

TOWARD AUTOMATIC GENERATION OF USER INTERFACES:
ABSTRACTION OF INTERNAL STATES AND TRANSITIONS

Asaf Degani
NASA Ames Research Center

Moffett Field, CA 94035-1000, USA

Michael Heymann
Technion, Israel Institute of Technology

Haifa, Israel 32000

Abstract: In this paper we discuss a formal approach and methodology for reducing and
abstracting the internal states and transitions of a (discrete-event) system representation.
The resulting abstracted description, called the “user model,” forms the foundation of the
user interface as it formulates the necessary modes, states and transitions that drive the
interface. Copyright © 2007 IFAC.

Keywords: Keywords: Computer Interfaces, Human Factors, Formal Methods.

1. INTRODUCTION

From a formal perspective, the user interface can be
viewed as an abstraction of the machine’s behavior.
In every user interface, from a portable CD player to
a control panel of an aircraft autopilot, the modes,
indications, and parameters seen on the screen are
always an abstraction of the states of the underlying
machine. Consequently, the dynamics observed on
the interface (e.g., mode transitions) are also an
abstraction of the far more complex internal
dynamics that take place inside the machine. As
such, a fundamental aspect of interface design
involves an intricate process of abstracting what’s
irrelevant to the user, retaining what is, and insuring
proper correspondence between the abstracted
interface and the internal working of the machine.
The end result of this process is the information
content of the interface which then forms the basis
for the graphical user interface (See Heymann and
Degani 2007 for a review of formal methods
approaches and techniques in user-interface design).

From this perspective, the designer's goal is to strike
a fine balance between providing insufficient
information on the one hand and providing
superfluous information (and overloading the user)
on the other. When the information on the interface
is insufficient, the user may not be able to perform a
specified task correctly (e.g., determine the current
mode of the machine and anticipate its next mode as
a consequence of user interaction). As a result,

either the user will be unable to perform the desired
task altogether or there will be unexpected, faulty,
and potentially dangerous outcomes.

In situations where the interface provides superfluous
information, the practical implications are that the
interface may require complex interaction sequences
that make it difficult and time consuming to use the
system or device. Overburdening the user with too
much information on the screen also has the penalty
of hindering the users’ ability to focus on what’s
important and detect meaningful patterns.
Specifically, we strive for interfaces (and user-
manuals) that are not only correct, but also succinct.
Generally speaking, we would prefer to have a small
set of modes rather then a large set of modes while
operating a device. Likewise, we would prefer a
short and simple sequence of interaction for
accomplishing a given task rather than a convoluted
sequence that requires much attention with lots of
buttons and key presses.

2. FORMAL ASPECTS OF USER INTERACTION

The correspondence between the machine's
underlying behavior and the (abstracted) information
that is provided to the user can be formally described
and analyzed by considering the following three
elements: the machine, the user's tasks, and the user's
model of the machine (which is the foundation of the
user interface).

We consider machines that interact with their human
users, the environment, and can act automatically. A
widely used formalism to model machines (e.g.,
computers) is to describe them as state transition
systems. In general, we consider two types of
transitions: manually triggered (by the user) and
automatically triggered (by the machine). With
respect to automatic, we have two sub-categories:
those that are triggered by the machine's internal
dynamics (e.g., timed transitions) and those that are
triggered by the external environment (e.g., the way
an A/C compressor is activated when the temperature
reaches a set value).

Generally speaking, users interact with a machine to
achieve a specific set of tasks (Parasuraman et al.,
2000). These user’s tasks may vary widely, and
range from programming consumer electronic
devices, such as VCRs, to interacting with web-
browsers, and all the way to operating automated and
safety-critical systems such as medical devices and
navigation systems onboard ships and aircraft. With
respect to monitoring information and controlling
automated systems, typical tasks involve monitoring
mode changes, manually interacting with the system,
and supervising a system such that it does not enter
into an illegal state. All these tasks can be formally
described by partitioning the entire machine's state-
space into disjoint clusters that we shall call here
“specification classes.” A specification class is a set
of internal states which the design team determined
that the user need not distinguish among. The
distinction is typically done by task analysis and by
obtaining inputs from expert users. Next, the design
team specifies the task requirements. For example,
one task requirement, which is common to almost all
automated systems that are supervised by humans, is
for the user to track these specification classes,
unambiguously.

Manufacturers normally provide users with
information about the working of the machine by
means of user-manuals. Here the manufacturers
describe the functions of the machine and its
behavior as a consequence of user action and
environmental conditions. Most verbal statements
for consumer electronics as well as more complex
systems take the following form: "When the machine
is in mode A and button x is pushed, the machine
transitions to mode B." These series of fragmented
statements describe to the user how the machine
works, as well as how he or she is expected to
interact with it. We refer to this formal description
of the interface indications, and of the transitions and
events that drive it, as the user model of the machine.

1.1 Interface Correctness Criteria

For the purpose of the analysis, the machine model
and user's tasks must be fully specified. (Our only
assumption is that the machine's behavior is
deterministic and the user's tasks are within the
machine's abilities). This leaves the user model (and
the interface that is embedded in it) as the focus of
the analysis.

One immediate observation about the correctness of
user interfaces is that the machine’s response to user-
triggered events must be deterministic. That is, there
must not be a situation wherein, starting from the
same mode, an identical user event will sometimes
transition the system into one mode and at other
times into another. Additionally, there are three user-
interface correctness criteria that must be satisfied in
the process of abstracting the underling machine
behavior and generating user models: An interface is
correct if there are no error states, no restricting
states, and no augmenting states: (1) An error state
occurs when the user interface indicates that the
machine in one mode when, in fact, the machine is in
another. Interfaces with error states lead to faulty
interaction. Frequently (but not always), error states
are caused by the presence of non-deterministic
responses to user interaction. (2) A restricting state
occurs when the user can trigger mode changes that
are not present in the user model and interface.
Interfaces with restricting states tend to surprise and
confuse users. (3) An augmenting state occurs when
the user is told that certain transitions are available
and can be manually triggered, when in fact, they
cannot be executed by the machine (or are disabled).
Interfaces with augmenting states tend to puzzle
users and have contributed to operational errors. All
three criteria can be expressed mathematically, and
therefore can be dealt with using formal methods of
analysis (see Degani and Heymann 2002 for the
theoretical foundation of these criteria, methods and
tools for using them, and application to the
verification of a modern autopilot).

3. ALGORITHMIC APPROACH

The objective of the abstraction methodology is to
derive a user model that is correct for the specified
tasks; namely, that is deterministic and free of error-,
restricting- and augmenting-states. A second
requirement is that this user model must be succinct.
The methodology for satisfying these two
requirements focuses on a systematic method for
reducing the machine model into a smaller model and
then abstracting some of its transitions and events.

The conceptual approach for generating correct and
succinct user-models is based on the fact that not all
the system’s internal states need to be individually
presented to the user. Thus, while the user-model
must enable us to operate the machine correctly (i.e.,
unambiguously track the specification classes visited
by the system), the user need not track every internal
state of the machine. From an interface design
standpoint, two states A and B can be grouped
together on the display and represented as a single
user-model state if the intrinsic details of whether the
current internal state is A or B are inconsequential to
the user.

Formally we say that two internal states need not be
distinguished, whenever (1) they belong to the same
specification class, (2) each user triggered event that
is available and active in one of the states is available

and active also in the other, and (3) whenever
starting from either of the two states and triggered by
the same event sequence, the state pairs visited,
respectively, also satisfy conditions (1) and (2).
Such state pairs that need not be distinguished by the
user are referred to as compatible.

An efficient algorithm for computing such
compatible and incompatible state-pairs is based on
the use of merger tables (Kohavi, 1978; Paull, and
Unger, 1959). A merger table is a table of cells that
lists for each state pair of the machine, the set of all
distinct state pairs that are reached through a single
common transition event. For a machine with n
states, there are n*[n-1]/2 cells in the table, and by
iteratively stepping through the table one event
transition at a time, we progressively detect all
incompatible state pairs, thereby “resolving” the
table. Finally, all the state-pairs that are not found to
be incompatible are designated as compatible. From
these pairs, all the largest possible sets of compatible
states—i.e., triplets, quadruples, quintuples, etc.,
called maximal compatibles—are then computed.

The next step consists of constructing a reduced user-
model. The user-model’s states are comprised of
maximal compatible state sets which constitute the
user model’s building blocks. In general, however,
not all the maximal compatibles need to be part of
the reduced model; frequently the designer has more
than one choice in selecting appropriate compatible
sets. The key to a suitable selection is that the
selected set must constitute a cover of the original
machine’s state set. That is, each state of the original
machine must be a member of at least one selected
maximal compatible (this constitutes the cover
property). The state set is selected by first choosing
maximal compatibles that constitute a minimal cover
of the machine's state set (i.e., none of the selected
maximal compatibles can be omitted from the
selected set without violating the cover property). If
necessary, additional maximal compatibles are
incrementally added to the selected minimal cover so
as to insure that the set of target states of each
transition emanating from a maximal compatible is
included in some maximal compatible of the selected
set. (In the worse case this incremental addition of
maximal compatibles will terminate when all
maximal compatibles are chosen.

Once the state set of the reduced model has been
selected as just described, the next step is to
determine the transitions in the reduced model.
These are defined so as to be consistent with the
original machine model and with the partition of the
state set into specification classes. Three subtle
issues arise in this connection and are discussed in
detail in the following sections: (1) transition non-
determinism of automatically triggered events that
can be safely eliminated from the reduced model, (2)
sets of events can be grouped together, and (3) events
that can be deleted since their presence in the
reduced model is non-effectual. The resultant model
constitutes the user model and the required interface
is then extracted from this model.

4. CONSTRUCTION OF THE USER MODEL

The machine model of Fig. 1 has 18 states and 42
transitions (some of which are manually triggered,
such as ua and ud; the rest are automatic). Four
separate specification classes were defined for this
machine: A, B, C, as highlighted in gray in Fig. 1.
The task requirement is that the user must be able to
identify the current specification class (mode) of the
machine and to anticipate the next mode that the
machine will enter as a result of his or her
interactions.

We apply the algorithmic procedure for computing
compatible sets to the machine model of Fig. 1 and
its specification classes (See Heymann and Degani,
2007 for the mathematical details of the algorithmic
procedure). The algorithm terminates with eight
maximal compatibles. These eight maximal
compatibles and their respective internal states are
listed in Fig. 2.

One immediate observation is that some of the
maximal compatibles overlap on internal states. For
example, internal states 21, 22, 31 and 32 appear in
all first four maximal compatibles, and internal state
11 appears in maximal compatible 1 and 3. Such
overlap of maximal compatibles is quite common,
and frequently implies the existence of multiple
candidate user models. And indeed, in this example,
there are two candidate user models that contain all
the internal states of the machine and thereby satisfy
the cover property discussed earlier: One consists of
the maximal compatibles 1,4,5,6,7,8 (highlighted in
light gray in Fig. 2) while the other consists of
2,3,5,6,7,8 (dark gray).

The selection among the various covers and
candidate user models cannot, generally, be
quantified, as it is based on engineering and human-
factors considerations. Here various kinds of design
decisions can be brought to bear: The number and
intuitive nature of the states and transitions in each
candidate, the physical interpretation of the reduced
model, the cost and technical considerations in
sensing a given event, etc. Of course, when no
profound reason exists to prefer one cover over

Fig. 1. The machine model.

Fig. 2. Eight maximal compatibles and two minimal

covers.

another, any cover may be selected. In the following
example of how to construct a user model we
selected the cover that consists of the maximal
compatibles 2,3,5,6,7,8.

We now proceed to construct the user model. We
first incorporate the selected maximal compatibles
into user model modes depending on their
corresponding specification classes. Thus, Maximal
compatibles 2 and 3 are designated modes A-1 and
A-2 respectively (the index -1 and -2 is arbitrary).
Maximal compatible 5 is now mode B. Maximal
compatibles 6 and 7 are designated as modes C-1 and
C-2 respectively, and the last maximal compatible, 8,
is mode D (see Fig. 3 for the mode designations).

Next, we proceed to establish the transitions in the
user model. We begin by building a table that lists
all user model modes. For each mode, the event
labels that emanate form it and all resultant machine
model target states are marked (Fig. 3). Once the
table in Fig. 3 is established, we can build the
transition function for the user model. The following
procedure is used: for each mode (e.g., A-1), its
constituents event labels (e.g., h,r,n,e,g,s,b) are
drawn to each mode that includes all the machine
model target states (as listed in the parenthesis above
each event label in Fig. 3). The resulting user model
is depicted in Fig. 4.

Fig. 3. User model modes, their respective event
labels, and resultant machine model target states.

5. ABSTRACTION OF AUTOMATIC EVENTS

On initial observation of the user model of Fig. 4 we
note that there are self loops transitions in every
mode. Such self loops are the by product of the
reduction process—indicating internal state
transitions that take place inside a mode (e.g., events
r,n,s in mode A-1). But for the purpose of tracking
transitions among the modes this information is
superfluous. Therefore, the event labels on these self
loops can be (judiciously) abstracted from the user
model as we shall discuss shortly.

5.1 Non Determinism

Another observation is the presence of non-
deterministic transitions between modes. For
example, in Fig. 4, the event r emanates from mode
A-2 to both A-1 as well as a self loop to A-2. Note,
however, that this non-determinism only occurs in
modes within the given specification class (A in this
case) and therefore acceptable from our perspective
because it does not lead to non-deterministic
transitions between specification classes; and hence
cannot lead to an error state condition.

Such non-determinism of automatic events (we will
discuss issues concerning manually triggered events
later) is an opportunity to further abstract events from
the user model. This, again, is because for the
purpose of tracking the specification classes, it does
not matter if the system remains in A-2 or transition
to A-1 (since they both belong to specification class
A). We can thus eliminate this non-determinism by
deleting one of the r events (e.g., either the one to A-
1 or the self loop). In general, we would prefer to
delete transition between modes and keep transition
that self loop around a mode. This is because self-
loop transitions do not cause mode transitions –
thereby reducing the amount of mode switching that
takes place on the interface. (This is an advantage
with respect to the reducing the cognitive load on the
user). Thus, when the redundant event label r from
A-2 to A-1 is deleted, r remains only in self-loops.
Along the same lines, we delete event label e from
the transition line from A-2 to A-1, leaving it only in
the self loop around A-2.

Fig. 4. User model modes, transitions, and all event

labels.

Fig. 5. Abstraction of non-determinism and event

groups.

5.2 Event Groupings

Next, we consider groups of events. We note that in
Fig. 4 event labels e and g always come together.
Nowhere in the reduced model do we see e or g
separately; whenever label e is enabled in a mode so
is g. Such groups of events (pairs, triplets,
quadruples, and so on) that always appear together in
transitions can be abstracted into single
representative label. In the example, event labels e
and g (outgoing from mode A-1, A-2, B, and D) can
be abstracted into an event that we (arbitrarily) label
as q. Similarly, events n and s (outgoing from A-1
and A-2) are abstracted into p. The outcome of this
non-deterministic and event groupings abstraction
appears in Fig. 5.

5.3 Non Effectual Events

As a result of deleting event label r between mode A-
2 and A-1, r now appears only in self loops
throughout the user model of Fig. 5. Generally
speaking, automatic events that occur only in self-
loops have no effect on the abstracted user model
because from the user’s point of view, nothing
changes in the system’s modes as a result of their
occurrence. Hence in many cases (but not always,
e.g., timing events) we have an opportunity to
judiciously remove them from the user model. In
practical terms what this means is that event r need
not be transmitted to the interface at all.
Furthermore, if it is difficult or expensive to sense
event r within the machine, it is possible to avoid
sensing it altogether.

In addition to r, other automatic event labels appear
on self-loop transition in Fig. 5. These are event
labels p (on A-1), q (on A-2 and B), and b (on D).
But unlike event r that can be eliminated completely
from the user model because it appears only on self
loops—events p, q, and b also appear on other
transitions (e.g., between A-1 and A-2). Therefore,
events p, q, and b cannot be completely removed (as
we did with respect to event r). Nevertheless, it is
possible to delete them when they occur on self
loops. In the model presented in Fig. 6, all these non
effectual (self loop) events were removed. This user
model, which is both correct and succinct, contains 6
modes, 12 transitions, and 8 different event labels

Fig. 6. The final user model. After abstracting for

non-deterministic, group, and self-loop events

5.4 Further Elaboration on Self-Loop Events

The issue of deleting self-loop events is rather subtle
and requires additional elaboration: Formally
speaking, it is indeed possible to eliminate every
automatic event on self loops as we did here. Many
automotive systems design use this approach when it
comes to feedback about the internal state of the
vehicle. For example, consider the automatic
transmission system of modern cars. While the car is
in automatic, drive (“D”) mode, internal gear shifts
among 1st, 2nd, 3rd, 4th take place. (These internal
gear shifts are analogous to the internal state
transition within the modes in our example).
Nevertheless, these shifts, or transitions, are not
annunciated in any way to the driver. Apparently,
there is a consensus among car manufacturers that
these internal transitions should not be presented.

However, in some cases it may be advantageous to
provide information about internal state changes in
the user manual and/or perhaps provide some
annunciation about their occurrence on the interface.
For example, in automated control systems onboard
aircraft, there are situations where pilots demand
some form of feedback about internal state changes
so as to increase their situation awareness. One
common solution is to have a certain autopilot mode
blink during internal state transitions. In general, it is
up to the design team to decide, based on human
performance and situation awareness considerations,
whether they choose to remove events from self
loops or not. The decision cannot be aided by any
formal method.

6. ABSTRACTION OF MANUAL EVENTS

The user’s task is to track the behavior of the
underlying systems (among the various specification
classes) as well as to control it manually from one
specification class to another. With respect to
control, the user would need to know, which user
events can be triggered and when, and what will be
the ensuing mode. Thus, in mode B the user can
trigger either ud or up, leading the system to either
A-2 or to D, respectively. In C-1 and C-2 the user
can trigger event um, leading the system to modes A-
1 or B.

In the reduction process and construction of the user
model we treat manually triggered events differently
than automatically triggered events. This is due to
the augmenting state criterion discussed earlier.
When a mode abstracts away a set of internal states
that have outgoing manual transitions, it is necessary
that all the states share the same event label(s), all
leading to the same target mode. For example,
consider mode B in Fig. 6. Its internal states (41, 42,
and 62) all share the same event label up leading to
mode D (see Fig. 1). Hence no matter which internal
state is active, the system always transition to mode
B after event up. If, for the sake of exposition, state
41 would not have had event up, it would have been
a violation of the augmenting state criterion to
combine all three internal states together into a single
mode. This is because a user, who would expect the
system to always transition to state D upon manually
triggering event up while in mode B, would become
confused (when the active state is 41).

The above requirement is only for manually
triggered events. For automatic transitions, where
the user is only monitoring mode changes, the
augmenting state criterion is not enforced. Hence,
generally speaking, systems that have many
automatic transitions are more likely to abstract than
systems that have mostly manually triggered
transitions.

Finally, recall that the user model of Fig. 6 is based
on a cover that contained maximal compatibles
2,3,5,6,7,8 (see Fig. 2). In this case the models
constitute a minimal cover. Had we chosen the
second candidate (consisting of maximal compatibles
1,4,5,6,7,8) as the basis for our user model, we
would have had to increment the cover with maximal
compatible 2. This would have to be done because
one set of target states only exists in maximal
compatible 2. Therefore, the new candidate, (now
consisting of maximal compatibles 1,2,4,5,6,7,8) is
no longer a minimal cover, but rather an irreducible
model.

7. CONCLUSIONS

The approach presented here for abstracting internal
states and their transitions is guided by two primary
objectives: First and foremost was that the user
model must be correct. Second, the selected
abstraction should be minimal, or succinct, in terms
of the amount of information (e.g., mode
annunciations) necessary to control the system. For
simplicity and clarity of exposition, we have
confined our discussion to machine models that are
based on discrete events systems. Nevertheless, the
focus of this work is not on a particular modeling
formalism and notation. Rather, it is on the ideas
that they encapsulate and on the correctness criteria
that we need to insure. As such, the approach and
methodology can be extended to other discrete event
formalisms as well as to hybrid systems models that
have both continuous and discrete behaviors (see, for

example, the hybrid system modeling and
verification approach used in Oishi et al. 2003).

In principle, the computation of maximal
compatibles for very large systems with thousands of
states can become exponentially complex and
eventually, computationally intractable.
Nevertheless, there are many algorithmic techniques
to deal with this problem (e.g., Kam et al. 1997).
Using a computerized tool the abstraction
methodology described in this paper has been
successfully applied to machine models with more
than 500 internal states. It may be possible, by
improving the efficiency of the reduction algorithm,
to apply it to larger machines.

We believe that this issue of correct and succinct
abstraction is important for both current and future
systems. As systems become larger and more
complex, there is a growing need for rigorous and
systematic methods for user interface design.
Specifically, formal and heuristically-based methods
for extraction, abstraction, integration, and
organization of information for the purpose of
display need to be developed to support future
adaptive interfaces (that reconfigure themselves
based on the situation, the system’s state, and the
user’s information requirements). We believe that the
formal methods community can contribute to the
development of such methods and tools.

REFERENCES

Degani, A. and Heymann, M. (2002). Formal

Verification of Human-Automation Interaction.
Human Factors, 44(2), 28-43.

Heymann, M., and Degani, A. (2007). Formal
analysis and automatic generation of user
interfaces: Approach, methodology, and an
algorithm. Human Factors, 49(2), 311–330.

Kam, T., T. Villa, R. Brayton, and Sangiovanni-
Vincentelli, A. (1997). Implicit Computation of
Compatible Sets for State Minimization of
ISFSM's. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and
Systems, 16(6), 657-676.

Kohavi, Z. (1978). Switching and Finite Automata
Theory. McGraw-Hill: New York.

Oishi M., Tomlin, C. and Degani, A. (2003).
Discrete abstraction of hybrid systems:
Verification of safety and application to user-
interfaces. NASA Technical Memorandum
#212803, NASA Ames Research Center: Moffett
Field, CA.

Parasuraman, R., Sheridan, T., and Wickens, C.
(2000). A model for the types and levels of
human interaction with automation. IEEE
Transaction on Systems, Man, and Cybernetics -
Part A: Systems and Humans, 30(3), 286-297.

Paull, M. and Unger, S. (1959). Minimizing the
number of states in incompletely specified
sequential switching functions. Institute of
Radio Engineers Transactions on Electronic
Computers, 356-367.

