

j
jjijijiiii

xxxwhere

uxguxfx

uxgy
uxfx

system

ε

ε (3)

In a topological context, the graph for this contraction is
shown in Figure 4.

Component i
u1 y1

un Ym

… …
iii

iii

DuCxy
BuAxx

+=
+=

Component L
u1 y1

un Ym

… …
LLL

LLL

DuCxy
BuAxx

+=
+=…

Component 1
u1 y1

un Ym

…
111

111

DuCxy
BuAxx

+=
+= …

Contracted (Evolved) System

u1 y1

un Ym

…
[]

()∑
=

++=

=
L

j
jjijijiii

L

uxgBuAxx

xxx

1

1

,

...

ε
…

Contraction

Figure 4. Contraction through Evolved Transformation

The process shown in Figure 3 and Figure 4 are examples of
more general topological operations defined as component
expansion and component contraction. The directed edges
in these figures represent data flow and equivalence; that is,
two variables are equivalent, and the directionality of the
edge represents movements from the output of one
component to the input of another component. The graphs
of Figure 3 and Figure 4 shows configuration space

 4

representations of the same system from a functional point
of view. Through the non-isomorphic operations of
expansion and contraction, many different representations
can be posed of the same system from a functional and
dynamic standpoint.

2.2 TOPOLOGICAL CONSTRUCT

Conceptually, the following PCS construct provides a
formalization describing control systems from a graph-
theoretic topological standpoint, which is uncommon in the
literature for real-time control problems. The basic
constructs of the PCS framework are similar to graph
theoretic definitions that formalize hypergraphs, but have
distinct and important differences. Let a vertex v∈V be an
indivisible unit in the component graph. Vertices represent
a data attribute of a component in a component graph. Let a
directed edge e∈E be defined as an ordered pair e=<s,t>
where s,t∈V. Edges represent a route for data flow between
two data attributes. Let E be the set of all edges. For
notation purposes, let the mappings init:E→V and ter:E→V
be defined on every edge e∈E such that init(e)=s and
ter(e)=t, where s∈V is the initial vertex and t∈V is the
terminal vertex of the edge, respectively.

A component graph G=(V,E,C) is a set of vertices V, a set
of edges E, and set of components C that is recursively
defined below. Let a graph G’=(V’,E’,C’) be a subgraph of
a graph G=(V,E,C) if V’⊆V, E’⊆E, and C’⊆C. "G is a
subgraph of G’" is written as "G⊆G’".

A component graph G is edge contained if the following
holds: init(e)∈V(K) and ter(e)∈V(K) ∀ e∈E(K).

A component K∈C(G) is a component graph subject to the
following constraints:

(i) K is a subgraph of G;

(ii) init(e)∈V(K) and ter(e)∈V(K) ∀ e∈E(K) (Edge
Containment);

(iii) if L∈C(K) then L is a subgraph of K (Component
Containment), and

(iv) K∉C(K) (Monotonicity).

For a component K, an element of C(K) is a called a
subcomponent of K. All components must have at least one
vertex. If a component contains an edge, it must start and
end in vertices contained within that component. All
subcomponents of a component are proper subgraphs of that
component, and a component cannot contain itself. As a
result, subcomponents are a proper subset of their owning
component. A component C subsumes a component K iff
K⊂C and either (i) c'∈C(c), or (ii) there is a subcomponent

c’’∈C(c) that subsumes c’. Note that a component can
never subsume itself.

The definition of a component as a subgraph allows an
arbitrary level of detail when describing components in the
system, as shown in Figure 5. Non-trivial systems can be
described as a single component that contains the entire
component graph G.

Figure 5. Component Level of Detail

The configuration space defines the space of all possible
configurations, i.e., the space of all graphs representing all
possible combinations of components and interconnections.
Let the configuration space C be defined as the graph
C=(V,E,C) where

(i) V(C) is a set of vertices,

(ii) C(C) is a set of components, and

(iii) E(C) is a set of all possible directed edges on V;
i.e. <s,t>∈E(C) ∀ s,t∈V(G).

For notation purposes, given a graph G=(V,E,C), let the
mappings V(G)=V, E(G)=E, and C(G)=C be defined for
every graph G. In addition, an entity x∈G is equivalent to
x∈V(G)∪E(G)∪C(G). A component C contains a set of
vertices V if V⊆V(C).

Let the parent component of a vertex v be defined as
follows: for every vertex v∈V in C, there exists a unique
c∈C(C) such that v∈c, E(c)=∅, and C(c)=∅. This unique
component c is said to be the parent of v, and is written
parent(v) = c.

A vertex has one and only one parent component. As a
result of this rule, the set of parent components in C(C) are
set of components with no edges or subcomponents, and
this set is unique and disjoint. Further, there are
components with no edges or subcomponents that are
inadmissible in C because of violation of the parent
component definition.

The concept of connectiveness from traditional graph theory
is useful, and is derived here for components in a graph.
Note that these definitions do not consider edge direction in
the definitions for component-connectivity.

Given a graph G, two components A,B∈C(G) are neighbors
in G if there exists an edge e∈E(G) such that (init(e)∈V(A)
∧ ter(e)∈V(B)) ∨ (init(e)∈V(B) ∧ ter(e)∈V(A)).

 5

Let a component-path Pc be an ordered set of components in
G where either (i) Pc=<A,B> ∧ A,B are neighbors, or
(ii) there exists two components A,B∈Pc such that A,B are
neighbors, and the set (Pc-{A}) is a component-path. A
component graph G is component-connected if there exists
at least one component-path between every pair of
components in G. A component-path P=<X0,X1,…,Xn-

1,X0> where n≥2 is a component-cycle.

A component-cycle P is of maximal length in G if for all
P’⊆C(G), where P’≠P and P’ contains a component-cycle,
|P|≥|P’|. A component graph G is a cycle-bound component
graph if two conditions hold: (i) G is component-connected,
and (ii) there exists a path P* of maximal length in G where,
given a component K∈C(G), either (a) K∈P*, or (b) there
exists a component-cycle P’ in G where K∈P’ and
P*∪P’≠∅. In other words, every component is either part
of the maximal length component-cycle, or is contained in
another component-cycle which shares at least one
component with the maximal length component-cycle.

Given these definitions we can formally define a particular
configuration in configuration space, where a configuration
is a graph that represents a finite selection set of
components, edges and vertices. Let a configuration graph
G in C be defined as a graph G=(V,E,C) that represents a
specific configuration implementation, subject to the
following:

(i) G∈C(C) (G is a Component);

(ii) For all v∈V(G) there exists one and only one
K∈C(G) such that v∈K (Disjoint Subcomponents);

(iii) For all e∈E(G), let init(e)∈V(L) and ter(e)∈V(M)
are contained in different components
(Pruned Edges);

(iv) G is component-connected
(Component-Connectedness).

For a configuration graph, all components in the
representation are disjoint; in other words vertices are
contained by only one component in G, which is not the
parent of the vertex if parent(v∈G)∉C(G).

The following statements (see [1]) provide some insight into
necessary conditions for observability and controllability of
components through topological properties of a controller
graph.

Consider a component graph G. If a component K∈C(G) is
controllable in G, then there exists a path P in G where
K∈P, and an edge e in P where term(e)∈V(K).

Consider a component graph G. If a component K∈C(G) is
observable in G, then there exists a path P in G where K∈P,
and an edge e in P where init(e)∈V(K).

2.3 PHYSICAL LAYER

The physical layer in the Polymorphic Control Systems
formulation must implement a morphable controller
network topology over continuous systems and components,
as defined in the topological construct. In addition to
supporting the component-based definitions, a candidate
PCS physical layer must also support the following
operations.

Let G be a component in C with pruned edges and disjoint
subcomponents. Define the component-prune operation
cprune(G) to be as follows. If there exists a component
A∈C(G) such that A is not component-connected to any
other component B∈(C(G)-A) for all B, then
cprune(G)=(V(G),E(G),C(G)-A). Otherwise cprune(G)=G.

Let G and K be non-empty component graphs in C, let
e∈E(C), e≠0, such that e connects G and K. Then define
combineCGraphs(G, K, e)=(V(G)+V(K), E(G)+E(K)+e,
C(G)+C(K)). The result of combineCGraph(G, K, e) is
itself a component graph.

Let G be a configuration graph in C, let e∈E(C), e≠0, and
ter(e)∪init(e)⊆V(G), then the operation addEdge(G,e) is
defined by the following:

(i) If no component in G subsumes ter(e), then
addEdge(G,e)=combineCGraph(G,
parent(ter(e)), e);

(ii) Else if no component in G subsumes init(e), then
addEdge(G,e)=combineCGraph(G, parent
(init(e)), e);

(iii) Otherwise addEdge(G,e) = G.

Let the operator ∅ be defined as G∅e := cprune((V(G),
E(G)-e, C(G)), where G is a configuration graph in C, and
e∈E(C). Similary, let the operator ⊕ be defined as G⊕e :=
(V(G),E(G)+e,C(G)). Note that G⊕e and G∅e results in a
configuration graph.

In implementation, these definitions are implemented
through hardware or software algorithms that are specific to
the particular layers involved.

3. FLIGHT TEST EXPERIMENTS

PCS flight test experiments were conducted that focused on
a specific case of reconfiguration where observability of the
system has been damaged or degraded, and no possible
reconfiguration onboard the vehicle system would provide
the necessary conditions for a safe landing to occur. In this
situation, traditional control strategies for failure mitigation
- such as reconfiguration (recovering from actuator failure),

 6

robust design (uncertainty), or adaptive control strategies
(actuator failure or uncertain dynamics) - would not be
sufficient to recover and save the aircraft. The objective of
the experiments was to demonstrate through flight-testing
the viability of real-time polymorphic reconfiguration,
demonstrate the PCS algorithms effectiveness in time-
critical control applications, and demonstrate the proper
operation of the real-time embedded software that is hosting
the PCS algorithms.

Figure 6. Flight Testing at Moffett Field, CA

Figure 7. UGV Assist in UAV Landing

The experiment was designed as follows. A UAV
performing flight maneuvers at altitude is required to
perform an immediate landing maneuver. The UAV is
assumed to have suffered damage to its onboard position
estimation sensors, and accurate ground-relative position
measurements - particularly AGL altitude, glide slope, and
localizer deviation measurements - are not available to
conduct a landing. A ground-based unmanned autonomous
rover is in the nearby vicinity, monitoring the airfield for
debris and foreign objects utilizing its onboard sensors suite
that includes a vision-based navigation system to identify
and track airfield debris hazards. The PCS system is
utilized to model the system, analyze and reconfigure the
controllers onboard both vehicles, and conduct the aircraft
to a safe and timely landing.

The limited accuracy of low-cost position measurement
sensors causes difficulties for autonomous landing of small-
scale low-cost UAVs. Many small-scale UAV systems
utilize low cost avionics suites with standard GPS, which

provides position accuracy of approximately 10m (with
95% confidence) in the horizontal direction and 15m (with
95% confidence) in the vertical direction, which is
insufficient accuracy to perform a flare and landing
maneuver. Additionally, GPS does not provide ground-
relative estimations, and landing is not possible without
accurate measurement of the ground altitude on the runway.
 While these are real issues faced by UAV designers and
developers, the purpose of this experiment is not to design a
UAV landing system. Rather, these experiments
demonstrate a scenario where, at a certain point in time, the
global system is faced with a scenario where it cannot meet
desired objectives (due to damage of onboard components,
for instance), and state of the art control techniques will not
be able to complete the mission objectives or even save the
aircraft.

The PCS flight test experiments were conducted on Moffett
Field (Figure 6) at NASA Ames Research Center on two
research vehicle platforms: the Exploration Aerial Vehicle
(EAV) UAV platform, and the Mobile Autonomous
eXplorer (MAX) UGV platform.

3.1 EXPLORATION AERIAL VEHICLE UAV

The Exploration Aerial Vehicle (EAV) [12] is an unmanned
autonomous aerial vehicle build on a Hanger 9 airframe
modeled after the 2000 version of a Cessna 182 at one
quarter-scale (Figure 8). This particular airframe affords a
large interior volume for installing flight avionics and
systems. The specifications for the EAV are shown in
Table 1.

Figure 8. The Exploration Aerial Vehicle (EAV)

 7

Table 1. Exploration Aerial Vehicle Specifications

Airframe Hanger 9 Cessna 182 Skylane
95” ARF

Wing Span 94.75 in (2406 mm)
Overall Length 76.75 in (1949 mm)
Wing Area 1246 sq in (80.39 dm²)
Wing Loading 32.7 oz/sq ft
Flying Weight (Empty) 18.5 lb (8.22 kg)
Flying Weight (Full) 23.2 lb (10.52 kg)
Max Payload Weight 10 lbs
Cruise Speed 45 knots
Operations Ceiling 500 ft (flight field restrictions)
Engine Make/Model Zenoah G-38
Engine Type 2-Stroke Gas/Oil
Engine Displacement 2.3 cu in (38 cc)

Actuation/Servomotors
Six (6) HiTec HS-5646MG DC
Programmable Digital Ultra
Torque Servos

Primary CPU Diamond Athena
660MHz/128MB RAM

Secondary CPU Versalogic Cheetah M
1.6/512MB RAM

Embedded Controller Motorola DSP56807

Sensor Suite

Athena GS111m INS/GPS Unit,
provides full 6DOF state,
WAAS-enabled GPS, angle of
attack, sideslip, airspeed and
pressure altitude

Sensors/Vision Point Grey Dragonfly Cameras

Communication Links

72Mhz Receiver (Pilot/ Safety
Control), 900Mhz Transceiver
(Data Communications), 2.4GHz
Transceiver (Data/ Video
Downlink)

A set of flight tests had been conducted previously to
identify the major lateral and longitudinal modes of the
EAV. During these tests, specific maneuvers (such as 3-2-
1-1, 2-1-1, pulses, and doublets) applied to the aircraft
excited the aircraft modes sufficiently for system
identification. A least-squares regression in frequency
domain identified the major modes of the system, as shown
in Figure 9.

Spiral Mode
Pole: -0.0692
NatFreq (rad/s) : 0.0692
Damping Ratio: 1.000

Roll Mode
Pole: -7.9305
NatFreq (rad/s) : 7.9305
Damping Ratio: 1.000

Dutch Roll Mode
Pole: -2.0211 +/- 4.5734i
NatFreq (rad/s) : 5.0001
Damping Ratio: 0.4042

Phugoid Mode
Pole: -0.9535 +/- 0.3622i
NatFreq (rad/s) : 1.0200
Damping Ratio: 0.9348

Short Period Mode
Pole: -6.7387 +/- 4.6572i
NatFreq (rad/s) : 8.1914
Damping Ratio: 0.8227

Figure 9. EAV System: Pole-Zero Plots of the Lateral
and Longitudinal Modes

Table 2. EAV System Characteristics

Mode Pole Frequency
(rad/s)

Damping
(ξ)

Roll Mode -7.9305 7.9305 1.0000
Dutch Roll
Mode

-0.0692 5.0001 0.4042

Spiral Mode -0.0692 0.0692 1.0000
Short Period
Mode

-6.7387 +/-
4.65721i

8.1914 0.8227

Phugoid
Mode

-0.9535 +/-
0.36220i

1.0200 0.9348

3.2 MOBILE AUTONOMOUS EXPLORER UGV

The Mobile Autonomous eXplorer (MAX) UGV platform is
a commercial robotics platform designed by Carnegie
Mellon University West Campus and Senseta, Incorporated
(Figure 10). This UGV is a small all-terrain vehicle used
for research and education, with a powerful and densely
packed sensor and computing suite detailed in Table 3.

 8

Figure 10. The Senseta Inc. Mobile Autonomous

eXplorer (MAX) Ground Rover

Table 3. MAX Ground Rover Specifications

Airframe Senseta, Inc. MAX Rover, version
5.0A (Ames), Carbon-Fiber Frame

Dimensions 18” x 15” x 19”
Top Speed 11.2 mph (5.0 m/s)

CPU – General Purpose
1.8 GHz Pentium-M, 1GB RAM
Mini-ITX Board with Full-Size PCI
Expansion Slot

CPU - Embedded
Two (2) Programmable Onboard
I/O Boards based on the Motorola
DSP56F807 Chipset

Drive Train/Suspension

Two (2) Novak SS4300 Brushless
DC Motor Systems, Four wheel
drive with front and rear
differentials, Beam Suspension

Turning Radius
Twin, independent Ackerman
steering with tight turning radius
(25 cm)

Sensing- Inertial/GPS

Athena Guidestar GS-111m
Navigation System (3-axis
accelerometer, 3-axis gyroscope, 3-
axis magnetometers) with DGPS
(cm accurate)

Sensing- Sonars 10 sonar rangefinders with
integrated photo sensors

Sensing- LIDAR
Six Hokuyo Scanning LIDAR, 240o
Scan Angle, 1024 Lines at 50Hz,
4m range, +/-10mm

Sensing- Vision

Stereo camera pair (640x480 @
30fps or 1280x960 @ 7.5fps 24-bit
color) mounted on an articulated
panospheric pan and tilt unit

3.3 AUTOLANDING SYSTEM

The onboard flight system and ground rover system were
designed and implemented in the Reflection Architecture,
allowing PCS reconfiguration to occur on the fly in this
flight test experiment on the EAV flight computer, just prior
to the approach phase. The vision processing components
were implemented using Matlab Simulink on the ground
rovers; unfortunately, time constraints did not permit the
vision processing component to be ported over to
Reflection, so the ground rover system was manually

configured to the final PCS control graph configuration, and
did not reconfigure on the fly.

Figure 11. Aircraft Landing Profile

Figure 12. FMS Autopilot Landing Logic and Mode

Transition Diagram

Conceptually, the EAV controller is composed of three
major components: the flight management system (FMS),
the mode-based autopilot system, and the hardware/actuator
interfaces (see Figure 13 for details of a landing mode
configuration). The FMS onboard the UAV is responsible
for monitoring the aircraft, receiving instructions from the
ground station computers, managing the flight logic, and
instigating the appropriate mode transitions of the lower-
level autopilot systems. This responsibility includes
implementing the autopilot landing system logic.

The autopilot landing system follows the profile shown in
Figure 11. Figure 12 shows the FMS state transition
diagram for the autopilot landing system. This system has
four phases: approach, descent/glide slope follow, flare

 9

transition, and flare. In the approach phase, the aircraft
slows to the reference approach speed and descends from
cruising altitude to the descent altitude. The controller then
follows a descent trajectory by following a controlled glide
slope angle that varies between 0.0 and 10.0 degrees (5
degrees nominal) based on the error between the desired
landing point and the aircraft’s estimated landing point. At
a predefined transition altitude, the aircraft transitions from
the glide-slope controller to the flare controller. During the
autopilot testing, the UAV system was found to provide
more consistent performance with the introduction of a flare
transition phase; this transition phase gradually transitions
from the glide-slope follow to the flare trajectory. Once the
UAV enters the final flare phase, the aircraft throttles to a
minimum setting, with a fixed descent rate until touchdown.

3.4 PCS ANALYSIS

Figure 13 shows a PCS configuration graph for one of the
autopilot modes; in this case, the ‘descent’ phase of the
autopilot landing system. In this configuration graph, the
highlighted position signals have insufficient accuracies to
achieve an autonomous landing. The component graph Geav
comprises the set of components
C(Geav)={Kfms, Kc, Km, KUAV}, and the component Kc can be
further decomposed into C(Kc)={Kc1..Kc7}. Here, Kci are

PID controller blocks. The UAV dynamics represented by
the component Kuav represent the physical system rather
than an implemented component. The inclusion of Kuav
endows Geav with several appealing properties: Geav is an
edge contained, component connected, cycle-bound
component-graph. The removal of the edge set Ev=(ev1,ev2)
leaves Geav without a maximal length component-cycle that
would meet the requirements for Geav to be cycle-bound,
which is a necessary condition in the outer loop
implementation for controllability of Kfms.

The ground vehicle’s autonomous control system is shown
in Figure 14 as a highly contracted high level PCS
configuration graph, Gmax. Similar to Geav, the KUGV and
Kenv are included for analysis, although Gmax is not a
maximal-cycle component graph (Kenv, for instance, does
not meet the necessary conditions for controllability). A
path of interest in this graph is the path {Kcpc, Kcam, Kvis,
Ktf}. Kvis is the vision processing system, which is an
interface to the camera hardware and provides a steady
stream of image data. Ktf is a vision processing/object
detection filter which produces the position of a tracked
object of interest. Kcpc is the camera pan/tilt head tracking
controller, which points to an input position. Establishing a
path from Ktf to Kcpc would form a closed loop tracking
control around the camera system, aiming the camera at the
current object of interest being identified by the tracking
filter Ktf.

Figure 14. PCS Configuration Graph Gea, for the EAV Glide Slope Phase Autopilot

The highlighted signals have accuracies which are insufficient for a safe landing.

Figure 14. PCS Configuration Graph for the Conceptual UGV Autonomous Control System

 10

Problem Statement: The PCS problem statement can be
stated in two parts. Given the graph defined by G’=
combineCGraph((Geav∅Ev), Gmax), find a sequence of
operations on the graph G’ that arrives at a graph G*∈C,
where G* provides a control path that includes the
components {Kfms, Kc, Kuav}, and G* stabilizes and controls
Kuav. Given a candidate graph G*, determine the control
strategy that provides guidance for the aircraft to safely
conduct an autonomous landing.

Control Topology: Several candidate graph topologies can
be constructed utilizing Ktf to track the UAV, but since no
criteria for optimization or performance was enforced in this
problem statement, the candidate graph G* was selected for
ease of implementation, and is shown in Figure 15. In more
general situations where additional candidate topologies can
be considered, or multiple resources require consideration to
constraints such as bandwidth or processing limitations, the
graph theoretic constructs were designed to allow analysis
and implementation of topological optimization operations,
as described in [1].

The sequence of operations that operate on Guav are shown
in Figure 16. This solution required the development of a
new controller component Kekf that was not an element of
the original graphs Geav or Gmax. This component contains a
custom extended Kalman filter, designed to take the output
angle provided by the image processing component Ktf and
provide an estimate for the position of the aircraft. Note
that since the edge from Ktf to Kekf crosses the system

boundary, latency will be incurred on the signal, and this is
taken into account in the filter design. The details of the
development of this filter are given in [2].

Once the new component Kekf was added, a minimum-cut
was determined to partition the components to the various
partitions to minimize communication bandwidth usage.
During this process, the Kekf component was moved to the
UAV system partition.

The graph G* is edge contained, component connected, and
is a maximal-cycle component-graph (with the elimination
of Kc4). The necessary conditions for observability and
controllability on Kfms is provided by introducing the edge
from Kekf to Kfms, which transports the estimated position of
the UAV based on vision (P*

v).

Rover Control Strategy: Similar to the selection of the
configuration topology G*, the control strategies on the
control graph G* for both the rover and the UAV system
were selected for sufficiency and ease of implementation.
As shown in Figure 7, the rover is given a high level
command to navigate to a position on the runway ahead of
the landing zone. This requires manipulation of the planner
(Kpln), but the control structure cycle {Kpln, Ktp, Kcms, Kap,
Kmtr, Kugv, Ksen} was not modified from the original Gmax
configuration (edge Ksen-Kpln is not shown). From this
vantage point, the rover can directly measure cross-track
error, glide slope deviation, and can infer AGL altitude and
position. The control path {Kcpc, Kcam, Kvis, Ktf} does exist
as a cycle in G*, representing a closed loop control of the

Figure 15. Configuration Graph G*

The highlighted signals and Kekf were added.
Bold-outline blocks must remain in a particular system partition.

 11

tracking head. The tracking filter must be set to track the
UAV, and the closed loop controller for the tracking head
was included that will track the aircraft as the aircraft
descends.

UAV Control Strategy: The manipulation to the UAV
control system is largely topological.

In order to establish a controller that satisfies the objectives,
the onboard UAV system reconfigures from G’ to G*. One
aspect of the reconfiguration is that data from the rover’s
remote sensors are routed to several points in the mid-level
control loops. The reconfiguration bypasses the cross-track
error calculation component Kc4 completely, and feeds the
cross-track error directly into Kc5 from the vision
measurement in Kekf, in an attempt to close the loop around
the remote sensors at the lowest level possible. Likewise,
the reconfiguration routes the glide-slope measurement
directly to the Kc2 component.

Implementation Concessions for Flight Test: Unfortunately,
the constraints of flight testing on a live runway and on
schedule required a large number of concessions. The rover
was positioned on the side of the runway, rather than a
location in the center of the runway, because of flight safety
issues. Additionally, the vision controller development
required more time than was expected, which did not allow
time for the Matlab controller to be ported to Reflection. As
a result, the vision processing on the rovers had to be
performed in Matlab at run-time, and the rover system could
not take part in the reconfiguration; rather, the rover’s
configuration graph in G* was implemented completely in

Matlab [2]; the rover position and camera articulations were
fixed. Vision sensor data was directly uploaded to the
UAV’s system through a wireless 900Mhz radio modem
link.

4.0 FLIGHT TEST RESULTS

The flight control algorithms for PCS were successfully
implemented and tested on the EAV UAV and the MAV
UGV vehicle systems in a series of tests in the later part of
2007. The graphs in Figure 17 through Figure 20 at the end
of this report show profiles and trajectories for many of the
approaches.

The Reflection Architecture [8] was used for constructing
and maintaining the PCS graphs. The algorithms onboard
the EAV were implemented in C++ on a 700Mhz Pentium
III class PC/104 processor. The reconfiguration script was
written in ReflectionScript, and interpreted averaged 10.3
milliseconds to execute the reconfiguration on this platform.
 Several successful flight tests were conducted that tested
the mid-flight control reconfiguration. The reconfiguration
onboard occurred without any noticeable problems.

The ground rover systems were not implemented in a PCS-
enabled architecture because of schedule constraints, but
rather the final configuration was implemented in Matlab
utilizing the image processing toolbox. The vision
processing loop, running in Matlab on the 1.8 GHz mini-
ITX CPU, ran at roughly 5-10 Hz, but varied depending on
the image complexity. Development of the vision

// Reconfiguration operations

define Kekf;
define objMatlabIntrfc;

// Load Matlab Interface
objMatlabIntrfc = Guav.CreateComponent ("pcsmatlabinterface.dll");

// ... objMatlabIntrfc specific function calls omitted...

// Delete and add components.
Guav.DeleteComponent (Kc1);
Guav.DeleteComponent (Kc2);
Guav.PruneEdges ();
Kekf = Guav.CreateComponent ("pcstrackingfilter.dll”);

// Connect the graph
Guav.CreateEdge ("Kimu.m_posEast_ft", "Kekf.m_posEast_ft");
Guav.CreateEdge ("Kimu.m_posNorth_ft", "Kekf.m_posNorth_ft");
Guav.CreateEdge ("Kimu.m_posUp_ft", "Kekf.m_alt_agl_ft");
Guav.CreateEdge ("Kimu.m_velEast_fps", "Kekf.m_velEast_fps");
Guav.CreateEdge ("Kimu.m_velNorth_fps", "Kekf.m_velNorth_fps");
Guav.CreateEdge ("Kimu.m_velUp_fps", "Kekf.m_velUp_fps");
Guav.CreateEdge ("Kekf.m_posNorthOut_ft", "Kfms.airplane_pos_north_ft");
Guav.CreateEdge ("Kekf.m_posEastOut_ft", "Kfms.airplane_pos_east_ft");
Guav.CreateEdge ("Kekf.m_alt_aglOut_ft", "Kfms.airplane_pos_altitude_ft");
Guav.CreateEdge ("Kekf.m_crossTrackAngleErr_rad", "Kc5.inputXTrackAngularErr_rad");
Guav.CreateEdge ("Kekf.m_crossTrackAngleErr_rad", "Kc2.inputGSAngleActual_rad");
Guav.CreateEdge ("objMatlabIntrfc.m_azimuthAngle_rad”,
Guav.CreateEdge ("objMatlabIntrfc.m_isRxExperimentData", "Kekf.m_isRxExperimentData");
Guav.CreateEdge ("objMatlabIntrfc.m_isVisionDataValid", "Kekf.m_isVisionDataValid");
Guav.CreateEdge ("objMatlabIntrfc.m_imageTime_sec", "Kekf.m_imageTime_sec");
Guav.CreateEdge ("objMatlabIntrfc.m_vAngle_rad", "Kekf.m_vAngle_rad");
Guav.CreateEdge ("objMatlabIntrfc.m_hAngle_rad", "Kekf.m_hAngle_rad");

Figure 16. UAV Reconfiguration Script for G* (ReflectionScript Language)

 12

processing algorithms, including noise rejection, is covered
in [2].

The amount of time required to develop the flight test was
much longer than expected. In fact, the majority of the
development and flight test time was spent tuning and
modifying the landing controller, developing successful
strategies for the rover vision systems [2], and interfacing
with Matlab. These issues resulted in accomplishing only a
fraction of the initial goals. The vision processing and EKF
filter performed very well during the tests. The onboard
EAV systems are capable of providing around 3.5-7m
accuracy in altitude AGL. Through reconfiguration, the
vision-based system provided less than 1.5m error. See
reference [3] for further details.

1500 2000 2500 3000
500

1000

1500

2000

2500

3000

posEast (ft)

p
os

N
or

th
 (

ft
)

EAV Flight 20070717-A - 2 Activations
East/North Trajectory Profile

1500 2000 2500 3000
500

1000

1500

2000

2500

3000

posEast (ft)

p
os

N
or

th
 (

ft
)

EAV Flight 20070717-A - 2 Activations
East/North Trajectory Profile

Figure 17. Ground-Track of Autonomous Landing.

Figure 18 3D Plots of the Autonomous Landings.

Showing measurement delay consideration, see ref. [3])

4.0 CONCLUSION

The successful flight test of this small-scale PCS
experiment fielded PCS inspired architectures and
controllers for the first time on real flight vehicles. The
goals for the PCS project are broad, and this simple and
modest flight test experiment barely scratches the surface of
possibilities for topological approaches to control
reconfiguration over distributed networks. Previous
experiments have shown the scalability of the PCS
approach; PCS itself is in some sense a modeling tool, and
using these tools scalable approaches have been introduced
to automatically assemble controllers when competing
multiple configuration possibilities over limited bandwidth
and processing situations [1]. Both these previous
applications and the experiment detailed in this paper show
real-time configuration on various types of vehicle systems.
These applications begin to shed light on how distributed
wireless technology, lightweight plug-and-play
architectures, and graph-theoretic topological analysis can
be applied to the problem of control reconfiguration to
develop a class of controllers that can adapt to certain
environments, situations, and failures better than alternative
state of the art techniques.

Further development into the mathematical formulation will
be pursued. The conditions for stability, controllability, and
observability are currently being investigated to see if graph
theoretic approaches can provide new insight into control
systems from a topological perspective. For instance,
certain guarantees when contemplating controller/dynamic
system composition and reconfiguration may be easier to
achieve through topological analysis than through current
approaches based on linear and non-linear analysis. This
may lead to optimization methods for rejection or
acceptance of candidate control topologies, control system
optimizations in large distributed control systems from a
control structures approach, or automated assembly of
controllers in damaged systems through topology
reconfiguration.

ACKNOWLEDGMENT

The authors wish to thank all those who have contributed
their knowledge and expertise to make this research project
a reality. Thanks to Kalmanje Krishnakumar, Mark
Sumich, and the adaptive controls group at NASA Ames
Research Center for their continued support of this project.
Special thanks to student interns Mera Horne, Matt
Wallach, Brad Jackson, Matt Walliser and Ace Shelander,
whose hard work made these flight tests possible.

 13

0 2 4 6 8 10 12 14 16 18
50

100

150

200

Time (sec)

Altitude

AGL

(ft)

0 2 4 6 8 10 12 14 16 18 -25
-20
-15
-10
-5
0
5

10

Time (sec)

Vertical

Speed

(fps)

Commanded (est)
Activation 1

Activation 2

Figure 19. Descent and Landing Tracking Performance

0 5 10 15 20 25

50

100

150

Altitude
AGL
(ft)

0 5 10 15 20 25

-10
-5

0

5

Vertical
Speed
(fps)

0 5 10 15 20 25
20

30

40

50

Time (sec)

Air Speed
(ktas)

Figure 20. Flight Test Experiment Landing Profiles

(Top) Altitude profiles for various landings, as reported by Kekf
(Middle) Vertical speed profiles, (Bottom) Airspeed profile.

 14

REFERENCES

[1] C. Ippolito, K Al-Ali, “Topological Constructs for
Automatic Reconfiguration of Polymorphic Control
Systems”, AIAA Infotech@Aerospace 2007
Conference and Exhibit, AIAA-20007-2832, May 2007

[2] S. Joo, K. Al-Ali, C. Ippolito, Y. Yeh “Towards
Autonomous Fixed-Wing UAV landing: A Vision
Aided INS under Sensor Reconfiguration Scenario”,
17th Annual IFAC World Congress, Seoul, Korea, July
2008

[3] S. Joo, C Ippolito, K Al-Ali, and Y Yeh, “Vision Aided
Inertial Navigation with Measurement Delay for
Fixed-Wing Unmanned Aerial Vehicle Landing”, 2008
IEEE Aerospace Conference Conference, Big Sky,
Montana, 2008

[4] K. Krishnakumar, J. Kaneshige, C. Ippolito, R.
Waterman, C. Pires, “A Plug and Play GNC
Architecture Using FPGA Components”, AIAA-2005-
7120, Infotech@Aerospace, Arlington, Virginia, Sep.
26-29, 2005

[5] P Doherty, at al. “A distributed architecture for
autonomous unmanned aerial vehicle experimentation”,
Proceedings of the 7th International Symposium on
Distributed Autonomous Systems, 2004.

[6] J. Elston, B. Argrow, and E. Frew, “A Distributed
Avionics Package for Small UAVs”, AIAA-2005-6984,
Infotech@Aerospace, Arlington, Virginia, Sep. 26-29,
2005

[7] M. Balas and S. Frost, “An Introduction to Evolving
Systems of Flexible Aerospace Structures”, IEEE
Aerospace Conference, March 2007

[8] C. Ippolito, G. Pisanich, and K. Al-Ali, “Component-
Based Plug-and-Play Methodologies for Rapid
Embedded Technology Development”, AIAA-2005-
7122, Infotech@Aerospace, Arlington, Virginia, Sep.
26-29, 2005

[9] Ippolito, C. and Pritchett, A. “Software architecture for
a Reconfigurable Flight Simulator”, AIAA-2000-4501,
AIAA Modeling and Simulation Technologies
Conference, Denver, CO, Aug. 14-17, 2000

[10] Aoyama, M. “A New Age of Software Development:
How Component-Based Software Engineering Changes
the Way of Software Development?” In Proceedings of
International Workshop on Component-Based Software
Engineering, Kyoto, Japan, April 1998.

[11] Torngren, M.; DeJiu Chen; Crnkovic, I., “Component-
based vs. model-based development: a comparison in
the context of vehicular embedded systems.”, 31st
EUROMICRO Conference on Software Engineering
and Advanced Applications, 30 Aug.-3 Sept. 2005
Page(s): 432 – 440, 2005.

[12] C. Ippolito, Y. Yeh, J. Kaneshige, “Neural Adaptive
Flight Control Testing on an Unmanned Experimental
Aerial Vehicle”, AIAA-2007-2827, Infotech @
Aerospace 2007 Conference and Exhibit, Rohnert Park,
California, May 7-10, 2007

BIOGRAPHY

Corey Ippolito is a Research
Scientist and Aerospace Engineer at
NASA Ames Research Center,
currently Co-PI on the Polymorphic
Control Systems project and runs
the Exploration Aerial Vehicle lab
at Ames. An MSAE from Georgia
Tech in 2000, Mr. Ippolito is
recipient of the NASA Award of
Excellence and the NASA Team

Achievement Award, with research interests that include
vehicle autonomy, control reconfiguration and probabilistic
methods in artificial intelligence. He is a contributing
member of AIAA and IEEE, with affiliations that include the
NASA Haughton-Mars Project, and the NASA Biologically-
Inspired Engineering for Exploration Systems for Mars
project.

Sungmoon Joo is a Ph.D candidate in
the Aerospace Robotics Laboratory at
Stanford University. His research
interests include vision aided inertial
navigation, and estimation and control
for differentially flat systems. Mr. Joo
obtained an M.S.M.E from University
of California, Berkeley in 2003. Prior

to joining the ARL he worked at Korea Naval Academy as a
teaching instructor in Jinhae, Korea. Mr. Joo is a member
of the American Insititute of Aeronautics and Astronautics.

Dr. Khalid M. Al-Ali is a Senior
Fellow and Director of Research at
Carnegie Mellon University’s west
coast campus, and founder of the
Carnegie Mellon Innovations
Laboratory (CMIL). He has been
principal investigator, project lead,
and senior scientist on projects
involving advanced control systems,
intelligent avionics, planetary rovers

and robots, spacecraft, and autonomous exploratory
vehicles for Lunar, Martian, and Antarctic missions. Dr. Al-
Ali holds a Ph.D. in Mechanical and Electrical Engineering
from the University of California at Berkeley. He is also
President and CEO of Senseta Inc.

 Yoo Hsiu Yeh is a Project Engineer at
Carnegie-Mellon University West Coast
Campus. She graduated with a
B.S.E.E. from Stanford University in
2006, and has been working with the
Exploration Aerial Vehicle project at
NASA Ames Research Center. She is a
member of the IEEE and AIAA.

