A Heuristic Search Approach to Planning
with Continuous Resourcesin Stochastic Domains

Nicolas M euleau NMEULEAU @ EMAIL.ARC.NASA.GOV*
NASA Ames Research Center

Mail Stop 269-3

Moffet Field, CA 94035-1000, USA

Emmanuel Benazera BENAZERA @INFORMATIK.UNI-BREMEN.DE
Universitat Bremen

Fachbereich 3 - AG Robotik

Robert- Hooke- Str. 5

D-28359 Bremen, Germany

Ronen |. Brafman BRAFMAN@CS.BGU.AC.IL
Department of Computer Science

Ben-Gurion University

Beer-Sheva 84105, Israel

Eric A. Hansen HANSEN @ CSE.MSSTATE.EDU
Dept. of Computer Science and Engineering

Mississippi State University

Mississippi State, MS 39762, USA

Peter Lamborn PCL16@MSSTATE.EDU
Dept. of Computer Science and Engineering

Mississippi State University

Mississippi State, MS 39762, USA

Mausam MAUSAM @ CS.WASHINGTON.EDU
Dept. of Computer Science and Engineering

University of Washington

Seattle, WA 981952350, USA

Abstract

We consider the problem of optimal planning in stochastic domains with resource constraints, where
resources are continuous and the choice of action at each step depends on resource availability. Our principal
contribution is the HAO* algorithm, a generalization of the AO* algorithm that performs search in a hybrid
state space that is modeled using both discrete and continuous state variables. Like other heuristic search
algorithms, HAO* leverages knowledge of the starting state and an admissible heuristic to focus computational
effort on those parts of the state space that could be reached from the start state by following an optimal policy.
‘We show that this approach is especially effective when resource constraints limit how much of the state space
is reachable. Experimental results demonstrate its effectiveness in the domain that motivates our research —
automated planning for planetary exploration rovers.

1. Introduction

Many NASA planetary exploration missions rely on rovers — mobile robots that carry a suite of scientific
instruments for use in characterizing planetary surfaces and transmitting information back to Earth. Because
of difficulties in communicating with devices on distant planets, direct human control of rovers by tele-
operation is infeasible, and rovers must be able to act autonomously for substantial periods of time. For

*. Carnegie Mellon University

(©2007 AI Access Foundation. All rights reserved.

example, the Mars Exploration Rovers (MER) are designed to communicate with the ground only twice per
Martian day.

Autonomous control of planetary exploration rovers presents many challenges for research in automated
planning. Progress has been made in meeting some of these challenges. For example, the planning software
developed for the Mars Sojourner and MER rovers has contributed significantly to the success of these mis-
sions (Bresina, Jonsson, Mortris, & Rajan, 2005). But many important challenges must still be addressed to
achieve the more ambitious goals of future missions (Bresina, Dearden, Meuleau, Ramakrishnan, Smith, &
Washington, 2002).

Among these challenges is the problem of plan execution in uncertain environments. On planetary sur-
faces such as Mars, there is uncertainty about the terrain, meteorological conditions, and the state of the rover
itself (position, battery charge, solar panels, component wear, etc.) In turn, this leads to uncertainty about
the outcome of the rover’s actions. Much of this uncertainty is about resource consumption. For example,
factors such as slope and terrain affect speed of movement and rate of power consumption, making it difficult
to predict with certainty how long it will take for a rover to travel between two points, or how much power it
will consume in doing so. Because of limits on critical resources such as time and battery power, rover plans
are currently very conservative and based on worst-case estimates of time and resource usage. In addition,
instructions sent to planetary rovers are currently in the form of a sequential plan for attaining a single goal
(e.g., photographing an interesting rock). If an action has an unintended outcome that causes a plan to fail,
the rover stops and waits for further instructions; it makes no attempt to recover or achieve an alternative
goal. This can result in under-utilized resources and missed science opportunities.

Over the past decade, there has been a great deal of research on how to generate conditional plans in
domains with uncertain action outcomes. Much of this work is formalized in the framework of Markov
decision processes (Puterman, 1994; Boutilier, Dean, & Hanks, 1999). However, as Bresina et al. (2002)
point out, important aspects of the rover planning problem are not adequately handled by traditional planning
algorithms, including algorithms for Markov decision processes. In particular, most traditional planners
assume a discrete state space and a small discrete number of action outcomes. But in automated planning for
planetary exploration rovers, critical resources such as time and battery power are continuous, and most of
the uncertainty in the domain results from the effect of actions on these variables. This requires a conditional
planner that can branch not only on discrete action outcomes, but on the availability of continuous resources,
and such a planner must be able to reason about continuous as well as discrete state variables.

Closely related to the challenges of uncertain plan execution and continuous resources is the challenge
of over-subscription planning. The rovers of future missions will have much improved capabilities. Whereas
the current MER rovers require an average of three days to visit a single rock, progress in areas such as
automatic instrument placement will allow rovers to visit multiple rocks and perform a large number of
scientific observations in a single communication cycle (Pedersen, Smith, Deans, Sargent, Kunz, Lees, &
Rajagopalan, 2005). Moreover, communication cycles will lengthen substantially in more distant missions
to the moons of Jupiter and Saturn, requiring longer periods of autonomous behavior. As a result, space
scientists of future missions are expected to specify a large number of science goals at once, and often this
will present an over-subscription planning problem, that is, a problem in which it is infeasible to achieve all
goals, and the objective is to achieve the best subset of goals within resource constraints (Smith, 2004). In the
case of the rover, there will be multiple locations the rover could reach, and many experiments the rover could
conduct, most combinations of which are infeasible due to resource constraints. The planner must select a
feasible subset of these that maximizes expected science return. When action outcomes (including resource
consumption) are stochastic, a plan that maximizes expected science return will be a conditional plan that
prescribes different courses of action based on the results of previous actions, including resource availability.

In this paper, we present an implemented planning algorithm that handles all of these problems together:
uncertain action outcomes, limited continuous resources, and oversubscription planning. We formalize the
rover planning problem as a hybrid Markov decision processes, that is, a Markov decision process with both
discrete and continuous state variables, where the continuous variables are used to represent limited resources.
The planning algorithm we introduce builds on earlier work on dynamic programming algorithms for hybrid
MDPs, in particular, the work of Feng et al. (2004). However, our algorithm is not a dynamic programming

algorithm, but a heuristic search algorithm. Called HAO*, for Hybrid AO*, it is a generalization of the classic
AO* heuristic search algorithm (Nilsson, 1980; Pearl, 1984). Whereas AO* searches in discrete state spaces,
HAO#* solves planning problems in hybrid domains with both discrete and continuous state variables, where
the continuous variables represent limited resources, and it constructs conditional plans that branch on the
values of both the discrete and continuous state variables.

It is well-known that heuristic search can be more efficient than dynamic programming because it uses
reachability analysis guided by a heuristic to focus computation on the relevant parts of the state space. We
show that for problems with resource constraints, including over-subscription planning problems, this advan-
tage is greater than usual because resource constraints can significantly limit reachability. Unlike dynamic
programming, forward search keeps track of the trajectory from the start state to each reachable state, and
thus can check whether the trajectory is feasible or violates a resource constraint. This allows heuristic search
to prune infeasible trajectories and can dramatically reduce the number of states that must be considered to
find an optimal policy. This is particularly important in our domain where the discrete state space is huge
(exponential in the number of goals), yet the portion reachable from any initial state is relatively small, due
to resource constraints. Although our work is motivated by the rover planning problem, we develop a general
planning algorithm that could be used to solve many other problems. For example, it could be used to solve
a large class of logistics problems with uncertain (stochastic) travel times and deadlines.

The paper is structured as follows. Section 2 formalizes the rover planning problem as a hybrid Markov
decision process and reviews dynamic programming algorithms for solving hybrid MDPs. Section 3 intro-
duces the HAO* algorithm for searching in hybrid state spaces and analyzes its properties. Section 4 describes
the results of experiments conducted with HAO* on a realistic model of a NASA planetary exploration rover.
We discuss future work and conclude in Section 5.

2. Problem formulation and background

We start with a formal definition of the planning problem we are tackling. Since it is a special case of a
hybrid Markov decision process, we begin by defining this model. Then we discuss how to include resource
constraints and formalize over-subscription planning in this model. Finally we review a class of dynamic
programming algorithms for solving hybrid MDPs, since some of these algorithmic techniques will be incor-
porated in the heuristic search algorithm we develop in Section 3.

2.1 Hybrid Markov decision process

A hybrid Markov decision process, or hybrid MDP, is a factored Markov decision process that has both
discrete and continuous state variables. We define it as a tuple (N, X, A, P, R), where N is a discrete state
variable, X = { X7, X», ..., X4} is a set of continuous state variables, A is a set of actions, P is a stochastic
state transition model, and R is a reward function. We next describe these elements in more detail.

Although a hybrid MDP can have multiple discrete variables, this plays no role in the algorithms described
in this paper, and so, for notational convenience, we model the discrete component of the state space as a
single variable N. In most application domains, the discrete state has a factored representation. The variable
N is then a flat representation of an otherwise structured discrete state. Our focus is on the continuous
component. We assume the domain of each continuous variable X; € X is a closed interval of the real line,
and so X =), X; is the hypercube over which the continuous variables are defined. The state set S of a
hybrid MDP is the set of all possible assignments of values to the state variables. In particular, a hybrid state
s € S'is a pair (n,x) where n € N is the value of the discrete variable, and x = (x;) is a vector of values of
the continuous variables.

State transitions occur as a result of actions, and the process evolves according to Markovian state tran-
sition probabilities Pr(s’ | s,a), where s = (n,x) denotes the state before action a and s’ = (n’, x’) denotes
the state after action a, also called the arrival state. These probabilities can be decomposed into:

e the discrete marginals Pr(n'|n,x, a). Forall (n,x,a), Y ..y Pr(n'In,x,a) = 1;

e the continuous conditionals Pr(x’|n, x, a,n’). For all (n,x, a,n’), [Pr(x'|n,x,a,n')dx" = 1.

z’'eX

We assume the reward of a transition is a function of the arrival state only, and let R, (x) denote the
reward associated with a transition to state (n,x). More complex dependencies are possible, but this is
sufficient for the goal-based domain models we consider in this paper.

2.2 Resource constraintsand over-subscription planning

To model the rover planning problem, we consider a special type of MDP in which the objective is to optimize
expected cumulative reward subject to resource constraints. We make the following assumptions:

e there is an initial allocation of one or more non-replenishable resources,
e cach action has some minimum positive consumption of at least one resource,
e and once resources are exhausted, no further action can be taken.

One way to model this is as a constrained MDP, a model that has been widely studied in the operations
research community (Altman, 1999). In this model, each action a incurs a transition-dependent resource cost,
Ci (s, "), for each resource i. Given an initial allocation of resources and an initial state, linear programming
is used to find the best feasible policy, which may be a randomized policy. Although a constrained MDP
models resource consumption, it does not includes resources in the state space. As a result, a policy cannot
be conditioned upon resource availability. This is not a problem if resource consumption is deterministic or if
it is unobservable. But it is not a good fit for the rover domain, in which resource consumption is stochastic,
and the rover may take different actions depending on current resource availability.

We adopt a different approach to modeling resource constraints in which resources are included in the
state description. Although this increases the size of the state space, it allows decisions to be made based on
resource availability, and it allows a stochastic model of resource consumption. Since resources in the rover
domain are continuous, we use the continuous variables of a hybrid MDP to represent resources. (Note that
the duration of actions is one of the biggest sources of uncertainty in our rover problems, and we typically
model time as one of the continuous resources.) Resource constraints are represented in the form of exe-
cutability constraints on actions, where A,,(x) denotes the set of actions executable in state (n, x). An action
cannot be executed in a state that does not satisfy its minimum resource requirements.

Having discussed how to incorporate resource consumption and resource constraints in a hybrid MDP, we
next discuss how to formalize over-subscription planning. In our rover planning problem, scientists provide
the planner with a set of “goals” they would like the rover to achieve, where each goal corresponds to a
scientific task such as taking a picture of a rock or performing an analysis of a soil sample. The scientists also
specify a utility for each goal. Usually only a subset of these goals is feasible under resource constraints, and
the problem is to find a feasible plan that maximizes expected utility. Over-subscription planning for planetary
exploration rovers has been considered by Smith (2004) and van den Briel et al. (2004) for deterministic
domains. We consider over-subscription planning in stochastic domains, especially domains with stochastic
resource consumption. This requires construction of conditional plans in which the selection of goals to
achieve can change depending on resource availability.

In over-subscription planning, the utility associated with each goal can be achieved only once; no addi-
tional utility is achieved for repeating the task. Therefore, the discrete state must include a set of Boolean
variables to keep track of the set of goals achieved so far by the rover, with one Boolean variable for each
goal. Keeping track of already-achieved goals ensures a Markovian reward structure, since achievement of a
goal is rewarded only if it was not achieved in the past. However, it also significantly increases the size of the
discrete state space.’

1. Maintaining history information to ensure a Markovian reward structure is related to work on planning with non-Markovian rewards,
and provides a simple example of this more general class of problems. (Thiebaux, Gretton, Slaney, Price, & Kabanza, 2006).

2.3 Optimality equation

The rover planning problem we consider is a special case of a finite-horizon hybrid MDP. The Bellman
optimality equation for this problem takes the following form:

Vo.(x) = 0 when (n,x) is a terminal state,
Vo(x) = max l E Pr(n’ | n,x,a) / Pr(x' | n,x,a,n) (Rp (x') + Vi (X)) dx"| . (1)
acAn(x x!
n’'eN

We define a terminal state as a state in which no actions are eligible to execute, that is, A, (x) = 0. We use
terminal states to model various conditions for plan termination. This includes the situation in which all goals
have been achieved; the situation in which resources have been exhausted; and the situation in which an action
has resulted in some error condition that requires executing a safe sequence by the rover and terminating plan
execution. In addition to terminal states, we assume an explicit initial state denoted (ng, X).>

Assuming that resources are limited and non-replenishable, and that every action consumes some resource
(and the amount consumed is greater than or equal to some positive quantity c), plan execution must terminate
after a finite number of steps. The maximum number of steps is bounded by the initial resource allocation
divided by c, the minimal resource consumption per step. The actual number of steps is usually much less and
indefinite, because resource consumption is stochastic and because the choice of action influences resource
consumption. Because the number of steps it takes for a plan to terminate is bounded but indefinite, we call
this a bounded-horizon MDP in contrast to a finite-horizon MDP. However, we note that any bounded-horizon
MDP can be converted to a finite-horizon MDP by specifying a horizon that is equal to the maximum number
of plan steps, and introducing a no-op action that is taken in any terminal state.

Note that there is usually a difference between the number of plan steps and the time a plan takes to
execute. The duration of actions is one of the biggest sources of uncertainty in our rover problems, and we
typically model time as one of the continuous resources. As a result, the time it takes to execute a plan step
is both state and action dependent, and stochastic.

Given a hybrid MDP with a set of terminal states and an initial state (ng,Xg), the objective is to find a
policy 7 : (N x X) — A that maximizes expected cumulative reward. In our framework, cumulative reward
is equal to the sum of rewards for the goals achieved before reaching a terminal state. Note that there is no
direct incentive to save resources: an optimal solution would save resources only if this allows achieving
more goals. Therefore, we do not need to formulate this as a problem of multi-objective optimization, and
we stay in a standard decision-theoretic framework. An optimal policy has a value function that satisfies the
optimality equation given by Equation (1). In the rest of the paper, we discuss how to find such a policy.

2.4 Dynamic programming for structured hybrid MDPs

Because the planning problem we consider is a finite-horizon hybrid MDP, it can be solved by any algorithm
for solving finite-horizon hybrid MDPs. Most algorithms for solving hybrid (and continuous-state) MDPs
rely on some form of approximation. A widely-used approach is to discretize the continuous state space
into a finite number of grid points and solve the resulting finite-state MDP using dynamic programming and
interpolation (Rust, 1997; Munos & Moore, 2002). Another approach is parametric function approximation;
a function associated with the dynamic programming problem — such as the value function or policy function
— is approximated by a smooth function of £ unknown parameters. In general, parametric function approx-
imation is faster than grid-based approximation, but has the drawback that it may fail to converge, or else
converge to an incorrect solution. Parametric function approximation is used by other algorithms for solv-
ing continuous-state MDPs besides dynamic programming. Reinforcement learning algorithms use artificial
neural networks as function approximators (Bertsekas & Tsitsiklis, 1996), and an approach to solving MDPs
called approximate linear programming has recently been extended to allow continuous state variables (Kve-
ton, Hauskrecht, & Guestrin, 2006).

2. Our framework also allows an uncertain starting state, as long as its probability distribution is known.

Figure 1: Value function in the initial state of a simple rover problem: optimal expected return as a function
of two continuous variables (time and energy remaining).

We review another approach to solving hybrid (or continuous-state) MDPs that assumes the problem has
special structure that can be exploited by the dynamic programming algorithm. The structure assumed by this
approach ensures that the convolution [, Pr(x’ | n,x,a,n’) (R (x") + Vi (x')) dx” in Equation (1) can be
computed exactly in finite time, and the value function computed by dynamic programming is piecewise-
constant or piecewise-linear. The initial idea for this approach can be traced to the work of Boyan and
Littman (2000), who describe a class of MDPs called time-dependent MDPS, in which transitions take place
along a single, irreversible continuous dimension. They describe a dynamic programming algorithm for com-
puting an exact piecewise-linear value function when the transition probabilities are discrete and rewards are
piecewise linear. Feng et al. (2004) extend this approach to continuous state spaces of more than one dimen-
sion, and consider MDPs with discrete transition probabilities and two types of reward models: piecewise
constant and piecewise linear. Li and Littman (2005) further extend the approach to allow transition proba-
bilities that are piecewise-constant, instead of discrete, although this extension requires some approximation
in the dynamic programming algorithm.

The problem structure exploited by these algorithms is characteristic of the Mars rover domain and other
over-subscription planning problems. Figure 1 shows the optimal value from the initial state of a typical Mars
rover problem as a function of two continuous variables: the time and energy remaining (Bresina et al., 2002).
The value function features a set of humps and plateaus, each of them representing a region of the state space
where similar goals are pursued by the optimal policy. The sharpness of a hump or plateau reflects uncertainty
about achieving the goal(s). Constraints that impose minimal resource levels before attempting some actions
introduce sharp cuts in the regions. The vast plateau regions where the expected reward is nearly constant
represent regions of the state space where the optimal policy is the same, and the probability distribution over
future histories induced by this optimal policy is nearly constant.

The structure in such a value function is exploited by partitioning the continuous state space into a finite
number of hyper-rectangular regions. (A region is a (hyper-)rectangle if it is the Cartesian product of intervals
at each dimension.) In each hyper-rectangle, the value function is either constant (for a piecewise-constant
function) or linear (for a piecewise-linear function). The resolution of the hyper-rectangular partitioning is
adjusted to fit the value function. Large hyper-rectangles are used to represent large plateaus. Small hyper-
rectangles are used to represent regions of the state space where a finer discretization of the value function
is useful, such as the edges of plateaus and the curved hump where there is more time and energy available.
A natural choice of data structures for rectangular partitioning of a continuous space is kd-trees (Friedman,
Bentley, & Finkel, 1977), although other choices are possible.

The continuous-state domains of the transition and reward functions are similarly partitioned into hyper-
rectangles. The reward function of each action has the same piecewise-constant (or piecewise-linear) rep-
resentation as the value function. The transition function partitions the state space into regions for which
the set of outcomes of an action and the probability distribution over the set of outcomes are identical. Fol-
lowing Boyan and Littman (2000), both relative and absolute transitions are supported. A relative outcome
can be viewed as shifting a region by a constant §. That is, for any two states = and ¥ in the same region,
the transition probabilities Pr(a'|z, a) and Pr(y’|y, a) are defined in term of the probability of ¢, such that
0 = (¢ —xz) = (¥ — y). An absolute outcome maps all states in a region to a single state. That is, for
any two states x and y in the same region, Pr(z’|z,a) = Pr(z’|y,a). We can view a relative outcome
as a pair (4, p), where p is the probability of that outcome, and an absolute outcome as a pair (z’, p). This
assumes there is only a finite number of non-zero probabilities, i.e., the probability distribution is discretized,
which means that for any state and action, a finite set of states can be reached with non-zero probability. This
representation guarantees that a dynamic programming update of a piecewise-constant value function results
in another piecewise-constant value function. Feng et al. (2004) show that for any finite horizon, there exists
a partition of the continuous space into hyper-rectangles over which the optimal value function is piecewise
constant or linear.

The restriction to discrete transition functions is a strong one, and often means the transition function must
be approximated. For example, rover power consumption is normally distributed. Any continuous transition
function can be approximated by an appropriately fine discretization, and Feng et al. (2004) argue that this
provides an attractive alternative to function approximation approaches in that it approximates the model but
then solves the approximate model exactly, rather than finding an approximate value function for the original
model. (For this reason, we will sometimes refer to finding optimal policies and value functions, even when
the model has been approximated.) To avoid discretizing the transition function, Li and Littman (2005) de-
scribe an algorithm that allows piecewise-constant transition functions, in exchange for some approximation
in the dynamic programming algorithm. We refer to the work of Feng et al. (2004) and Li and Littman (2005)
for details of these algorithms.

3. Heuristic search in hybrid state spaces

In this section, we present our main contribution: an approach to solving finite-horizon hybrid MDPs that
uses a novel generalization of the heuristic search algorithm AO*. In particular, we describe a generalization
of this algorithm for solving hybrid MDPs in which the continuous variables represent consumable resources.

The motivation for using heuristic search is the potentially huge size of the state space, which makes
dynamic programming infeasible. One reason for this size is the existence of continuous variables. But even
if we only consider the discrete component of the state space, the size of the state space is exponential in
the number of propositional variables comprising the discrete component. As others have shown, AO* can
be very effective in solving planning problems that have a large state space because it only considers states
that are reachable from an initial state, and uses an informative heuristic function to focus on states that are
reachable in the course of executing a good plan. As a result, AO* can often find an optimal plan by exploring
a small fraction of the entire state space.

We begin this section with a review of the standard AO* algorithm. Then we consider how to generalize
AO* to search in hybrid state spaces and discuss the properties of the generalized algorithm, as well as how
to implement it in an efficient way.

3.1 AO*

Recall that AO* is an algorithm for AND/OR graph search problems (Nilsson, 1980; Pearl, 1984). Such
graphs arise in problems where there are choices (the OR components), and each choice can have multi-
ple consequences (the AND component), as is the case in planning under uncertainty. Hansen and Zilber-
stein (2001) describe how AND/OR graph search techniques can be used in solving MDPs.

Following Nilsson (1980) and Hansen and Zilberstein (2001), we define an AND/OR graph as a hyper-
graph. Instead of arcs that connect pairs of nodes as in an ordinary graph, a hypergraph has hyperarcs, or
k-connectors, that connect a node to a set of k successor nodes. When an MDP is represented by a hy-
pergraph, each node corresponds to a state; the root node corresponds to the start state, and the leaf nodes
correspond to terminal states. Thus we often use the word state to refer to the corresponding node in the
hypergraph representing an MDP. A k-connector corresponds to an action that transforms a state into one of
k possible successor states, with a probability attached to each successor such that the probabilities sum to
one. In this section, we assume the AND/OR graph is acyclic, which is consistent with our assumption that
the underlying MDP has a bounded-horizon.

In AND/OR graph search, a solution takes the form of an acyclic subgraph called a solution graph, which
is defined as follows:

o the start node belongs to a solution graph;

e for every non-terminal node in a solution graph, exactly one outgoing k-connector (corresponding to
an action) is part of the solution graph and each of its successor nodes also belongs to the solution
graph;

e every directed path in the solution graph terminates at a terminal node.

A solution graph that maximizes expected cumulative reward is found by solving the following system of
equations,
V*(s) = { 0 if s is a terminal state,)
maxgea(s) [Dogeg Pr(s']s,a) (R(s") + V*(s'))] otherwise,

where V*(s) denotes the expected value of an optimal solution for state s and V* is called the optimal
evaluation function. Note that this is identical to the optimality equation for hybrid MDPs defined in Equa-
tion (1), if the latter is restricted to a discrete state space. In keeping with the convention in the literature on
MDPs, we treat this as a value-maximization problem even though AO* is usually formalized as solving a
cost-minimization problem.

For state-space search problems that are formalized as AND/OR graphs, an optimal solution graph can
be found using the heuristic search algorithm AO* (Nilsson, 1980; Pearl, 1984). Like other heuristic search
algorithms, the advantage of AO* over dynamic programming is that it can find an optimal solution without
evaluating all problem states. Therefore, a graph is not usually supplied explicitly to the search algorithm. An
implicit graph, G, is specified implicitly by a start node or start state s and a successor function that generates
the successors states for any state-action pair. The search algorithm constructs an explicit graph, G’, that
initially consists only of the start state. A tip or leaf state of the explicit graph is said to be terminal if it is a
goal state (or some other state in which an action cannot be taken); otherwise, it is said to be nonterminal. A
nonterminal tip state can be expanded by adding to the explicit graph its outgoing k-connectors (one for each
action) and any successor states not already in the explicit graph.

AO* solves a state-space search problem by gradually building a solution graph, beginning from the start
state. A partial solution graph is defined similarly to a solution graph, with the difference that tip states of a
partial solution graph may be nonterminal states of the implicit AND/OR graph. A partial solution graph is
defined as follows:

1. The explicit graph G’ initially consists of the start state s.
2. While the best solution graph has some nonterminal tip state:

(a) Expand best partial solution: Expand some nonterminal tip state s of the best partial solution
graph and add any new successor states to G'. For each new state s’ added to G’ by expanding s,
if ¢’ is a terminal state then V' (s’) := 0; else V(s') := H(s).
(b) Update state values and mark best actions:
i. Create a set Z that contains the expanded state and all of its ancestors in the explicit graph

along marked action arcs. (l.e., only include ancestor states from which the expanded state
can be reached by following the current best solution.)

ii. Repeat the following steps until Z is empty.
A. Remove from Z a state s such that no descendent of s in G’ occurs in Z.

B. Set V(s) := max,ca(s) o Pr(s’|s,a) (R(s") + V(s")) and mark the best action for
s. (When determining the best action resolve ties arbitrarily, but give preference to the
currently marked action.)

(c) ldentify the best solution graph and all nonterminal states on its fringe

3. Return an optimal solution graph.

Table 1: AO* algorithm.

o the start state belongs to a partial solution graph;

e for every non-tip state in a partial solution graph, exactly one outgoing k-connector (corresponding to
an action) is part of the partial solution graph and each of its successor states also belongs to the partial
solution graph;

e cvery directed path in a partial solution graph terminates at a tip state of the explicit graph.

The value of a partial solution graph is defined similarly to the value of a solution graph. The difference
is that if a tip state of a partial solution graph is nonterminal, it does not have a value that can be propagated
backwards. Instead, we assume there is an admissible heuristic estimate H (s) of the maximal-value solution
graph for state s. A heuristic evaluation function H is said to be admissible if H(s) > V*(s) for every state
s. We can recursively calculate an admissible heuristic estimate V' (s) of the optimal value of any state s in
the explicit graph as follows:

0 if s is a terminal state

V(s) =4 H(s)if sis a nonterminal tip state 3)
maXqe(s) [Dogeg Pr(s']s,a) (R(s") + V(s'))] otherwise.

The best partial solution graph can be determined at any time by propagating heuristic estimates from the tip
states of the explicit graph to the start state. If we mark the action that maximizes the value of each state, the
best partial solution graph can be determined by starting at the root of the graph and selecting the best (i.e.,
marked) action for each reachable state.

Table 1 outlines the algorithm AO* for finding an optimal solution graph in an acyclic AND/OR graph.
It interleaves forward expansion of the best partial solution with a value update step that updates estimated
state values and the best partial solution. In the simplest version of AO*, the values of the expanded state
and all of its ancestor states in the explicit graph are updated. In fact, the only ancestor states that need to
be re-evaluated are those from which the expanded state can be reached by taking marked actions (i.e., by
choosing the best action for each state). Thus, the parenthetical remark in step 2(b)i of Table 1 indicates

that a parent s’ of state s is not added to Z unless both the estimated value of state s has changed, and state
s can be reached from state s’ by choosing the best action for state s’. HAO* terminates when the policy
expansion step does not find any nonterminal states on the fringe of the best solution graph. At this point, the
best solution graph is an optimal solution.

Following the literature on AND/OR graph search, we have so far referred to the solution found by AO*
as a solution graph. But in the following, when AO¥* is used to solve an MDP, we sometimes follow the
literature on MDPs in refering to a solution as a policy, or as a policy graph, to indicate that a policy is
represented in the form of a graph.

3.2 Hybrid AO*

We now consider how to generalize AO* to solve a bounded-horizon hybrid MDP. The challenge we face in
applying AO* to this problem is the challenge of performing state-space search in a continuous state space.

The solution we adopt is to search in an aggregate state space that is represented by a AND/OR graph
in which there is a node for each distinct value of the discrete component of the state. In other words, each
node of the AND/OR graph represents a region of the continuous state space in which the discrete value is the
same. Given this partition of the continuous state space, we use AND/OR graph search techniques to solve
the MDP for those parts of the state space that are reachable from the start state under the best policy.

However, AND/OR graph search techniques must be modified in important ways to allow search in a
hybrid state space that is represented in this way. In particular, there is no longer a correspondence between
the nodes of the AND/OR graph and individual states. Each node now corresponds to a continuous region
of the state space, and different actions may be optimal for different hybrid states associated with the same
search node. In the case of rover planning, for example, the best action is likely to depend on how much
energy or time is remaining, and energy and time are continuous state variables.

To address this problem and still find an optimal solution, we attach to each search node a set of functions
(of the continuous variables) that make it possible to associate different values, heuristics, and actions with
different hybrid states corresponding to the same search node. As before, the explicit search graph consists
of all nodes and edges of the AND/OR graph that have been generated so far, and describes all the states
that have been considered so far by the search algorithm. The difference is that we use a more complex
state representation in which a set of continuous functions allows representation and reasoning about the
continuous part of the state space associated with a search node.

We begin by describing this more complex node data structure, and then describe the HAO* algorithm.

3.2.1 DATA STRUCTURES

Each node n of the explicit AND/OR graph G’ consists of the following:
o The value of the discrete state variable.
e Pointers to its parents and children in the explicit graph and the policy graph.

e Openy(-) — {0,1}: —the “Open list”. For each x € X, Open,,(x) indicates whether (n,x) is on the
frontier of the explicit graph, i.e., generated but not yet expanded.

e Closed,(-) — {0, 1}: — the “Closed list”. For each x € X, Closed,,(x) (a state cannot be both open
and closed) indicates whether (n, x) is in the interior of the explicit graph, i.e., already expanded.

Note that, for all (n,x), Openy(x)Closed, (x) = 0 (a state cannot be both open and closed). There
can be parts of the continuous state space associated with a node that are neither open nor closed. Until
the explicit graph contains a trajectory from the start state to a particular hybrid state, that hybrid state
is not considered generated, even if the search node to which it corresponds has been generated; such
states are neither open nor closed. In addition, only non-terminal states can be open or closed. Note
that we don’t refer to open or closed nodes; instead, we refer to the hybrid states associated with nodes
as being open or closed.

10

e H,(-) - the heuristic function. For each x € X, H,,(x) is a heuristic estimate of the optimal expected
cumulative reward from state (n, x).

e V,,(-) — the value function. For any open state (n,x), V,,(x) = H,(x). For any closed state (n,x),
V,.(x) is obtained by backing up the values of its successor states, as in Equation (4).

e 7,(-) — A: —the policy. Note that it is defined for closed states only.

e Reachablen(-) — {0,1}: For each x € X, Reachable,(x) indicates whether (n, x) is reachable by
executing the current best policy beginning from the start state (ng, Xo).

We assume that these various continuous functions, which represent information about the hybrid states
associated with a search node, partition the state space associated with a node into a discrete number of
regions, and associate a distinct value or action with each region. Given such a partitioning, the HAO*
algorithm expands and evaluates these regions of the hybrid state space, instead of individual hybrid states.
The finiteness of the partition is important to ensure that the search frontier can be extended by a finite number
of expansions, and to ensure that HAO* can terminate after a finite number of steps. In our implementation of
HAO#*, described in Section 4, we use the piecewise-constant partitioning of a continuous state space used by
Feng et al. (2004). However, any method of discrete partitioning could be used, provided that the condition
above holds (see for instance (Li & Littman, 2005)). Note that two forms of state-space partitioning are
used in our algorithm. First, the hybrid state space is partitioned into a finite number of regions, one for
each discrete state, where each of these regions corresponds to a node of the AND/OR graph. Second, the
continuous state space associated with a particular node is further partitioned into smaller regions based on a
piecewise-constant representation of a continuous function, such as the one used by Feng et al. (2004).

In addition to this more complex representation of the nodes of an AND/OR graph, our algorithm requires
a more complex definition of the the best (partial) solution. In standard AO*, the one-to-one correspondence
between nodes and individual states means that a solution or policy can be represented entirely by a graph,
called the (partial) solution graph, in which a single action is associated with each node. In the HAO*
algorithm, a continuum of states is associated with each node, and different actions may be optimal for
different regions of the state space associated with a particular node. For the HAO* algorithm, a (partial)
solution graph is a sub-graph of the explicit graph that is defined as follows:

o the start node belongs to a solution graph;

e for every non-tip node in a solution graph, one or more outgoing k-connectors are part of the solution
graph, one for each action that is optimal for some hybrid state associated with the node, and each of
their successor nodes also belongs to the solution graph;

e every directed path in the solution graph terminates at a tip node of the explicit graph.

The key difference in this definition is that there may be more than one optimal action associated with a
node, since different actions may be optimal for different hybrid states associated with the node. A policy
is represented not only by a solution graph, but by the continuous functions 7,,(.) and Reachable,(.). In
particular, a (partial) policy 7 specifies an action for each reachable region of the continuous state space. The
best (partial) policy is the one that satisfies the following optimality equation:

Vo(x) = 0 when (n,x) is a terminal state,

Vn(x) = H,(x) when (n,x) is a nonterminal open state,

Vo(x) = max Z Pr(n' | n,x,a) / Pr(x’ | nyx,a,n) (R (x') + Vo (X)) dx"| . (4)
a€A,(x) WEN x/

Note that this optimality equation is only satisfied for regions of the state space that are reachable from the
start state, (no,xo) by following an optimal policy.

11

1. The explicit graph G’ initially consists of the start node and corresponding start state (n, x), marked as
open and reachable.

2. While Reachable,(x) N Open, (x) is non-empty for some (1, x):

(a) Expand best partial solution: Expand one or more region(s) of open states on the frontier of the
explicit state space that is reachable by following the best partial policy. Add new successor states
to G’. In some cases, this requires adding a new node to the AND/OR graph. In other cases, it
simply involves marking one or more regions of the continuous state space associated with an
existing node as open. States in the expanded region(s) are marked as closed.

(b) Update state values and mark best actions:
i. Create a set Z that contains the node(s) associated with the just expanded regions of states
and all ancestor nodes in the explicit graph along marked action arcs.

ii. Decompose the part of the explicit AND/OR graph that consists of nodes in Z into strongly
connected components.

iii. Repeat the following steps until Z is empty.

A. Remove from Z a set of nodes such that (1) they all belong to the same connected
component, and (2) no descendent of these nodes occurs in Z.

B. For every node n in this connected component and for all states (n, x) in any expanded
region of node n, set

Va(x) :=

Z Pr(n’ | n,x,a) /

n'eN x

A () l Pr(x" | n,x,a,n) (R (X') + Voo (x')) dx’ |,
acAn(xX ’

and mark the best action. (When determining the best action resolve ties arbitrarily, but
give preference to the currently marked action.) Repeat until there is no longer a change
of value for any of these nodes.

(c) ldentify the best solution graph and all nonterminal states on its frontier. This step updates
Reachable,,(x).

3. Return an optimal policy.

Table 2: HAO* algorithm.

3.2.2 ALGORITHM

Table 2 gives a high-level summary of the HAO* algorithm. In outline, it is the same as the AO* algorithm,
and consists of iteration of the same three steps; solution (or policy) expansion, use of dynamic programming
to update the current value function and policy, and analysis of reachability to identify the frontier of the
solution that is eligible for expansion. In detail, it is modified in several important ways to allow search of a
hybrid state space. In the following, we discuss the modifications to each of these three steps.

Policy expansion All nodes of the current solution graph are identified and one or more open regions
associated with these nodes are selected for expansion. That is, one or more regions of the hybrid state space
in the intersection of Open and Reachable is chosen for expansion. All actions applicable to the states in
these open regions are simulated, and the results of these actions are added to the explicit graph. In some
cases, this means adding a new node to the AND/OR graph. In other cases, it simply involves marking one or
more regions of the continuous state space associated with an existing node as open. More specifically, when
an action leads to a new node, this node is added to the explicit graph, and all states corresponding to this

12

] " __ At(Locationd)

At(Start) At(Locationl)] E At(Location1)

energy = 80 energy = 50

E At(Location2)] E At(Location?)] K
energy = 65 energy = 35 | 7™~ At(Location2)

Figure 2: Phantom loops in HAO*: solid boxes represent Markov states. Dashed boxes represent search
nodes, that is, the projection of Markov states on the discrete components. Arrows represent pos-
sible state transition. Bold arrows show an instance of phantom loop in the search space.

node that are reachable from the expanded region(s) after the action under consideration are marked as open.
When an action leads to an existing node, any region(s) of Markov states in this node that is both reachable
from the expanded region(s) and not marked as closed is marked open. Expanded regions of the state space
are marked as closed. Thus, different regions associated with the same node can be opened and expanded at
different times.

Dynamic programming As in standard AO*, the value of any newly expanded node n must be updated
by computing a Bellman backup based on the value functions of the children of n in the explicit graph. For
each expanded region of the state space associated with node n, each action is evaluated, the best action is
selected, and the corresponding continuous value function is associated with the region. The continuous-state
value function is computed by evaluating the continuous integral in Equation (4). We can use any method
for computing this integral. In our implementation, we use the dynamic programming algorithm of Feng
et al. (2004). As reviewed in Section 2.4, they show that the continuous integral over x’ can be computed
exactly, as long as the transition and reward functions satisfy certain conditions. Note that as values are
updated, the division of the continuous space associated with a node may be revised.

Once the expanded regions of the continuous state space associated with a node n are re-evaluated, the
new values must be propagated backward (i.e. upward) in the explicit graph. The backward propagation stops
at nodes where the value function is not modified, or at the root node. The standard AO* algorithm, summa-
rized in Figure 1, assumes that the AND/OR graph in which it searches is acyclic. There are extensions of
AO* for searching in AND/OR graphs that contain cycles. One line of research is concerned with how to find
acyclic solutions in AND/OR graphs that contain cycles (Jimenez & Torras, 2000). Another generalization
of AO*, called LAO*, allows solutions to contain “loops” in order to specify policies for infinite-horizon
MDPs (Hansen & Zilberstein, 2001).

Given our assumption that every action has positive resource consumption, there can be no loops in the
state space of our problem because the resources available decrease at each step. However, there can be loops
in the AND/OR graph. This is possible because the AND/OR graph represents a projection of the state space
onto a smaller space that consists of only the discrete component of the state. For example, it is possible for
the rover to return to the same site it has visited before. The rover is not actually in the same state, since it
has fewer resources available. But the AND/OR graph represents a projection of the state space that does not
include the continuous aspects of the state, such as resources, and this means the rover can visit a state that
projects to the same node of the AND/OR graph as a state it visited earlier, as shown in Figure 2. As a result,
there can be loops in the AND/OR graph, and even loops in the part of the AND/OR graph that corresponds
to a solution. But in a sense, these are “phantom loops” that can only appear in the projected state space, and
not in the real state space.

13

Nevertheless we must modify the dynamic programming (DP) algorithm to deal with these loops. Because
there are no loops in the real state space, we know that the exact value function can be updated by a finite
number of backups performed in the correct order, with one backup performed for any state that can be visited
along a path from the start state to the expanded node(s). But because multiple states can map to the same
AND/OR graph node, the continuous region of the state space associated with a particular node may need to
be evaluated more than once. To identify the AND/OR graph nodes that need to be evaluated more than once,
we use the following two-step algorithm.

First, we consider the part of the AND/OR graph that consists of ancestor nodes of the just expanded
node(s). This is the set Z of nodes identified at the beginning of the DP step. We decompose this part of
the graph into strongly connected components. The graph of strongly connected components is acyclic and
can be used to prescribe the order of backups in almost the same way as in the standard AO* algorithm. In
particular, the nodes in a particular component are not backed up until all nodes in its descendent components
have been backed up. Note that in the case of an acyclic graph, every strongly connected component has a
single node. It is only possible for a connected component to have more than one node if there are loops in
the AND/OR graph.

If there are loops in the AND/OR graph, the primary change in the DP step of the algorithm occurs when
it is time to perform backups on the nodes in a connected component with more than one node. In this case,
all nodes in the connected component are evaluated. Then they are repeatedly re-evaluated until the value
functions of these nodes converge, that is, until there is no change in the values of any of the nodes. Because
there are no loops in the real state space, convergence is guaranteed to occur after a finite number of steps.
Typically, it occurs after a very small number of steps. An advantage of decomposing the AND/OR graph
into connected components is that it identifies loops and localizes their effect to a small number of nodes.
Typically, most nodes of the graph need to be evaluated just once during the DP step, and only a small number
of nodes (and often none) need to be evaluated more than once.

Analysis of reachability Change in the value function can lead to change in the optimal policy, and thus a
change in which states are visited by the best policy. This in turn can affect which open regions of the state
space are eligible to be expanded. In this final step, HAO* identifies the best (partial) policy and recomputes
Reachable,, for all nodes and states in the explicit graph, as follows. For each node n in the best (partial)
solution graph, consider each of its parents n’ in the solution graph, and all the actions a that can lead from
one of the parents to n. Then Reachable,,(x) is the support of P, (x), where

P,(x) = Z /X Reachable, (x")Pr(n | n',x’,a) Pr(x | n',x’,a,n)dx’ | Q)
(n’,a)eQ,

that is, Reachable,(x) = {x € X : P,(x) > 0}. In Equation (5), €, is the set of pairs (n’, a) where a is
the best action in n/ for some reachable resource level:

Q,={(n',a) e NxA:FxeX, Pu(x)>0, my(x)=a, Pr(n|n',x,a) >0} .

It is clear that we can restrict our attention to state-action pairs in €2,,, only.

By performing this reachability analysis, HAO* identifies the frontier of the state space that is eligible for
expansion. HAO* terminates when this frontier is empty, that is, when it does not find any hybrid states in
the intersection of Reachable and Open.

3.3 Convergenceand error bounds

We next consider some of the theoretical properties of HAO*. First, under reasonable assumptions, we prove
that HAO* converges to an optimal policy after a finite number of steps. Then we discuss how to use HAO*
to find sub-optimal policies with error bounds.

The proof of convergence after a finite number of steps depends, among other things, on the assumption
that a hybrid MDP has a finite branching factor. In our implementation, this means that for any region of the

14

state space that can be represented by a hyper-rectangle, the set of successor regions after an action can be
represented by a finite set of hyper-rectangles. From this assumption and the assumption that the number of
actions is finite, it follows that for every assignment n to the discrete variables, the set

{x]|(n, x)is reachable from the initial state using some fixed sequence of actions}

is the union of a finite number of open or closed hyper-rectangles. This assumption can be viewed as a
generalization of the assumption of a finite branching factor in a discrete AND/OR graph upon which the
finite convergence proof of AO* depends.

Theorem 1 If the heuristic functions H,, are admissible (optimistic), all actions have positive resource con-
sumptions, both continuous backups and action application are computable exactly in finite time, and the
branching factor is finite, then:

1. Ateach step of HAO*, V,,(x) is an upper-bound on the optimal expected return in (n, x), for all (n, x)
expanded by HAO*;

2. HAO™* terminates after a finite number of steps;

3. After termination, V,,(x) is equal to the optimal expected return in (n,x), for all (n,x) reachable
under an optimal policy, i.e., Reachable,(x) > 0.

Proof: (1) The proof is by induction. Every state (n, x) is assigned an initial heuristic estimate, and V;,(x) =
H,(x) > V.*(x) by the admissibility of the heuristic evaluation function. We make the inductive hypothesis
that at some point in the algorithm, V,,(x) > V.*(x) for every state (n,x). If a backup is performed for any
state (n, x),

Vo(x) = aé{lqai(x)[

S Pr(’ | n,x,a) /

n’'eN x

S Pr(’ | n,x,a) /

n'€N x

PI‘(X/ | n,x,a, n/) (Rn’ (X/) =+ V;L’ (X/)) dXI:|

> max l

PI‘(X/ | n,x,a, n/) (Rn/ (X/) =+ V;T/ (X/)) dX/:|
a€A,(x) ’

= Vi(x),
where the last equality restates the Bellman optimality equation.

(2) Because each action has positive resource consumption, and resources are finite and non-replenishable,
the complete implicit AND/OR graph must be finite. For the same reason, this graph can be turned into a
finite graph without loops: Along any directed loop in this graph, the amount of maximal available resources
must decrease by some € which is a positive lower-bound on the amount of resources consumed by an action.
Each node in this graph may be expanded a number of times that is bounded by the number of its ancestor.
(Each time a new ancestor is discovered, it may lead to an update in the set of reachable regions for this
node.) Moreover, finite branching factor implies that the number of regions considered within each node is
bounded (because there are finite ways of reaching this node, each of which contributes a finite number of
hyper-rectangles). Thus, overall, the number of regions considered is finite, and the processing required for
each region expansion is finite (because action application and backups are computed in finite time). This
leads to the desired conclusion.

(3) The search algorithm terminates when the policy for the start state (ng, Xo) is complete, that is, when
it does not lead to any unexpanded states. For every state (n,x) that is reachable by following this policy, it
is contradictory to suppose V;,(x) > V,*(x) since that implies a complete policy that is better than optimal.
By the Bellman optimality equation of Equation (1), we know that V,,(x) > V*(x) for every state in this
complete policy. Therefore, V,, (x) = V¥(x). O

HAO* not only converges to an optimal solution, stopping the algorithm early allows a flexible tradeoff
between solution quality and computation time. If we assume that, in each state, there is a done action that

15

terminates execution with zero reward (in a rover problem, we would then start a safe sequence), then we
can evaluate the greedy policy at each step of the algorithm by assuming that execution ends each time we
reach a leaf of the greedy subgraph. Under this assumption, the error of the greedy policy at each step of
the algorithm can be bounded. We show this by using a decomposition of the value function described by
Chakrabarti et al.(1988) and Hansen and Zilberstein (2001). We note that at any point in the algorithm, the
value function can be decomposed into two parts, g,,(x) and h,,(x), such that

gn(x) = 0 when (n,x) is an open state, on the fringe of the greedy policy; otherwise,
gn(x) = Z Pr(n’ | n,x, a*)/ Pr(x' | n,x,a*,n’) (Ry(x) + gn (X)) dx’, (6)
n’€N x/
and
hn(x) = H,(x) when (n,x) is an open state, on the fringe of the greedy policy; otherwise,
hn(x) = Z Pr(n’ | n,x, a*)/ Pr(x' | n,x,a*,n’) hy (x")dx", (7)
n’€N x/

where a* is the action that maximizes the right-hand size of Equation (4). Note that V,, (x) = ¢,,(X) + hn(X).
We use this decomposition of the value function to bound the error of the best policy found so far, as follows.

Theorem 2 At each step of the HAO* algorithm, the error of the current best policy is bounded by A, (xo).

Proof: For any state (n, x) in the explicit search space, a lower bound on its optimal value is given by g,,(x),
which is the value that can be achieved by the current policy when the done action is executed at all fringe
states, and an upper bound is given by V,,(x) = gn(x) + hn(x), as established in Theorem 1. It follows
that h.,, (x0) bounds the difference between the optimal value and the current admissible value of any state
(n, x), including the initial state (10, x)).0J

Note that the error bound for the initial state is h,,(x0) = Hp,(X0) at the start of the algorithm; it
decreases with the progress of the algorithm; and h,,, (x¢) = 0 when HAO* converges to an optimal solution.

3.4 Heuristic Function

The heuristic function H,, focuses the search on reachable states that are most likely to be useful. The more
informative the heuristic, the more scalable the search algorithm. In our implementation of HAO* for the
rover planning problem, which is described in detail in the next section, we consider two admissible heuristic
functions. The first is very simple: it assigns to each node the sum of all rewards associated with goals that
have not been achieved so far. Note that this heuristic function only depends on the discrete component of
the state, and not on the continuous variables; that is, the function H, (x) is constant over all values of x.
It is obvious that this heuristic is admissible, since it represents the maximum additional reward that could
be achieved by continuing plan execution. It is not as obvious that a heuristic this simple could be useful.
However the experimental results we present in Section 4 show that it is.

We can create another heuristic function for HAO* by solving a relaxation of the planning problem. In
this relaxation, we assume that transitions for the continuous variables are deterministic; that is, we assume
Pr(x'|n,x,a,n’) € {0,1}. To create an admissible heuristic, we assume that actions consume the mini-
mum amount of all possible consumptions of a resource in the stochastic model. To create a non-admissible
heuristic that is usually more informative, we assume that actions always consume their mean resource con-
sumption. Because it is usually infeasible to solve this relaxed planning problem for the entire state space,
we solve it using HAO* guided by a simple heuristic, such as the one described above. The relaxed problem
is much easier to solve using HAO* than the original problem because deterministic resource consumption
makes updates of the value functions V,,much simpler. After the relaxed problem is solved, the value function
V,, of a node n in the relaxed graph represents the heuristic function H,, of the associated node in the orig-
inal problem graph. However, we have the following problem: deterministic consumption implies that the

16

number of reachable states for any given initial state is very small (because only one continuous assignment
is possible). This means that the heuristic may not be computed for all states for which it is needed. To
address this problem, instead of starting with the initial resource values, we assume a uniform distribution
over the possible range of resource values. Because it is relatively easy to work with a uniform distribution,
the computation is simple relative to the real problem, and this allows us to obtain a heuristic estimate for
many more states. If we reach states for which no heuristic estimate was obtained using these initial values,
we simply solve the relaxed problem starting with this initial state.

3.5 Node Expansion Palicy

HAO* works correctly and converges to an optimal solution no matter which continuous region(s) of which
node(s) is expanded at each iteration (step 2.a). But the quality of the solution may improve more quickly by
using some “heuristics” to choose which region(s) on the fringe to expand next.

One simple strategy is to select a node and expand all continuous regions of this node that are open
and reachable. In a preliminary implementation, we expand (the region of) the node that is most likely to
be reached using the greedy policy. Changes in the value of these states will have the greatest effect on
the value of earlier nodes. Implementing this strategy requires performing the additional work involved in
maintaining the probability associated with each state. If such probabilities are available, one could also focus
on expanding the most promising node, that is, the node where the integral of H,,(x) times the probability
over all values of x is the highest, as described in (Mausam, Benazera, Brafman, Meuleau, & Hansen, 2005).

Hansen and Zilberstein (2001) observed that, in the case of LAO*, the algorithm is more efficient if we
expand several nodes in the fringe before performing dynamic programming in the explicit graph. This is
because the cost of performing the update of a node largely dominates the cost of expanding a node. If we
expand only one node of the fringe at each iteration, we might have to perform more DP back-ups than if we
expand several nodes with common ancestors before proceeding to DP. In the limit, we might want to expand
all nodes of the fringe at each algorithm iteration. Indeed, this variant of LAO* proved the most efficient in
(Hansen & Zilberstein, 2001).

In the case of LAO*, updates are expensive because of the loops in the implicit graph. In HAO*, the
update of a node induces a call to the hybrid dynamic programming module for each open region of the node.
Therefore, the same technique is likely to produce the same benefit.

Pursuing this idea, we allowed our algorithm to expand all nodes in the fringe and all their descendants
up to a fixed depth at each iteration. We defined a parameter called the expansion horizon and denoted & to
represent, loosely speaking, the number of times the whole fringe is expanded at each iteration. When k = 1,
HAO* expands all open and reachable regions of all nodes in the fringe before recomputing the optimal
policy. When k& = 2, it expands all regions in the fringe and all their children before updating the policy.
At k = 3 it also consider the grand-children of regions is the fringe, and so on. When £ tends to infinity,
the algorithm essentially performs an exhaustive search: it first expands the graph of all reachable nodes,
then performs one pass of (hybrid) dynamic programming in this graph to determine the optimal policy. By
balancing node expansion and update, the expansion horizon allows tuning the algorithm behavior from an
exhaustive search to a more traditional heuristic search. Our experiments showed that a value of k£ between 5
and 10 is optimal to solve our hardest benchmark problems (see section 4).

4. Experimental Evaluation

We tested our implementation of HAO* using a realistic, real-size NASA simulation of a planetary rover. We
begin this section with a description of the simulation models and the details of our implementation, and then
present and analyze the results of our experiments.

17

Figure 3: The K9 rover was developed at the Jet Propulsion Laboratory and NASA Ames Research Center
as a prototype for the Mars Exploration Rovers (aka, Spirit and Opportunity). It is used to test
advanced rover software, including automated planners of the rover’s activities.

4.1 Domain Model and Problem | nstances

Our simulations use a model of the K9 rover (see Figure 3) developed for the Intelligent Systems (IS) demo
at NASA Ames Research Center in October 2004 (Pedersen et al., 2005). This is a complex real-size model
of the K9 rover that uses command names understandable by the rover’s execution language, so that the plans
produced by our algorithm can be directly executed by the rover. We did not simplify the NASA model in
any way for our experiments.

In this domain, the autonomous rover must navigate in a planar graph representing its surroundings and the
authorized navigation paths, and schedule observations to be performed on different rocks situated at different
locations. Only a subset of its observational goals can be achieved in a single run due to limited resources,
namely, time and energy. Each action has uncertain positive resource consumptions and a probability of
failing.

A significant amount of uncertainty in the domain comes from the tracking mechanism used by the rover.
In order to perform a measurement on some rock, the rover must be tracking the rock. To navigate along a
path, it must be tracking one of the rocks that enables following this path. However, the rover may randomly
lose track of some rocks while navigating along a path, and it has no way to re-acquire a rock it has lost track
of. (The probability of losing track of a rock depends on the rock and the path followed.) Finally, the number
of rocks tracked strongly influences the duration and resource consumption of navigate actions; the higher the
number of rocks tracked, the more costly it is to navigate along a path. This is because the rover has to stop

18

problem rover paths | rocks | goals | fluents | actions
name ‘ locations

Roverl 7 10 3 3 30 43

Rover2 7 11 4 5 41 56

Rover3 9 16 5 6 49 73

Rover4 11 20 5 6 51 81

Table 3: Size of benchmark rover problems.
problem discrete reachable Markov reachable actions in
name ‘ states ‘ discrete states states ‘ Markov states | longest branch

Roverl | ~ 1.07 10° 613 ~1.4310" 155110 29
Rover2 | ~2.2010" 5255 ~ 292 10" 1274515 34
Rover3 | ~5.63 10" 20393 ~7.49 10" 3992209 43
Rover4 | ~2.2510" 22866 ~2.99 10" 4580306 43

Table 4: Size of benchmark rover problems (continued).

regularly to re-acquire each rock tracked. It creates an incentive to limit the number of rocks tracked by the
rover given the set of goals it has chosen and the path it intends to follow. The decision to start tracking a rock
must be made before the rover begins to move. Once the rover starts moving, it may lose track of some rocks,
and this may cause it to reconsider the set of goals it will pursue and the route to get to the corresponding
rocks. Note that the rover can also use a trackstop action to stop tracking a rock that is no longer necessary.

In the following, we report the results of experiments performed using four problem instances of this
rover domain. The characteristics of these problem instances are displayed in Tables 3 and 4. Table 3 shows
the size of the problems in terms of rover locations, paths, rocks and goals. A problem may contain more
goals than rocks if several goals (measurements) are associated with the same rock. Table 3 also shows the
total number of fluents (boolean state variables) and actions in each problem. Table 4 shows the size of the
search space and the optimal policy for each problem instance. The total number of discrete states is two
raised to the power of the number of fluents. It is a huge state space, however, only a limited number of
states can be reached from the start state along a single trajectory, depending on the initial resource levels.
The third column in Table 4 shows the number of reachable discrete states if the initial time and energy
levels are set to their maximum value. The next column shows the number of Markov states the problem
would contain if the continuous state variables were discretized using the same discretization procedure used
to discretize action outcomes in HAO* (see Section 2.4). It represents the number of states that a dynamic
programming algorithm that does not exploit reachability, such as Value Iteration, would have to handle to
solve these problems. Next, the number of reachable Markov states is computed assuming the initial resource
levels are set to their maximum possible value. It represents the size of the discrete graph that standard AO*
would have to explore in order to solve these problems, if the continuous variables were discretized in the
same naive way. Finally, the last column shows the length of the longest branch in the optimal policy when
the initial resource levels are set to their maximum value. The largest of the four instances (that is, Rover4)
is exactly the problem of the October 2004 IS demo. This is considered a very large rover problem. (For
example, it is much larger than the problems faced by the MER rovers that never visit more than one rock in
a single planning cycle.)

Table 4 shows that our domain is huge, but simple reachability based on resource availability makes huge
difference. This is mostly because our planning domain, which is very close to the K9 execution language,
does not allow many fluents to be true simultaneously. The number of reachable discrete states, and thus
size of the graph to explore, may seem small compared to other discrete combinatorial problems solved by
Al techniques. However, a continuous approximation of the two-dimensional back-up is necessary at each
step of DP to explore this graph, making the largest of our problems unsolvable in reasonable time by most
current computers. The results below show that a large portion of reachable states can be avoided by using
HAO*.

19

4.2 Algorithm Parameters

We used the very simple heuristic described in section 3.4, augmented with a small amount of domain knowl-
edge. The value H, (x) of a state (n,x) is essentially equal to the sum of the utilities of all goals not yet
achieved in n. However, if the rover has already moved and a certain rock is not being tracked in state n,
then all goals requiring this rock to be tracked are not counted into the sum. This reflects the fact that, once
the rover has moved, it cannot start tracking a rock any more, and thus all goals that require this rock to be
tracked are unreachable. The resulting heuristic is admissible (i.e., it never underestimates the value of a
state), and it is straightforward to compute. Note that it does not depend on the current resource levels, so
that the functions H,,(x) are constant over all values of x. We experimented with more complex heuristics
such as those described in section 3.4, but our best results in terms of execution time were obtained with this
simple heuristic.

We used the variant of the algorithm described in Section 3.5, where a parameter k£ representing the
number of times the whole fringe is expanded at each iteration of HAO* allows the behavior of the algorithm
to be tuned from an exhaustive search to a heuristic search.

4.3 Simulation Results
4.3.1 EFFICIENCY OF PRUNING

In a first set of simulations, we try to evaluate the efficiency of heuristic pruning in HAO*, that is, the portion
of the discrete search space that is spared from exploration though the use of admissible heuristics. For
this purpose, we compare the number of discrete states that are reachable for a given resource level with the
number of states created and expanded by HAO*. We also consider the number of nodes in the optimal policy
found by the algorithm.

Results for the four benchmark problems are presented in Fig. 4 and 5. These curves are obtained by
fixing one resource to its maximum possible value and varying the other from O to its maximum. Therefore,
they represent problems where mostly one resource is constraining. These result show, notably, that a single
resource is enough to constrain the reachability of the state space significantly.

Not surprisingly, problems become larger as the initial resources increase, because more discrete states
become reachable. Despite the simplicity of the heuristic used, HAO* is able to by-pass a significant part of
the search space. Moreover, the bigger the problem, the more leverage the algorithm can take from the simple
heuristic.

These results are quite encouraging, but the number of nodes created and expanded does not always reflect
solution time. Therefore, we examine the time it takes for HAO* to produce solutions.

4.3.2 SOLUTION TIME

Figure 6 and 7 show HAO* execution time for the same set of experiments. Perhaps surprisingly, these curves
do not show the same monotonicity as the previous and seem to contain a significant amount of noise. It is
remarkable that the computation time does not always increase with the initial levels of resource, although
the search space is bigger. It shows that complexity is not always well measured by the size of the search
space . Some problems with less available resource are actually more constrained than larger problems, and
thus take more time to solve.

Execution time is more closely related to the complexity of the optimal policy. It depends on the amount
of branching and, in some cases, an increase of resource may eliminate the need for branching. Figure 8 and
9 show the number of nodes and branches in the optimal policy found by the algorithm, as well as the number
of goals pursued by this policy. It shows that the size and the optimal policy and, secondarily, its number of
branches, may explain most of the peaks in the execution time curves.

20

700 T T
reachable 700 reachable —
| created [— created _
600) _ expanded - 600 - expanded
B in optimal policy = 4] in optimal policy e
T 50| B 500t
% Q
o L o] _
@ 400 g 400
T S
S 300 ¢ 5 300
h3 X
E 200 . E 200 o
z 2 .
100 r 100 f
0 b gt 0 e e
0 100000 200000 300000 400000 500000 0 2000 4000 6000 8000 10000
Initial energy Initial time
(a) Roverl
6000 T
reachable 6000 reachable ———
created
o created
5000 - ~ expanded -x < 1 5000 t expanded —x~
g in optimal policy % in optimal policy =
o 4000 f B 4000 |
T ©
5 B
5 3000 r g 3000
B B
E om} E om0t
S €
=} >
z z
1000 | e 1000 f :
_ Pt i
0 b e . e o oo 0 s e e oo w oo
0 100000 200000 300000 400000 500000 2000 4000 6000 8000 10000
Initial energy Initial time
(b) Rover2

Figure 4: Number of nodes created and expanded by HAO* vs. number of reachable discrete states for two
smallest benchmark problems. The graphs in the left column are obtained by fixing the initial time
to its maximum value and varying the initial energy. The graphs in the right column are obtained
by fixing the initial energy to its maximum value and varying the initial time. Results obtained
with k = 7.

4.3.3 OPTIMAL EXPANSION HORIZON

Results of section 4.3.1 show that HAO* can leverage its simple heuristics to bypass a large portion of the
search space. It does not mean however that HAO* will necessarily outperform a blind search algorithm that
exhaustively expands the graph of reachable states, and then executes one-pass of DP in this graph to find
the optimal policy. First, computation time shows large, seemingly arbitrary variations. Most importantly, as
explained in Section 3.5, heuristic search expands a smaller graph than exhaustive search, but it must evaluate
this graph much more often.

The expansion horizon was introduced in Section 3.5 to allow different trade-offs between the nodes
expansion and node evaluation. We now study the influence of this parameter on the algorithm.

Figure 10 shows the evolution of the number of nodes created and expanded by HAO* as a function of
the expansion horizon for the four benchmark problems. Not surprisingly, the algorithm visits an increas-
ing number of nodes as the expansion horizon increases. It illustrates the fact that the algorithm tends to
exhaustive search as k increases. For the two smallest problem instances, the experiment was stopped when
k reached the length of the longest branch in the optimal policy (cf. Table 4). This guarantees that the op-

21

25000 r T
reachable 25000 reachable ——
created created
L L expanded expanded =
g 20000 in optimal policy % 20000 - in optimal policy =
J4 J
B 15000 | @ 15000 -
2 8
B 5
5 10000 S 10000 -
3 j
5 £
=z 5000 | * z 5000
_ % // *
0 100000 200000 300000 400000 500000 0 000 4000 6000 8000 10000
Initial energy Initial time
(a) Rover3
25000 r T
reachable 25000 reachable ——
created T created
L L expanded expanded =
g 20000 inoptimal policy % 20000 - in optimal policy =
i i
T 15000 - T 15000 f
2 8
B 5
5 10000 S 10000 -
3 j
s e E
=z 5000 | P z 5000
0 #—= e . - R 0 i, . N
0 100000 200000 300000 400000 500000 0 2000 4000 6000 8000 10000
Initial energy Initial time
(b) Roverd

Figure 5: Same as Fig. 4 for the two largest benchmark problems.

timal solution is found at the first iteration. However, more iterations might be needed for the algorithm to
complete (HAO* might still have to prove that this is an optimal solution). Nevertheless, the algorithm levels
off before the end of the experience for the smallest problem. For the two largest problem instances, we had
to interrupt the experiment when execution time became too large (see below). The similarities between the
curves associated with these two instances is explained by the fact that Rover3 was derived from Rover4 (the
IS demo problem) by deleting some rover locations and paths, and that the optimal policy at the fixed levels
of resources does not traverse this part of the rover environment.

Next, we examine the evolution of HAO* execution time with the expansion horizon. Results are pre-
sented in Fig. 11. Again, execution time data appears more noisy than number of nodes. The first graph shows
that, despite the lesser number of nodes explored, we cannot claim a clear advantage from using HAO* to
solve the smallest problem (Roverl). As k increases, the algorithm levels-off and transforms into exhaustive
search. The total time to perform this exhaustive exploration is not significant larger than the performance
of the best implementation of HAO*. The three largest problems clearly show the benefit of using HAO*.
With Rover2, the algorithms levels-off around k£ = 25, but the duration of exhaustive search is significantly
larger than the best implementation of HAO*. The benefits of HAO* appear most clearly with the two largest
problem. Here, the algorithm is quickly overwhelmed by the combinatorial explosion of the search space as
k increases. Simulations were interrupted when simulation time became too large.

Overall, our results show that there is a clear benefit in using admissible heuristics to prune the search
space. However, a pure heuristic search is not the best solution, and a fine balance between node expansion

22

18 18
L

16 // 16 /

14 + / 14 + //]
—~ — /
z L / z L /
2 12 5 12 /
'g 10 + = 10 //
= 8t 2 8 /
3 3 /
5 6r I 6f P _—

4 4t /

2l 2t P

O — L L L L 0 - 74,/' L L L L

0 100000 200000 300000 400000 500000 0 2000 4000 6000 8000 10000
Initial energy Initial time
(a) Roverl

180 * 180

160 ‘ ~ 160 | 1

140 ¢ 140 + /\\
o \ — /
2 120+t / L 100t / \ /
GE) g A // \ /
£ 100} | \ / = 100 | N\ / \ /
5 \/ 5 [\ R
S 80| / : S e /N S/ /
] 3 \Y
X5 60 X 60 -

40t / 40t

20t P 20t /

0 — — L L L L 0 . L L L L
0 100000 200000 300000 400000 500000 2000 4000 6000 8000 10000
Initial energy Initial time
(b) Rover2

Figure 6: Execution time for the two smallest benchmark problems. The graphs in the left column are ob-
tained by fixing the initial time to its maximum value, and the graphs in the right column are
obtained by fixing the initial energy to its maximum. Results obtained with k = 7.

and node evaluation must be acheived. HAO* achieves efficient trade-offs to solve optimally large instances
of the rover problem domain.

5. Conclusion

We have introduced a heuristic search approach to finding optimal conditional plans in domains characterized
by continuous state variables that represent limited, consumable resources. Our HAO* algorithm is a variant
of the AO* algorithm that, to the best of our knowledge, is the first algorithm to deal with all of the following:
limited continuous resources, uncertain action outcomes, and oversubscription planning. We tested HAO*
in a realistic NASA simulation of a planetary rover, a complex domain of practical importance, and results
show that it successfully handles problems with 24® discrete states, as well as a continuous component.
Its effectiveness comes from the fact that heuristic search can exploit resource constraints, as well as an
admissible heuristic, in order to limit the reachable state space.

In our implementation, the HAO* algorithm is integrated with the dynamic programming algorithm of
Feng et al. (2004) for solving hybrid MDPs. However HAO* can be integrated with other dynamic pro-
gramming algorithms for solving hybrid MDPs. The Feng et al. algorithm find optimal policies under the
limiting assumptions that transition probabilities are discrete, and rewards are either piecewise-constant or

23

Execution time (s)

25000 25000
/
/
20000 - / 1 20000 | i
r// B
15000 | / £ 15000 |
=
S A
10000 f 1 g 10000 f i
5000 A] 5000 |-
/// \\ +//
B L \/ _—
0 R . N | 0 . . | |
0 100000 200000 300000 400000 500000 0 2000 4000 6000 8000 10000
Initial energy Initial time
(a) Rover3
20000 / 20000
15000 | T 15000 |-]
£ £
5 10000 f S 10000 | |
& ~ Z
8 /
i / 3
5000 | / / 1 5000 - /4_,
0 0 . L
0 100000 200000 300000 400000 500000 0 2000 4000 6000 8000 10000
Initial energy Initial time
(b) Roverd

Figure 7: Same as Fig. 6 for the two largest benchmark problems.

piecewise-linear. More recently-developed dynamic programming algorithms make less restrictive assump-
tions, and also have the potential to improve computational efficiency (Li & Littman, 2005; Marecki, Koenig,
& Tambe, 2007). Integrating HAO* with one of these algorithms could improve performance further.

There are several other interesting directions in which this work could be extended. In developing HAO*,
we made the assumptions that every action consumes some resource and resources are non-replenishable.
Without these assumptions, the same state could be revisited and an optimal plan could have loops as well
as branches. Generalizing our approach to allow plans with loops, which seems necessary to handle replen-
ishable resources, requires generalizing the heuristic search algorithm LAO¥* to solve hybrid MDPs (Hansen
& Zilberstein, 2001). Another possible extension is to allow continuous action variables in addition to con-
tinuous state variables. Finally, our heuristic search approach could be combined with other approaches to
improving scalability, such as hierarchical decomposition (Meuleau & Brafman, 2007). This would allow it
to handle the even larger state spaces that result when the number of goals in an over-subscription planning

problem is increased.

Acknowledgements

This work was funded by the NASA Intelligent Systems program, grant NRA2-38169. Eric Hansen was
supported in part by NASA grant NAG-2-1463 and a NASA Summer Faculty Fellowship. This work was
performed while Emmanuel Benazera was working at NASA Ames Research Center and Ronen Brafman was
visiting NASA Ames Research Center, both as consultants for the Research Institute for Advanced Computer

24

50 T T T T 5
Nodes 50 Nodes T T T 5
Bragcf;les " Branches ”
40 | oS 14 % 40 Gods o 4 S
o s}
A —t 2 o
'Q f‘f / % 83 / / %
g a0t)t 30 8 8 a0t /13 8
= /\ /i £ < / /. <
o / \\ / 5] 6 / /, [&]
g / /\/ ' § o] / /i §
E 20 [g 4 12 % £ 20 f 12
S [5 /.]
2z / b b4 ’/\\\ /s o
A € /o €
10 J """ —* 11 g 10 + / * * 11 é
0 L L L L 0 0 — L L L L 0
0 100000 200000 300000 400000 500000 0 2000 4000 6000 8000 10000
Initial energy Initial time
(a) Roverl
75 T T T T 5
Nodes —+— © Nodes ——— ‘ ‘ >
Bragcf;les " Branches ”
60 | 0als I 44 8 60 | Goals - B ia 3
g / (=2} 4 // >
/ S ;
'Q 5 4] / 'g
g 45| 3 8 2 s B AN N
5 g 5 A\ F N g
k 5 o SN ¥ g
E 30| poA 2 5 E ¢ o N 12 %
=1 ,; 5 / _— o]
z o] = 7/ / o]
: AN :
S I 112 By : 11 2
0 / ‘ ‘ ‘ ‘ 0 o - ‘ ‘ ‘ ‘ 0
0 100000 200000 300000 400000 500000 0 2000 4000 6000 8000 10000
Initial energy Initial time
(b) Rover2

Figure 8: Complexity of the optimal policy: number of nodes, branches and goals in the optimal policy in
the same setting as Fig. 4 to 7.

Science. Ronen Brafman was supported in part by the Lynn and William Frankel Center for Computer
Science, the Paul Ivanier Center for Robotics and Production Management, and ISF grant #110707.

References
Altman, E. (1999). Constrained Markov Decision Processes. Chapman and HALL/CRC.

Asarin, E., & Schneider, G. (2002). Widening the boundary between decidable and undecidable hybrid
systems. In CONCUR’2002, Vol. 2421 of LNCS, pp. 193-208, Brno, Czech Republic. Springer-Verlag.

Bertsekas, D., & Tsitsiklis, J. (1996). Neural Dynamic Programming. Athena Scientific, Belmont, MA.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural assumptions and com-
putational leverage. Journal of Artificial Intelligence Research, 11, 1-94.

Boyan, J., & Littman, M. (2000). Exact solutions to time-dependent MDPs. In Advances in Neural Informa-
tion Processing Systems 13, pp. 1-7.

25

75 ‘ ‘ ‘ . 5 :

Nodes ——— " Nodes —— ‘ 1%
Bragcf;les ! " Branches ‘ ”
60 |- oS 43 go | Gods [P 4 S
: S,
% 5 : %3 /\‘ —\ o
2 A N P 3
‘5 T\ L S 5 i (5]
z AN 5 z z Al A <
E Iy S \ / ‘5 E 30r A / 2 5
z s h [} z VY, / 2
15 / """" ! 11 3 15 | ”,,x'// : 13

ok ‘ ‘ ‘ ‘ 0 o - ‘ ‘ ‘ ‘ 0

0 100000 200000 300000 400000 500000 0 2000 4000 6000 8000 10000

Initial energy Initial time
(a) Rover3
100 ‘ ‘ ‘ ‘ 5 :

Notes " - 100 Y T— ; 4 5

Bragcr;les K " Branches ”
T — e 1, Goals = :

80 r / 4 S 80 ok 4 4 ﬁg
/ - / k]
§ / 5 /| &
g 60 . fr13 8 g 60 P /13 8
5 ' / g 5 ' DA, 5
£ /\ 53 /TN, B
E 4 —) / 12 5 E 40 Vol 7/ \/ 2 5
= . _~ o z % / o}
. S o / '/ o
20 fr - 11 B 20 ¥ / 1 5
R 4 z

0 - | | I I 0 0 ~ | | L I 0

0 100000 200000 300000 400000 500000 0 2000 4000 6000 8000 10000

Initial energy Initial time

(b) Roverd

Figure 9: Same as Fig. 6 for the two largest benchmark problems.

Bresina, J., Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D., & Washington, R. (2002). Planning
under continuous time and resource uncertainty: A challenge for AL. In Proceedings of the Eighteenth
Conference on Uncertainty in Artificial Intelligence, pp. 77-84.

Bresina, J., Jonsson, A., Morris, P, & Rajan, K. (2005). Activity planning for the mars exploration rovers.
In Proceedings of the Fifteenth International Conference on Automated Planning and Scheduling, pp.
40-49.

Chakrabarti, P., Ghose, S., & DeSarkar, S. (1988). Admissibility of AO* when heuristics overestimate.
Aritificial Intelligence, 34, 97-113.

Fehnker, A. (1998). Automotive control revisited: Linear inequalities as approximation of reachable sets.. In
HSCC, pp. 110-125.

Feng, Z., Dearden, R., Meuleau, N., & Washington, R. (2004). Dynamic programming for structured con-
tinuous Markov decision problems. In Proceedings of the Twentieth Conference on Uncertainty in
Artificial Intelligence, pp. 154-161.

Friedman, J., Bentley, J., & Finkel, R. (1977). An algorithm for finding best matches in logarithmic expected
time. ACM Trans. Mathematical Software, 3(3), 209-226.

Hansen, E., & Zilberstein, S. (2001). LAO*: A heuristic search algorithm that finds solutions with loops.
Artificial Intelligence, 129, 35-62.

26

700

6000

creéIed T ‘ ‘ 7{4‘, | created ——— | ‘ ‘ ‘ -
600 | expanded — | expanded /
g P 5000 |- 1
B 00t T
o B 4000 t
g 400 A 4
) \ 8 _
5 // L I
5 300 | 5
3 /\// E 2000} //\
E 20 _ g A
> e = e \Y/
100 |] 1000) / g \
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 0 5 0 15 20 25 30
Expansion horizon Expansion horizon
(a) Roverl (b) Rover2
14000 T T T T
created 16000 - T T T
12000 | SPanded] 14000 | expanded i
8
® 10000 o g 12000]
_ =
Q o <
10000 |]
s 8000 | g /
5 5 8000)
5 6000 - 5 e
g 4000 // % 1 ""/
E /\// \ AV S 4000t o //\\ i
2000 -~] 2000
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 5 10 15 20 0 5 10 15 20
Expansion horizon Expansion horizon
(c) Rover2 (d) Roverd

Figure 10: Influence of the expansion horizon on the number of nodes visited by the algorihtm.

Jimenez, P., & Torras, C. (2000). An efficient algorithm for searching implicit AND/OR graphs with cycles.
Artificial Intelligence, 124, 1-30.

Kveton, B., Hauskrecht, M., & Guestrin, C. (2006). Solving factored MDPs with hybrid state and action
variables. Journal of Artificial Intelligence Research, 27, 153-201.

Li, L., & Littman, M. (2005). Lazy approximation for solving continuous finite-horizon MDPs. In Proceed-
ings of the Twentieth National Conference on Artificial Intelligence, pp. 1175-1180.

Marecki, J., Koenig, S., & Tambe, M. (2007). A fast analytical algorithm for solving markov decision
processes with real-valued resources. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI-07, pp. 2536-2541.

Mausam, Benazera, E., Brafman, R., Meuleau, N., & Hansen, E. (2005). Planning with continuous resources
in stochastic domains. In Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, pp. 1244—1251. Professional Book Center, Denver, CO.

Meuleau, N., & Brafman, R. (2007). Hierarchical heuristic forward search in stochastic domains. In Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence (1JCAI-07).

Munos, R., & Moore, A. (2002). Variable resolution discretization in optimal control. Machine Learning,
49(2-3),291-323.

27

60 T T T T T T 1800 T T
1600 f
50 J/ A
1400 f \/\&/
Z L @ |
2 40 T 1200 | /
= £ 1m0} A /
5 3t 5 1 JAR
§ % 800 r \‘ “; /’r
[\
a 2r VA, ’ oo o [/
0 ‘ \\ /\ //\—Mw 400 | x|
V- 200 | AN
0 | | | | | 0 ¥))))
0 5 10 15 20 25 15 20 25 30
Expansion horizon Expansion horizon
(a) Roverl (b) Rover2
25000 ‘ \ w ‘ 30000
20000 k 25000 - i
/ /
= / 2 20000 /]
£ 15000 f / 1 e /
5 / \/ 5 15000 | /
g L / v g ~
g 10000 / /N
i 4 / I_% 10000 | /
I /
™/ N A N
5000 / 1 5000 L A \/
\/‘ \\ N v
0 L L 0 L J
0 5 10 15 20 0 5 10 15 20
Expansion horizon Expansion horizon
(c) Rover2 (d) Roverd

Figure 11: Influence of the expansion horizon on the execution time.

Nilsson, N. (1980). Principles of Artificial Intelligence. Tioga Publishing Company, Palo Alto, CA.
Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley.

Pedersen, L., Smith, D., Deans, M., Sargent, R., Kunz, C., Lees, D., & Rajagopalan, S. (2005). Mission
planning and target tracking for autonomous instrument placement. In Proceedings of the 2005 IEEE
Aerospace Conference., Big Sky, Montana.

Puterman, M. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New
York, NY.

Rust, J. (1997). Using randomization to break the curse of dimensionality. Econimetrica, 65, 487-516.

Smith, D. (2004). Choosing objectives in over-subscription planning. In Proceedings of the Fourteenth
International Conference on Automated Planning and Scheduling, pp. 393-401.

Thiebaux, S., Gretton, C., Slaney, J., Price, D., & Kabanza, F. (2006). Decision-theoretic planning with
non-markovian rewards. Journal of Artificial Intelligence Research, 25, 17-74.

van den Briel, M., Sanchez, R., Do, M., & Kambhampati, S. (2004). Effective approaches for partial satisfa-
tion (over-subscription) planning. In Proceedings of the Nineteenth National Conference on Artificial
Intelligence, pp. 562-569.

28

