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Abstract: A gravitational wave signal carries information about an astrophysical source, a time varying quantity
that has to be analyzed in the time frequency domain. There are varieties of transforms that can be applied to
understand the complex evolution time-varying frequencies and chirps. This paper discusses various techniques of
transforms that can be applied to various categories of this problem to identify and analyze signal, and to assess

their efficacy.
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1 Introduction

The general tool for signal analysis is the Fourier
transform, that decomposes a signal into its frequency
components [1]. The power spectrum provides in-
formation about frequency not temporal localization
of the data. A time frequency distribution (TFD)
is a transform that maps a 1-D signal into a 2-D
time-frequency map, which describes the evolution
of spectra over time. More well-known TFD’s are
short time fourier transform (STFT) [2], the Ga-
bor representation and wavelet transform [3]. The
quadratic time frequency distributions are used to an-
alyze time-varying power spectra. Well-known meth-
ods are Spectrogram, Wigner-Ville distribution (WD)
and Choi-Williams distributions [4, 5]. The WD is
very useful due to its capability to analyze phase mod-
ulated signals. This paper discusses in detail the vari-
ous ways of identifying signals in time-frequency do-
main and the data sets which have been adopted for
chirp waveform analysis. The following sections will
introduce Laser Interferometer Space Antenna (LISA)
data sets and provide details of extraction of gravita-
tional wave form and sources of gravitational waves.

2 LISA Data

The Laser Interferometer Space Antenna [LISA] is
jointly sponsored by the European Space Agency
(ESA), as a Cornerstone mission in ESA’s Cos-
mic Vision Programme, and by NASA’s Astronomy
and Astrophysics Division, as part of the Struc-
ture and Evolution of the Universe 2003 roadmap,

“Beyond Einstein: From the Big Bang to Black
Holes.” It is intended to look for Gravitational Ra-
diation [gravity waves] from intense astrophysical
sources, from merging black hole binaries, from ex-
treme mass ratio inspirals [EMRIs], and from cosmic
stochastic background sources from the early universe
(http://lisa.nasa.gov/WHATIS/intro.html). The LISA
consists of three spacecraft, floating and “cartwheel-
ing” in a semi-rigid formation, each separated by 5
million km. Each spacecraft will send data to ground
at 15 seconds intervals ( ie, roughly 2 million data
points per year or orbit from each spacecraft). The
frequency of signals is in the millihertz range.

The task is to analyze data from Massive Black
Hole Binaries (MBH) and EMRIs for stationary
and/or ’chirp’ signal detection in time - frequency
space. The “center” frequencies for such sources lie
below 0.01 milliHz. The power is in order of 1072V,
Fast fourier transform (FFT) method is used to extract
single hidden sources (for example approx. 20 veri-
fication binaries). The problem of solving/identfying
gravitational waves can be divided into two parts viz.,
(1) Identifying/extracting frequency of signal from raw
data source (ii) Based on identified frequency, search
for location of the source in the sky as well as other
parameters. Once the frequency or chirp characteris-
tics have been extracted, then extensive search meth-
ods or Monte Carlo modeling is done to extract all the
other characteristics of the source [location, polariza-
tion, inclination, initial phase, distance, separation in
the binary, etc.] Thus, the problem ends up operating
across a 17-dimension data search, and year-long or
multiyear data [still at 15second cadence]. The wave-



forms may range from various chirp forms to inter-
laced chirps. Various types of transforms (similar to
FFT) have to be applied to identify and extract sig-
nals, and other characteristics. The signals sensitivity
at millihertz frequencies controls to extract its source
location parameters. Typical ‘simulation’ data sets
and descriptions can be viewed and downloaded from
http://astrogravs.nasa.gov/docs/mldc/. The following
section explains about various methods of estimating
spectra for LISA data sets. The LISA spacecraft data
sets are referred to X, Y, Z Time Delay Interferometer
variables. These values are signals from each of the
three space craft separated by 5 million kilometers.

3 Spectral Estimation Method

There are several methods available for spectral esti-
mation [6, 7] that can be classified as:

3.1 Nonparametric Methods

The power spectral density (PSD) is estimated di-
rectly from the signal. The simplest method is a peri-
odogram, and the most advanced are Welch and mul-
titaper methods [8]. In periodograms, a discrete-time
fourier transform is applied to the samples and one
computes the magnitude squared of the result. The
performance of periodogram with respect to leakage,
resolution, bias and variance is a critical issue. The
spectral leakage is solely based on the length of the
record. Resolution refers to the ability to discriminate
spectral features. The periodogram is asymptotically
biased even when the data length is long. In statistical
terms, the periodogram is not a consistent estimator of
the PSD. Nevertheless, it is a useful tool where Signal
Noise Ratio is high, and especially if the data record
is long.

3.2 Parametric Methods

The PSD is estimated from a signal that is assumed to
be an output of a linear system driven by white noise.
This works very well when data length of the available
signal is relatively short. Yule-Walker Auto-regressive
and Burg methods are examples of parametric meth-
ods.

3.3 Subspace Methods

In subspace methods, frequency components are esti-
mated based on eigen analysis or eigen decomposition
of the correlation matrix. These methods are effective
in detection of sinusoidal signals buried in white noise

Table 1: Summary Statistics of TDI - X variable

Statistics Values
Mean -3.55144e-24
Variance 1.4322e-40
Skewness (Normalized) -0.0119729
Kurtosis (Normalized) 0.0245682

when signal-noise-ratio is low. Multiple signal classi-
fication (MUSIC) or Eigen vector method are exam-
ples of these methods.

4 Exploratory Data Analysis
A simulated LISA one year time series data set for X
TDI variable is plotted and shown in figure 1. Initially

a histogram plot is adopted for the given data set, in-
dicative of gaussian distribution.
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Figure 1: FFT Analysis of TDI - X Variable

The key statistics of the data like mean, variance,
skewness and kurtosis are computed to understand
data characteristics, as provided in Table 1.

Harmonic models and spectral analysis are ap-
plied to data to estimate peaks in the data. The spectral
estimates based on the Eigenvector, Music, Pisarenko,
ML, AR, periodogram methods, and the minimum-
norm method are computed and shown in figure 2(b).



Gabor representation of time frequency plane of sig-
nal is analyzed. For upto 2 Million data points, the
Gabor representations and coefficients can be com-
puted with available computer resources. The chirp
rate from a global measure is computed to estimate
chirp rate with averaged time center and frequency. In
figure 1(c), certain strong signals are shown in FFT
around 0.03 Hz, but FFT cannot yield chirp wave
forms and evolution rates. Using harmonic models,
the frequency of signals can be estimated and focussed
for further analysis.
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Figure 2: Harmonic models of TDI - X Variable.

In figure 3 and 4, various spectral methods are
shown for the same TDI X variable. Using spectro-
grams, the overall chirp and evolution of structure can
be estimated. The start of chirp frequency can be com-
puted using Welch, Periodogram and Yule methods.
Covariance and modified covariance methods do not
yield any information regarding chirps.

In figure 5(a), Wigner distribution (WD) is com-
puted based on a derived signal from X TDI vari-
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Figure 3: Spectral Analysis Methods - A

able. The derived signal is constructed based on ev-
ery 10000*" data point from the raw signal and the
data set is reduced. From 4 Million data points, de-
rived data points length is 4000. The Wigner dis-
tribution plots time frequency contour plot and the
strong signal which can be considered from time fre-
quency plot is based on contour structure. Figure 5 (b)
shows a zoomed version of WD time frequency con-
tour plot. Various methods to analyze chirp waves,
Hilbert transform [9] and Wigner distribution method
yield the most informations regarding signal and its
structure.

5 Problems in Gravitational Wave
Analysis

There are various critical issues from signal analysis
aspects:

e 15 seconds cadence data which is integrated over
a year corresponds to approximately 2 Million
data points

e Complex transforms like Wigner-Ville trans-
forms can not be applied to this huge data set be-
cause of complex conjugate computation of mir-
ror image of huge data sets.
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Figure 4: Spectral Analysis Methods - B

Amplitude of data is extremely tiny

Normalisation causes loss of information due to
sensitivity of the signal

Millions of sources, all with low frequency (Mil-
lihertz range)

Variety of chirp evolution rates

Source parameter search is very time consuming,
even after settled with source frequency charac-
teristics

Multiple iteration/separation of source parame-
ters makes the problem harder to solve with lim-
itations of computational resources

No single method is available to extract and iden-
tify signals
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Figure 5: Wigner Distribution

Multiple transforms and spectral methods imple-
mented in hardware needed to identify and extract
gravitational signal in near real time. Empirical mode
decomposition and computation of instantaneous fre-
quency for larger data set for extreme low frequency
with high sensitivity should be adopted to extract
gravitational wave characteristics.

6 Conclusion

Resolving close, complex signals in a given time-
series is a significant challenge at low frequency. In
addition, aliasing creates a similar power-spectrum at
higher frequencies in the FFT; and if one does not
know in advance what frequency band to look across,
a major ambiguity will need to be resolved. A bet-
ter process characterizing the frequency sources is
needed to achieve rapid signal extraction and identi-



fication; we will implement our best methods on field
programmable gate arrays (FPGA) to lock in the faster
methods[10].

In another approach, the signals can be classified
based on certain energy level using a neural network.
Once a signal is identified and processed using the
neural network, the data corresponding to the signal-
region could be further processed ’locally’ to deter-
mine the requisite source parameters rather than deal-
ing with the entire time-series. Such data reduction
would enable much faster convergence. This method
can be applied as a validating method for FPGA anal-
ysis.

Computational cost and resolution capabilities
have to be extended for complex signal structure in
low frequency. Symmetric Multi-Processing (SMP)
using cluster-computing technology is an alternative
for rapid and faster convergence with embedded sig-
nal extraction methods. Also, implementing Paral-
lel Virtual Machine (PVM) techniques to the signal
search process would lead to a robust and more scal-
able real-time signal identification and search process.
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