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Abstract: In this paper we discuss a formal approach and methodology for reducing and 
abstracting the internal states and transitions of a (discrete-event) system representation.  
The resulting abstracted description, called the “user model,” forms the foundation of the 
user interface as it formulates the necessary modes, states and transitions that drive the 
interface.  Copyright © 2007 IFAC. 
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1. INTRODUCTION 

 
From a formal perspective, the user interface can be 
viewed as an abstraction of the machine’s behavior. 
In every user interface, from a portable CD player to 
a control panel of an aircraft autopilot, the modes, 
indications, and parameters seen on the screen are 
always an abstraction of the states of the underlying 
machine.  Consequently, the dynamics observed on 
the interface (e.g., mode transitions) are also an 
abstraction of the far more complex internal 
dynamics that take place inside the machine.  As 
such, a fundamental aspect of interface design 
involves an intricate process of abstracting what’s 
irrelevant to the user, retaining what is, and insuring 
proper correspondence between the abstracted 
interface and the internal working of the machine. 
The end result of this process is the information 
content of the interface which then forms the basis 
for the graphical user interface (See Heymann and 
Degani 2007 for a review of formal methods 
approaches and techniques in user-interface design). 
 
From this perspective, the designer's goal is to strike 
a fine balance between providing insufficient 
information on the one hand and providing 
superfluous information (and overloading the user) 
on the other.  When the information on the interface 
is insufficient, the user may not be able to perform a 
specified task correctly (e.g., determine the current 
mode of the machine and anticipate its next mode as 
a consequence of user interaction).  As a result, 

either the user will be unable to perform the desired 
task altogether or there will be unexpected, faulty, 
and potentially dangerous outcomes.   
 
In situations where the interface provides superfluous 
information, the practical implications are that the 
interface may require complex interaction sequences 
that make it difficult and time consuming to use the 
system or device.  Overburdening the user with too 
much information on the screen also has the penalty 
of hindering the users’ ability to focus on what’s 
important and detect meaningful patterns.  
Specifically, we strive for interfaces (and user-
manuals) that are not only correct, but also succinct.  
Generally speaking, we would prefer to have a small 
set of modes rather then a large set of modes while 
operating a device.  Likewise, we would prefer a 
short and simple sequence of interaction for 
accomplishing a given task rather than a convoluted 
sequence that requires much attention with lots of 
buttons and key presses. 
 
 

2. FORMAL ASPECTS OF USER INTERACTION 
 
The correspondence between the machine's 
underlying behavior and the (abstracted) information 
that is provided to the user can be formally described 
and analyzed by considering the following three 
elements: the machine, the user's tasks, and the user's 
model of the machine (which is the foundation of the 
user interface). 



     

We consider machines that interact with their human 
users, the environment, and can act automatically.  A 
widely used formalism to model machines (e.g., 
computers) is to describe them as state transition 
systems.  In general, we consider two types of 
transitions: manually triggered (by the user) and 
automatically triggered (by the machine).  With 
respect to automatic, we have two sub-categories: 
those that are triggered by the machine's internal 
dynamics (e.g., timed transitions) and those that are 
triggered by the external environment (e.g., the way 
an A/C compressor is activated when the temperature 
reaches a set value). 
 
Generally speaking, users interact with a machine to 
achieve a specific set of tasks (Parasuraman et al., 
2000).  These user’s tasks may vary widely, and 
range from programming consumer electronic 
devices, such as VCRs, to interacting with web-
browsers, and all the way to operating automated and 
safety-critical systems such as medical devices and 
navigation systems onboard ships and aircraft.  With 
respect to monitoring information and controlling 
automated systems, typical tasks involve monitoring 
mode changes, manually interacting with the system, 
and supervising a system such that it does not enter 
into an illegal state.  All these tasks can be formally 
described by partitioning the entire machine's state-
space into disjoint clusters that we shall call here 
“specification classes.”  A specification class is a set 
of internal states which the design team determined 
that the user need not distinguish among.  The 
distinction is typically done by task analysis and by 
obtaining inputs from expert users. Next, the design 
team specifies the task requirements. For example, 
one task requirement, which is common to almost all 
automated systems that are supervised by humans, is 
for the user to track these specification classes, 
unambiguously. 
 
Manufacturers normally provide users with 
information about the working of the machine by 
means of user-manuals.  Here the manufacturers 
describe the functions of the machine and its 
behavior as a consequence of user action and 
environmental conditions.  Most verbal statements 
for consumer electronics as well as more complex 
systems take the following form: "When the machine 
is in mode A and button x is pushed, the machine 
transitions to mode B." These series of fragmented 
statements describe to the user how the machine 
works, as well as how he or she is expected to 
interact with it.  We refer to this formal description 
of the interface indications, and of the transitions and 
events that drive it, as the user model of the machine.  
 
1.1 Interface Correctness Criteria  
 
For the purpose of the analysis, the machine model 
and user's tasks must be fully specified. (Our only 
assumption is that the machine's behavior is 
deterministic and the user's tasks are within the 
machine's abilities). This leaves the user model (and 
the interface that is embedded in it) as the focus of 
the analysis. 

One immediate observation about the correctness of 
user interfaces is that the machine’s response to user-
triggered events must be deterministic.  That is, there 
must not be a situation wherein, starting from the 
same mode, an identical user event will sometimes 
transition the system into one mode and at other 
times into another.  Additionally, there are three user-
interface correctness criteria that must be satisfied in 
the process of abstracting the underling machine 
behavior and generating user models: An interface is 
correct if there are no error states, no restricting 
states, and no augmenting states: (1) An error state 
occurs when the user interface indicates that the 
machine in one mode when, in fact, the machine is in 
another.  Interfaces with error states lead to faulty 
interaction.  Frequently (but not always), error states 
are caused by the presence of non-deterministic 
responses to user interaction.  (2) A restricting state 
occurs when the user can trigger mode changes that 
are not present in the user model and interface. 
Interfaces with restricting states tend to surprise and 
confuse users. (3) An augmenting state occurs when 
the user is told that certain transitions are available 
and can be manually triggered, when in fact, they 
cannot be executed by the machine (or are disabled).  
Interfaces with augmenting states tend to puzzle 
users and have contributed to operational errors.  All 
three criteria can be expressed mathematically, and 
therefore can be dealt with using formal methods of 
analysis (see Degani and Heymann 2002 for the 
theoretical foundation of these criteria, methods and 
tools for using them, and application to the 
verification of a modern autopilot). 
 
 

3. ALGORITHMIC APPROACH 
 
The objective of the abstraction methodology is to 
derive a user model that is correct for the specified 
tasks; namely, that is deterministic and free of error-, 
restricting- and augmenting-states. A second 
requirement is that this user model must be succinct.  
The methodology for satisfying these two 
requirements focuses on a systematic method for 
reducing the machine model into a smaller model and 
then abstracting some of its transitions and events. 
 
The conceptual approach for generating correct and 
succinct user-models is based on the fact that not all 
the system’s internal states need to be individually 
presented to the user.  Thus, while the user-model 
must enable us to operate the machine correctly (i.e., 
unambiguously track the specification classes visited 
by the system), the user need not track every internal 
state of the machine.  From an interface design 
standpoint, two states A and B can be grouped 
together on the display and represented as a single 
user-model state if the intrinsic details of whether the 
current internal state is A or B are inconsequential to 
the user. 
 
Formally we say that two internal states need not be 
distinguished, whenever (1) they belong to the same 
specification class, (2) each user triggered event that 
is available and active in one of the states is available 



     

and active also in the other, and (3) whenever 
starting from either of the two states and triggered by 
the same event sequence, the state pairs visited, 
respectively, also satisfy conditions (1) and (2).  
Such state pairs that need not be distinguished by the 
user are referred to as compatible.   
 
An efficient algorithm for computing such 
compatible and incompatible state-pairs is based on 
the use of merger tables (Kohavi, 1978; Paull, and 
Unger, 1959).  A merger table is a table of cells that 
lists for each state pair of the machine, the set of all 
distinct state pairs that are reached through a single 
common transition event.  For a machine with n 
states, there are n*[n-1]/2 cells in the table, and by 
iteratively stepping through the table one event 
transition at a time, we progressively detect all 
incompatible state pairs, thereby “resolving” the 
table.  Finally, all the state-pairs that are not found to 
be incompatible are designated as compatible.  From 
these pairs, all the largest possible sets of compatible 
states—i.e., triplets, quadruples, quintuples, etc., 
called maximal compatibles—are then computed.  
 
The next step consists of constructing a reduced user-
model.  The user-model’s states are comprised of 
maximal compatible state sets which constitute the 
user model’s building blocks.  In general, however, 
not all the maximal compatibles need to be part of 
the reduced model; frequently the designer has more 
than one choice in selecting appropriate compatible 
sets.  The key to a suitable selection is that the 
selected set must constitute a cover of the original 
machine’s state set.  That is, each state of the original 
machine must be a member of at least one selected 
maximal compatible (this constitutes the cover 
property).  The state set is selected by first choosing 
maximal compatibles that constitute a minimal cover 
of the machine's state set (i.e., none of the selected 
maximal compatibles can be omitted from the 
selected set without violating the cover property).  If 
necessary, additional maximal compatibles are 
incrementally added to the selected minimal cover so 
as to insure that the set of target states of each 
transition emanating from a maximal compatible is 
included in some maximal compatible of the selected 
set. (In the worse case this incremental addition of 
maximal compatibles will terminate when all 
maximal compatibles are chosen. 
 
Once the state set of the reduced model has been 
selected as just described, the next step is to 
determine the transitions in the reduced model.  
These are defined so as to be consistent with the 
original machine model and with the partition of the 
state set into specification classes. Three subtle 
issues arise in this connection and are discussed in 
detail in the following sections: (1) transition non-
determinism of automatically triggered events that 
can be safely eliminated from the reduced model, (2) 
sets of events can be grouped together, and (3) events 
that can be deleted since their presence in the 
reduced model is non-effectual. The resultant model 
constitutes the user model and the required interface 
is then extracted from this model. 

4. CONSTRUCTION OF THE USER MODEL 
 
The machine model of Fig. 1 has 18 states and 42 
transitions (some of which are manually triggered, 
such as ua and ud; the rest are automatic).  Four 
separate specification classes were defined for this 
machine: A, B, C, as highlighted in gray in Fig. 1.  
The task requirement is that the user must be able to 
identify the current specification class (mode) of the 
machine and to anticipate the next mode that the 
machine will enter as a result of his or her 
interactions. 
 
We apply the algorithmic procedure for computing 
compatible sets to the machine model of Fig. 1 and 
its specification classes (See Heymann and Degani, 
2007 for the mathematical details of the algorithmic 
procedure).  The algorithm terminates with eight 
maximal compatibles.  These eight maximal 
compatibles and their respective internal states are 
listed in Fig. 2. 
 
One immediate observation is that some of the 
maximal compatibles overlap on internal states.  For 
example, internal states 21, 22, 31 and 32 appear in 
all first four maximal compatibles, and internal state 
11 appears in maximal compatible 1 and 3.  Such 
overlap of maximal compatibles is quite common, 
and frequently implies the existence of multiple 
candidate user models.  And indeed, in this example, 
there are two candidate user models that contain all 
the internal states of the machine and thereby satisfy 
the cover property discussed earlier:  One consists of 
the maximal compatibles 1,4,5,6,7,8 (highlighted in 
light gray in Fig. 2) while the other consists of 
2,3,5,6,7,8 (dark gray). 
 
The selection among the various covers and 
candidate user models cannot, generally, be 
quantified, as it is based on engineering and human-
factors considerations.  Here various kinds of design 
decisions can be brought to bear: The number and 
intuitive nature of the states and transitions in each 
candidate, the physical interpretation of the reduced 
model, the cost and technical considerations in 
sensing a given event, etc.  Of course, when no 
profound reason exists to prefer one cover over 
 

 
 
Fig. 1.  The machine model. 



     

 
 
Fig. 2.  Eight maximal compatibles and two minimal 

covers. 
 
another, any cover may be selected.  In the following 
example of how to construct a user model we 
selected the cover that consists of the maximal 
compatibles 2,3,5,6,7,8. 
 
We now proceed to construct the user model.  We 
first incorporate the selected maximal compatibles 
into user model modes depending on their 
corresponding specification classes.  Thus, Maximal 
compatibles 2 and 3 are designated modes A-1 and 
A-2 respectively (the index -1 and -2 is arbitrary).  
Maximal compatible 5 is now mode B.  Maximal 
compatibles 6 and 7 are designated as modes C-1 and 
C-2 respectively, and the last maximal compatible, 8, 
is mode D (see Fig. 3 for the mode designations). 
 
Next, we proceed to establish the transitions in the 
user model.  We begin by building a table that lists 
all user model modes.  For each mode, the event 
labels that emanate form it and all resultant machine 
model target states are marked (Fig. 3).  Once the 
table in Fig. 3 is established, we can build the 
transition function for the user model.  The following 
procedure is used: for each mode (e.g., A-1), its 
constituents event labels (e.g., h,r,n,e,g,s,b) are 
drawn to each mode that includes all the machine 
model target states (as listed in the parenthesis above 
each event label in Fig. 3).  The resulting user model 
is depicted in Fig. 4. 
 

 
 

Fig. 3. User model modes, their respective event 
labels, and resultant machine model target states. 

5. ABSTRACTION OF AUTOMATIC EVENTS 
 

On initial observation of the user model of Fig. 4 we 
note that there are self loops transitions in every 
mode.  Such self loops are the by product of the 
reduction process—indicating internal state 
transitions that take place inside a mode (e.g., events 
r,n,s in mode A-1).  But for the purpose of tracking 
transitions among the modes this information is 
superfluous.  Therefore, the event labels on these self 
loops can be (judiciously) abstracted from the user 
model as we shall discuss shortly.   
 
5.1 Non Determinism 
 
Another observation is the presence of non-
deterministic transitions between modes.  For 
example, in Fig. 4, the event r emanates from mode 
A-2 to both A-1 as well as a self loop to A-2.  Note, 
however, that this non-determinism only occurs in 
modes within the given specification class (A in this 
case) and therefore acceptable from our perspective 
because it does not lead to non-deterministic 
transitions between specification classes; and hence 
cannot lead to an error state condition. 
 
Such non-determinism of automatic events (we will 
discuss issues concerning manually triggered events 
later) is an opportunity to further abstract events from 
the user model.  This, again, is because for the 
purpose of tracking the specification classes, it does 
not matter if the system remains in A-2 or transition 
to A-1 (since they both belong to specification class 
A).  We can thus eliminate this non-determinism by 
deleting one of the r events (e.g., either the one to A-
1 or the self loop).  In general, we would prefer to 
delete transition between modes and keep transition 
that self loop around a mode.  This is because self-
loop transitions do not cause mode transitions – 
thereby reducing the amount of mode switching that 
takes place on the interface.  (This is an advantage 
with respect to the reducing the cognitive load on the 
user).  Thus, when the redundant event label r from 
A-2 to A-1 is deleted, r remains only in self-loops.  
Along the same lines, we delete event label e from 
the transition line from A-2 to A-1, leaving it only in 
the self loop around A-2. 
 
 

 
 
 
Fig. 4.  User model modes, transitions, and all event 

labels. 



     

 
 
Fig. 5. Abstraction of non-determinism and event 

groups. 
 
5.2 Event Groupings 
 
Next, we consider groups of events.  We note that in 
Fig. 4 event labels e and g always come together.  
Nowhere in the reduced model do we see e or g 
separately; whenever label e is enabled in a mode so 
is g.  Such groups of events (pairs, triplets, 
quadruples, and so on) that always appear together in 
transitions can be abstracted into single 
representative label.  In the example, event labels e 
and g (outgoing from mode A-1, A-2, B, and D) can 
be abstracted into an event that we (arbitrarily) label 
as q.  Similarly, events n and s (outgoing from A-1 
and A-2) are abstracted into p.  The outcome of this 
non-deterministic and event groupings abstraction 
appears in Fig. 5. 
 
5.3 Non Effectual Events 
 
As a result of deleting event label r between mode A-
2 and A-1, r now appears only in self loops 
throughout the user model of Fig. 5.  Generally 
speaking, automatic events that occur only in self-
loops have no effect on the abstracted user model 
because from the user’s point of view, nothing 
changes in the system’s modes as a result of their 
occurrence.  Hence in many cases (but not always, 
e.g., timing events) we have an opportunity to 
judiciously remove them from the user model.  In 
practical terms what this means is that event r need 
not be transmitted to the interface at all.  
Furthermore, if it is difficult or expensive to sense 
event r within the machine, it is possible to avoid 
sensing it altogether.  
 
In addition to r, other automatic event labels appear 
on self-loop transition in Fig. 5.  These are event 
labels p (on A-1), q (on A-2 and B), and b (on D).  
But unlike event r that can be eliminated completely 
from the user model because it appears only on self 
loops—events p, q, and b also appear on other 
transitions (e.g., between A-1 and A-2).  Therefore, 
events p, q, and b cannot be completely removed (as 
we did with respect to event r).  Nevertheless, it is 
possible to delete them when they occur on self 
loops.  In the model presented in Fig. 6, all these non 
effectual (self loop) events were removed.  This user 
model, which is both correct and succinct, contains 6 
modes, 12 transitions, and 8 different event labels 

 
 
Fig. 6. The final user model.  After abstracting for 

non-deterministic, group, and self-loop events 
 
5.4 Further Elaboration on Self-Loop Events 
 
The issue of deleting self-loop events is rather subtle 
and requires additional elaboration:  Formally 
speaking, it is indeed possible to eliminate every 
automatic event on self loops as we did here.  Many 
automotive systems design use this approach when it 
comes to feedback about the internal state of the 
vehicle.  For example, consider the automatic 
transmission system of modern cars.  While the car is 
in automatic, drive (“D”) mode, internal gear shifts 
among 1st, 2nd, 3rd, 4th take place.  (These internal 
gear shifts are analogous to the internal state 
transition within the modes in our example).  
Nevertheless, these shifts, or transitions, are not 
annunciated in any way to the driver.  Apparently, 
there is a consensus among car manufacturers that 
these internal transitions should not be presented.  
 
However, in some cases it may be advantageous to 
provide information about internal state changes in 
the user manual and/or perhaps provide some 
annunciation about their occurrence on the interface.  
For example, in automated control systems onboard 
aircraft, there are situations where pilots demand 
some form of feedback about internal state changes 
so as to increase their situation awareness.  One 
common solution is to have a certain autopilot mode 
blink during internal state transitions.  In general, it is 
up to the design team to decide, based on human 
performance and situation awareness considerations, 
whether they choose to remove events  from self 
loops or not.  The decision cannot be aided by any 
formal method. 
 
 

6. ABSTRACTION OF MANUAL EVENTS 
 

The user’s task is to track the behavior of the 
underlying systems (among the various specification 
classes) as well as to control it manually from one 
specification class to another.  With respect to 
control, the user would need to know, which user 
events can be triggered and when, and what will be 
the ensuing mode.  Thus, in mode B the user can 
trigger either ud or up, leading the system to either 
A-2 or to D, respectively.  In C-1 and C-2 the user 
can trigger event um, leading the system to modes A-
1 or B. 



     

In the reduction process and construction of the user 
model we treat manually triggered events differently 
than automatically triggered events.  This is due to 
the augmenting state criterion discussed earlier.  
When a mode abstracts away a set of internal states 
that have outgoing manual transitions, it is necessary 
that all the states share the same event label(s), all 
leading to the same target mode.  For example, 
consider mode B in Fig. 6.  Its internal states (41, 42, 
and 62) all share the same event label up leading to 
mode D (see Fig. 1).  Hence no matter which internal 
state is active, the system always transition to mode 
B after event up.  If, for the sake of exposition, state 
41 would not have had event up, it would have been 
a violation of the augmenting state criterion to 
combine all three internal states together into a single 
mode.  This is because a user, who would expect the 
system to always transition to state D upon manually 
triggering event up while in mode B, would become 
confused (when the active state is 41). 
 
The above requirement is only for manually 
triggered events.  For automatic transitions, where 
the user is only monitoring mode changes, the 
augmenting state criterion is not enforced.  Hence, 
generally speaking, systems that have many 
automatic transitions are more likely to abstract than 
systems that have mostly manually triggered 
transitions.   
 
Finally, recall that the user model of Fig. 6 is based 
on a cover that contained maximal compatibles 
2,3,5,6,7,8 (see Fig. 2).  In this case the models 
constitute a minimal cover.  Had we chosen the 
second candidate (consisting of maximal compatibles 
1,4,5,6,7,8) as the basis for our user model, we 
would have had to increment the cover with maximal 
compatible 2.  This would have to be done because 
one set of target states only exists in maximal 
compatible 2.  Therefore, the new candidate, (now 
consisting of maximal compatibles 1,2,4,5,6,7,8) is 
no longer a minimal cover, but rather an irreducible 
model.   
 
 

7. CONCLUSIONS 
 

The approach presented here for abstracting internal 
states and their transitions is guided by two primary 
objectives: First and foremost was that the user 
model must be correct.  Second, the selected 
abstraction should be minimal, or succinct, in terms 
of the amount of information (e.g., mode 
annunciations) necessary to control the system.  For 
simplicity and clarity of exposition, we have 
confined our discussion to machine models that are 
based on discrete events systems.  Nevertheless, the 
focus of this work is not on a particular modeling 
formalism and notation.  Rather, it is on the ideas 
that they encapsulate and on the correctness criteria 
that we need to insure.  As such, the approach and 
methodology can be extended to other discrete event 
formalisms as well as to hybrid systems models that 
have both continuous and discrete behaviors (see, for 

example, the hybrid system modeling and 
verification approach used in Oishi et al. 2003). 
 
In principle, the computation of maximal 
compatibles for very large systems with thousands of 
states can become exponentially complex and 
eventually, computationally intractable.  
Nevertheless, there are many algorithmic techniques 
to deal with this problem (e.g., Kam et al. 1997).  
Using a computerized tool the abstraction 
methodology described in this paper has been 
successfully applied to machine models with more 
than 500 internal states.  It may be possible, by 
improving the efficiency of the reduction algorithm, 
to apply it to larger machines. 
 
We believe that this issue of correct and succinct 
abstraction is important for both current and future 
systems.  As systems become larger and more 
complex, there is a growing need for rigorous and 
systematic methods for user interface design. 
Specifically, formal and heuristically-based methods 
for extraction, abstraction, integration, and 
organization of information for the purpose of 
display need to be developed to support future 
adaptive interfaces (that reconfigure themselves 
based on the situation, the system’s state, and the 
user’s information requirements). We believe that the 
formal methods community can contribute to the 
development of such methods and tools. 
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