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[Abstract] A model of the case breach fault for solid rocket boosters (SRBs) that takes 

into account burning-through hole in propellant, insulator and metal layers of a rocket case 

is developed. Melting of the metal layer and an ablation of the insulator layer in the presence 

of hot gas flow through the hole are analyzed in detail. Dynamics of the lateral (side) thrust 

produced by the growing hole is calculated for typical parameters of the SRB.  A problem of 

inference of the fault parameters from the measurements of the nominal values of stagnation 

pressure and thrust is formulated and solved in quasi-steady approximation. An application 

of the recently developed Bayesian framework for diagnostics and prognostics of the case 

breach fault that can cause loss of flight control is discussed.   

Nomenclature 

ρ = gas density 

p = gas pressure 

T = gas temperature 

u = gas velocity 

vf = velocity of propagation of front of metal melting 

vabl = velocity of propagation of front of insulator ablation  

c = sound velocity 

M = Mach number, M = u/c, M = u/c0  

CV = specific heat for the constant pressure and volume 

CP = specific heat for the constant pressure and volume 

γ = ration of specific heats; γ= Cp/CV 

l = perimeter of propellant cross-section 

et = total energy of the gas in the combustion chamber 

ht = total enthalpy of the gas in the combustion chamber 

lh = perimeter of hole cross-section 

rh = radius of the hole 

sh = cross-section of the hole 

rhmin = minimum radius of the hole 

shmin = minimum cross-section of the hole (additional nozzle throat) 

Rt = radius of the normal nozzle throat 

St = cross section of the normal nozzle throat 

L = length of the propellant grain 

F = the total area of the burning surface 

FN = normal thrust  

Fs               = side thrust 

rb = burning rate of solid propellant 
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n = exponent for burning rate of the propellant 

ρp = density of the solid propellant 

Hp = combustion heat of the solid propellant 

Q = heat flow from the gas to the walls of the hole 

S = cross-section of the combustion chamber 

ftr = surface friction force 

Tmel = melting temperature point 

Hmet = heat of combustion of case metal 

Tc = temperature of metal case far from hole 

Cmet = specific heat of case metal 

qmet = specific melting heat of case metal 

Cins = specific heat of insulator layer 

qins = specific melting heat of insulator layer 

ρmet = density of case metal 

ρins = density of insulator layer 

k = the thermal conductivity 

µ = dynamical viscosity of hot gas 

Pr = the Prandtl number, Pr=µCp/k 

0 =   subscript 0  refers to the gas parameters in the combustion chamber 

h = subscript h  refers to the gas parameters in the hole 

I. Introduction 

In-flight diagnostics and prognostics for SRBs is an ill-posed, inverse problem, which is further complicated by the 

fact that the number and type of sensors available on-board are severely limited and the time window between the 

detectable onset of a failure and its typically catastrophic consequences is usually a few seconds.  In practice, one 

has to infer parameters of gas flow and the grain geometry in a booster based on a few seconds’ readings of 2 or 3 

sensors, such as stagnation pressure and thrust. Furthermore, a number of different fault modes (including e.g. 

combustion instability
4,11

; local burning of the rocket case, overpressure in SRBs, and breakage of the case induced 

by nozzle blocking or bore choking) may lead to a similar off-nominal dynamics of SRBs. To facilitate reliable in-

flight diagnostics and prognostics a number of low-dimensional performance models (LDPM) of the various fault 

modes in SRBs has to be developed that can be used to infer parameters of SRB dynamics and to predict time 

evolution of the faults. The models of SRB dynamics in various fault modes are in general stochastic and nonlinear. 

Therefore, the methods of dynamical inference have to be extended to allow for reconstruction of nonlinear 

stochastic models. 

In our earlier works a novel Bayesian framework
1,2

 was developed and applied for the inference of nonlinear 

SRB flow parameters
12-14

 based on a combination of the LDPMs and stochastic simulations of the flow dynamics. In 

these earlier works we analyzed a few fault scenarios including: (i) step-wise nozzle blocking with progressive 

steady burn-out, (ii) nozzle blocking with time varying fault parameters and neutral thrust curve modeling a possible 

“miss” situation, where a sudden increase of pressure follows a prolonged period of small deviations of the pressure 

from the nominal value; (iii) model a possible “false alarm” situation where, pressure following a sudden increase, 

induced by a cloud of solid particles, returns to its nominal value.   

In this paper we analyze the case breach fault induced by burning a hole through a rocket case. The burning case 

fault results in decrease both of the chamber pressure and of the normal booster thrust and also rise of lateral thrust. 

The additional lateral acceleration can be compensated for by the angle variation of the nozzle, TVC, but can cause 

loss of flight control. 

A novel LPDM of the case breach fault is introduced based on detailed consideration of the melting of the metal 

layer and ablation of the insulator layer in the presence of hot gas flow through the hole. We show that the hole can 

have the form of a convergent or de Laval nozzle depending on parameters of the metal and insulator materials.  A 

lateral (side) thrust produced by the growing hole is calculated for typical parameters of SRBs. A problem of 

reconstruction of the fault parameters using nominal values of stagnation pressure and thrust is formulated. We solve 

this problem by introducing an iterative procedure in the quasi-steady approximation. We discuss how the novel 

Bayesian framework can be applied for the diagnostics and prognostics of the case breach fault.  

We emphasize that development of the low-dimensional models of the fault modes in SRBs is also important in 

a more general context of the risk analysis
3
 of the space flights.  
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The paper is organized as follows. In Sec. II a high-fidelity model of the case breach fault is introduced and 

corresponding LDPM and its adiabatic approximation are derived.  An analysis of the melting and ablation of the 

steel case and of the insulator layers is given in Sec. III. Quasi-static description of the fault and its validation using 

results of the numerical solution are given in Sec. IV. Finally, conclusions are drawn in Sec. V.  

II. Model of the case breach fault 

A. High-fidelity model of the case breach fault 

To model case breach fault (see the sketch in the Fig. 1) 

we assume that the gas leak through the hole in the case 

is small compared to the gas flow through the rocket 

nozzle. An analysis of the fault in the limit of small gas 

leak is the most important one from the point of view of 

the development of prognostics and diagnostic of the 

SRB. In this case the perturbation of the gas flow in the 

combustion chamber is small and one can use one-

dimensional approximation for both gas flow in the 

combustion chamber and gas flow in the hole. To 

describe gas flow in the combustion chamber in 1D 

approximation we can use a set of equations for the 

dynamics of mass, momentum, and the energy of the 

gas, introduced in our earlier work
12-14
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h c T u= +  are the total energy and total enthalpy of the gas 

flow in the combustion chamber, ξi(t) are white Gaussian noises with intensities Ai. This set of partial differential 

equations (PDE) coupled with the equation for the steady burning of the propellant 
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represents a modification of the well-known work by Salita
15

. The boundary conditions for these equations assume 

the stagnation values for the gas parameters at the head of the rocket and the ambient conditions at the nozzle outlet.  

We now extend this mode by coupling the gas dynamics in the combustion chamber to the gas flow in the hole. The 

corresponding set of PDEs 
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resembles Eqs. (1). The main difference between the two sets of equations is that we neglect the mass from the walls 

of the hole as compared to the mass flow from the walls of the grain in the combustion chamber. Instead, Eqs. (3) 

include the term hQl that describes the heat flow from the gas to the hole walls. The boundary conditions for this set 

of equations assume ambient conditions at the hole outlet and the continuity equation for the gas flow in the hole 

coupled to the sonic condition at the hole throat. Eqs. (3) are coupled to eq. (2) and to the dynamics of the hole 

radius  

( , )=h
f h h

dr
v r p

dt
.            (4)  

 
Figure 1 Sketch of an idealized geometry of the fault 

with a gas leak through the hole in the case. 
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Here the velocity of propagation of the hole wall vf(rh,ph) is a complex nonlinear function of the hole curvature and 

the hole pressure. The derivation of the exact functional form of vf(rh,ph) is the key problem of the theory and will be 

discussed in details in the following sections. The two sets of Eqs. (1),(2) and (3),(4) are coupled to each other via 

values of the gas parameters at the stagnation point. It is assumed that throughout the combustion chamber and in 

the hole the following equation of a perfect gas holds 
2

0 0

0 0 0

( )
p V

p cp T T
C C T

T Tρ ρ γ

   
= − = =   

   
  .                                                               (5) 

We now derive the corresponding low-dimensional performance model for the case breach 

B. Low-dimensional model of the case breach fault 

To derive the LDPM of the case breach fault we integrate equations (1) along the rocket axis to obtain
12-14

 the 

following set of ordinary differential equations for the stagnation values of the gas parameters and the thickness of 

the burned propellant layer 
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       (6) 

Here ( )ρ
L

uS and ( )ρ t L
uSh are the mass and the enthalpy flow from the whole burning area of the propellant 

including the propellant surface in the hole and p0, ρ0, and e0 are the stagnation values of the flow parameters. The 

total mass flow from the burning propellant surface is equal to the sum of the mass flows through the nozzle’ and 

hole throats. Assuming that sonic conditions hold both in the nozzle throat and the hole throat we obtain the 

following result 

( ) ( ) ( ) ( )1 1 1

0 0 min 0 0 0 0 minh h h h t h tL t t
uS u s uS p s p S p s Sρ ρ ρ γρ γρ γρ− − −= + = Γ + Γ = Γ +   (7) 

Here ( )( ) ( )
1

2 11 / 2
γ

γγ
+

−Γ = + . This relation means that in the first approximation the hole is seen by the internal 

flow dynamics as an increase of the nozzle throat area and the dynamics of the stagnation values of the gas 

parameters are governed by both dynamics of the propellant burning area (related to the thickness of the burned 

propellant layer R) and by the hole radius rh. The equations above have to be completed by the equations for the 

main thrust FN and lateral (side) thrust Fs induced by the gas flow through the hole in the form 

 
1 1

0 0 0 0 min , , ,( ) , ( )γρ γρ− −= Γ + − = Γ + −N ex ex a ex s h h ex ex h a h exF p Su p p S F p s u p p s ,       (8) 

where pa is ambient pressure, uex and uex,h are gas velocities at the nozzle outlet and hole outlets respectively, and pex 

and pex,h are the exit pressure at the nozzle outlet and hole outlets respectively. 

C. Problem of reconstruction of the fault parameters and quasi-steady approximation 

The problem of prognostics and diagnostics of the fault modes of SRBs is to reconstruct fault parameters from 

the measurements of the head (stagnation) pressure and thrust and to use inferred values of the fault parameters to 

predict gas flow dynamics. The results obtained above indicate that equations (6)-(8) provide a convenient 

framework for the solution of this problem because they directly relate measured values to the fault parameters. The 

difficulty in the solution of this problem is the fact that the inference of the fault parameters has to be done from the 

actual and nominal measurements of the p0, F, and Fs under the assumption that the information about other details 

of the internal flow is not available. To solve this problem, we notice that Eqs. (6) can be further simplified because 

the characteristic time scales for the burning of the propellant surface and of the hole walls are much slower than the 

characteristic time scales of the equilibration of the flow in the combustion chamber. This assumption is well 

satisfied for realistic parameters of SRBs
12-14,16

. Under this assumption the time derivatives in the first two equations 

can be set to zero. As a result the following relation for the stagnation pressure can be obtained 
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  

n
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n

x ef

c Fr
p t

p S
                (9) 

where Sef =sh,t+St is the effective area of the nozzle throat and Fef is the total area of the burning surface. Therefore, 

under the conditions of quasi-steady burning the LDPM of the case breach fault is now reduced to the following 

form 

( ) ( )

1

1
0

0 0 0( ) , , , .
ρ

γ

− Γ
= ∂ = ∂ = 
  

n
p c

t b t h f hn

x ef

c Fr
p t R r p r v r p

p S
     (10) 

The parameters of the fault (in this case the functional form of the nonlinear time variation of the hole radius 

rh(t) at the hole throat and hole outlet) have to be inferred 

using nominal dynamics of the gas parameters. Under 

quasi-steady burning conditions the nominal model has a 

form similar to the set of Eqs. (10), except that the vf = 0.  

It is clear that to solve the problem of reconstruction of the 

parameters of the case breach fault one has to know the 

functional form of the velocity ( )0,f hv r p . The 

derivation of the functional form for the ( )0,f hv r p is, 

therefore, the key theoretical problem of the case breach 

diagnostics and prognostics. We will now describe briefly 

the results of the theoretical analysis of the melting of the 

metal case and ablation of the insulator layer in the 

presence of the hot gas flow through the hole. 

III. Theory of the melting and ablation of the metal and insulator layers 

A. Velocities of melting and ablation 
Rocket cases consist of metal and insulator layers. The radius of a hole in the metal layer is determined by 

melting of the metal surface under the action of hot gas flow from the combustion chamber, hJ s uρ= .  The gas 

parameters in the hole can be described by the hydrodynamic Eqs. (3). In these equations
2

frf uαρ= ,  α is 

coefficient friction between the gas flow and the metal surface; ,c RQ Q Q= +  ( )
c g g mel

Q h T T= −  and 
RQ  are 

convective and radiant heat flows from hot gas to the metal surface, hg is the convective heat transfer coefficient. 

The velocity of propagation of the melting front vf is determined by the equation of the heat balance for a small 

element of the hole surface dS (Fig. 2): 

met

t heat m fQdSdt q q v dSdtρ = +                     (11) 

where dt  is a small time interval and ( )met

heat met mel cq C T T= − is the energy supplied for heating of the metal mass 

unit to the melting temperature melT . Thus                                                                                                                                                                                                                       

1( ) , met

f met g mel R in met heat mmet

met heat m

Q
v h T T Q q q

q q
χ χ ρ

ρ
−   = = − + = +    + 

                (12) 

Calculations show that the thin surface layer of melted metal is ejected from the hole under the action of the hot 

gas flow moving with typical velocity 
3

* 10 /u c m s= ≃  for very short time. The time of the ejection is 

approximately equal to 
5/ 10h enjL v sτ −= < for a hole length hL <0.1m , where 

2
4* * 10 /enj

m f

c
v cm s

v

αρ

ρ
= ≃ and 

 
Figure 2 Sketch of an idealized geometry of the 

fault with a gas leak through the hole in the case. 
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0.01α ≥ . Thus, 
f

v is the velocity of motion of the hole surface in the metal layer. The metal surface can react 

with active components of the gas (combustion products). This effect can influence the hole growth if the ignition 

temperature Tig<Tmel.  

The hole in the insulator layer is determined by ablation of the insulator material at the hole surface under the 

action of the hot gas flow. The velocity of propagation of the ablation front vabl is determined by an equation 

analogous to Eq. (6)   

( )
( )1( ) ,

heat

heat

ins

abl in g g abl R in abl inins

abl in

Q
v h T T Q q q

q q
χ χ ρ

ρ

− = = − + = + +
                   (13) 

where ( )ins

heat in abl cq C T T= −  is the energy supplied for heating the insulator mass unit to the temperature ablT .  The 

coefficient of heat transfer hg from a hot gas flow to the insulator or metal surface is given by Bartz`s equation8-10,19,20 

            ( ) ( )
1 0.67 2
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g p
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β
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− −  
=  

 
           (14)                                            

where
22.3 10A

−= × , 0.2β = , vρ  is the gas flow averaged over the hole cross-section, Pr / 1pC kµ= ≃  is 

the Prandtl number
6,8

, hr  is minimum radius of the hole, k is the thermal conductivity and µ is the dynamical 

viscosity of the hot gas. The hole is an additional nozzle and its minimum cross section hmin *s hs= is the nozzle 

throat
13,20

. Therefore, the gas flow and temperature inside the hole throat are equal to
8,9
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s s s s , ,
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 .        (15) 

Here we took into account that the pressure in the combustion chamber is greater than the atmospheric pressure, 

therefore the gas flow density j vρ=  in the hole throat is equal to its maximum value
8,9

  

 
1

max * * 0 0 0 0/j c c p cρ ρ γ−= = Γ = Γ .   It follows from Eqs. (14) and (15) 
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Here 0hr is an initial radius of the hole and mp is the maximum pressure in the combustion chamber.  

Estimations show that c RQ Q≫  for typical parameters of the hot gas. Therefore, we will neglect the radiant heat 

RQ  assuming cQ Q= .  In this case Eqs. (13) with the use of  Eq. (16) can be written as 
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where 

 ( )*( )fm mel g m melv h p T Tχ= −                                                              (18) 

and Eqs.  (13) and (7) can be presented as 
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                            (19)                                  

where 

 ( )*( )m inl g m ablv h p T Tχ= −                                                     (20) 

metr and insr are the radii of the holes in the metal and insulator layers, respectively, and 0metr and 0insr are the initial 

values of the radii.  The radius of a cylindrical or conical hole and its cross section in the metal and insulator layers 

are equal respectively to  
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t

r r x v x d s x t rτ τ π= + =∫                                               (22) 

We notice above that the hole is an additional nozzle with a throat that is determined by the minimum cross 

section of the hole, hmins .  Therefore, the gas pressure in the combustion chamber in a rocket with a hole is equal 

to
12,13
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0 00
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S F F
p t p t

S s t F
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                                                                     (23) 

where 00 ( )p t  is the pressure in a rocket without a hole, and n is the exponent in the well-known equation for the 

burning rate of the propellant  

             ( / )
n

b bm m
v v p p=                                                                            (24) 

 Typical values are 0.35n = and 1 /bmr cm s= for gas pressure 1000mp psi= .  According to (23) the relative 

decrease of the pressure  00 0 min

00 00

( ) ( )

( ) ( ) (1 )

h

t

p t p t sp

p t p t n S

−∆
=

−
≃   is greater than 0.1%  only when the hole has a large 

enough radius 0.03 ,h tr R> i.e. 3hr cm> at 1 .tR m≃           

B. Influence of metal melting and surface friction on gas parameters inside the hole 

Analysis of Eqs. (3), (5) shows that the effects of metal melting and surface friction are negligible for a hole 

radius 0.005hr L≫ where L is length of the hole. This condition is certainly valid for 0.03h tr R> . Let us 

explain this claim.  The heat flow of the hot gas through a hole during the time dt is equal to 
2

g p hdQ C T r udtρπ= and the heat flow spent for metal melting is 2met

met met heat met h h fdQ q q L r v dtρ π = +  . 

Here Lh and rh are the length and radius of the hole in the metal case. The melting is negligible when g mdQ dQ≫ . 

Taking into account that the gas flow density inside the hole * *j u cρ ρ= = , *T T= and 0.1 /fv cm s≃ this 

condition is reduced to  

                                                
* * *

900
2

ph

met

h t heat met f

C T cL

r q q v

ρ

ρ + 
≪ ≃           (25)  

or
3/ 900 3 10h hr L cm−×≫ ≃ at a hole length =2.5cmhL . In other words, the hole radius has to be greater 

than 0.03mm . The friction induced decrease of the pressure in the hole (axis x is directed to outside) is 

approximately                                         

                                     *( )
1 (1 2 / )h

p
p x

x rγ α
=

+ +
                                              (26)  

Thus, when a hole radius =2  α>>h crr r L the friction is negligible. The value of 
25 10 m−×≫crr c  

for =2.5cmL and 0.01α = .   

C. Iteration procedure for the solution of inverse problem 

We are now ready to present the solution of the inverse problem posed in the end of the previous section. Let us 

first to summarize the set of equations that have to be solved. For the sake of simplicity we will consider the case 

when the change of the burning surface area due to the change of the pressure was neglected. We show now how the 

dynamics of the hole radius can be reconstructed using measurements of pressure. For convenience we rewrite  Eqs. 

(17) and (23) below 
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The problem is to reconstruct rmet(t)  using measurements of the p0(t) and p00(t). To solve this problem we 

introduce the following iteration procedure  

1. Calculate the pressure:.

1

1

0 00( )
− 

=  
+ 

n
i t

t hi

S
p t p

S s
   

2. Solve iteratively equation ( )
0

( ) 1 ( ) ( )
β

ξ ξ τ σ τ τ
−

= + ∫
t

i i i
t

t d ,  where 

1

0

0

( )

β

σ τ

−
 

=  
 

i
fm

i

met m

v p

r p
and 

0

( )

β

ξ

−
 

=  
 

i

met
i

met

r
t

r
. 

3. ( )
2

π=i i

met mets r  

The iterative procedure 1, 2, and 3 above can be applied at each time step t yielding required values of   

the rmet(t). The results of the calculation of these calculations can be used to reconstruct the lateral and main 

thrust of the rocket using Eqs. (8). Further discussion of the thrust calculations is given in Sec. III, 0. We 

now consider in detail various scenarios of the dynamics of the hole shape the quasi-static approximation. 

IV. Quasi-static description of the fault  

 

We use the well-known quasi-static approximation for a description of the case breach fault due to a slow change 

of gas pressure in the combustion chamber, 
0 ( )p t , with a negligible influence of metal melting, insulator ablation, 

and surface friction on the gas flow in the hole. According to this thermodynamic approximation, the gas pressure, 

density, temperature, and sound velocity in the stationary state are equal to
6,7 

 

1 1
2 2

0 0 0

( 1) ( 1)
1 1

2 2
p p M p M

γ γ
γ γγ γ

−

− − − −   
= − = +    

    
,                                   (27)                             

1 1

1 1
2 2

0 0 0

( 1) ( 1)
1 1

2 2
M M

γ γγ γ
ρ ρ ρ

−

− − − −   
= − = +    

    
,                                      (28)

1

2 2

0 0 0

( 1) ( 1)
1 1

2 2
T T M T M

γ γ
−

− −   
= − = +   

   
,                                               (29) 

1 1

2 2
2 2

0 0 0

( 1) ( 1)
1 1

2 2
c c M c M

γ γ
−

 − −   
= − = +    

    
.                                           (30) 

Where /c pγ ρ=  is a sound velocity and 
0 0 0 0/ ( 1)pc p C Tγ ρ γ= = − is the sound velocity in the 

combustion chamber; /M u c= is the Mach number, 0/M u c= , u is the gas velocity; p0, T0 and ρ0 are the gas 

parameters in a combustion chamber.  
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Estimations show that the velocities of the propagation fronts of metal melting and insulator ablation given by 

Eqs. (13), (17) and (13), (19) are approximately equal for typical parameters of metal and insulator materials, 

0.1 /f abl bmv v cm s r≈ ≈ ≪ .  Therefore, two typical scenarios shown in Fig. 3 that can occur depending on the 

parameters of the metal (steel) and insulator materials.    

Propellant 

c d

Propel lant 

Steel 
case

Steel 

case
rmin

Propellant 

Insulator

a b

r

Propellant 

Propel lant 

Propellant Propel lant Propel lant 

Propellant 

hminhmin rhminrhmin

Steel

prR rrmet
JJ

L
Insulator

J

 

Figure 3 Possible profiles of holes in a rocket case at a time point 
0t t> : (a) hole in the form of a convergent 

nozzle for 
f ablv v<  ; (b) hole in the form of a de Laval nozzle for 

f ablv v> , the holes (a) and (b) had the 

cylindrical geometry with an initial radius 
0 minh hr r<  at the start time of the fault 

0t t= ; (c) and (d) cone-

shaped profiles of a hole at the start time of the fault 
0t t=  and 

0t t> , respectively. 
* * minhJ c sρ= is the hot 

gas flow in the hole effluent from the combustion chamber. 

A. Comparison with the results of high-fidelity simulations 

To validate the quasi-static description of the fault we performed high-fidelity simulations of the case breach 

fault using FLUENT
22

. The simplified geometry of the fault with cylindrically-symmetrical is shown in Fig. 4. 

The hole through the case is situated in the head of the rocket. The results of the simulations are shown in Fig.5. 

It can be seen from the figure that the sonic conditions are hold for both the nozzle throat and the hole throat. 
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y
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II
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IV

hole

 
Figure 4 Simplified geometry of the fault with the case breach fault at the head of the rocket. I – propellant; 

II – combustion chamber; III – ambient region; IV – ambient region for the fault at the head of the rocket. 

 
Figure 5 Distribution of the gas density in the combustion chamber, nozzle, the hole through the case, and in 

the ambient regions near the case breach fault and the nozzle obtained using FLUENT. 
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The comparison between the results of the results of FLUENT simulations and the theory presented in the 

previous sections is shown in Fig. 5. 

It can be seen from the figure that the quasi-static theory of the axial dependence of the Mach number and of the 

density describes very well the actual variation of the gas flow parameters along the rocket axis. Some deviations of 

the results of simulations from the predicted values in the ambient regions are attributed to the slow convergence of 

the simulations and will be investigated in more detail elsewhere.  

The comparison between the results of the results of FLUENT simulations and the theory presented in the 

previous sections is shown in Fig. 6. 

It can be seen from the figure that the quasi-static theory of the axial dependence of the Mach number and of the 

density describes very well the actual variation of the gas flow parameters along the rocket axis. Some deviations of 

the results of simulations from the predicted values in the ambient regions are attributed to the slow convergence of 

the simulations and will be investigated in more detail elsewhere.  

B. Burn-through hole in the form of a convergent nozzle 

Estimations show that probably f ablv v<  and the gas flow is limited by the cross section of the hole in the 

metal layer, i.e. 
minh mets s= . In this case the hole in the metal layer is the throat of an additional convergent nozzle, 

Fig. 3a. In such a throat
6,7

 the gas pressure, density, temperature, and velocity are equal respectively to 
1 1

1 1 2

* 0 * 0 * 0 * 0

2 2 2 2
, , ,

1 1 1 1

γ

γ γ

ρ ρ
γ γ γ γ

− −       
= = = =       

+ + + +       
p p T T c c .  (31) 

The gas flow through the hole according to Eqs. (15)and (31) is  

 
1

h * * hmin 0 0s s
met

J u c c sρ ρ ρ −= = = Γ           (32)  

 

With the use of Eqs. (31) and  (32), the equations (11) and (19)are reduced to   
1

0

0

( , )
( )

β β− −
   

=    
   

met
f fm

m met

p r t x
v t v

p r
,         (33)

1-1
-1

1- 20
0 0

0 *

( , ) -1
( ) M 1-

2

ins abl
abl m

m ins abl

p r t x T T
v t v M

p r T T

ββ β
γ

β γ
− −

     Γ −  
=        

−       
    (34) 

whereT is determined by Eq. (29) and 
0M is a minimum root of the equation  

( )
1

-1
2

0 0

-1
M 1-

2

met

ins

s
M

s

γγ 
= 

Γ 
           (35) 

This equation follows from Eqs. (28) and (32).  
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Figure 6 (left) Mach number obtained using analytical results for stationary 1D approximation (solid black 

line) and using FLUENT (red dashed line) along the rocket axis. (right) The density obtained using 

analytical results for a stationary 1D approximation (solid black line) and using FLUENT (red dashed line) 

along the rocket axis. 
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In the considered case the exhaust gas parameters of an additional convergent nozzle are equal to 
*,exp p=  

*,exu c= and 0
, * * met met

0

s sex h

p
J c

c

γ
ρ= =

Γ
. Therefore, the side thrust is given by the following equations:     

( )
1

0 *
, , * 0

0

2
( ) ( ) 1

1
s ex h ex h ex a met met a met met a met

p c
F J u p p s s p p s p s p s

c

γ

γγ
γ

γ

− 
= + − = + − = + − 

Γ + 
  (36) 

                                                                                               

The main rocket thrust is determined by     

( ) -1
2

0

-1
( ) 1-

2
N ex ex ex a ex t ex ex ex a exF J u p p S S M S M p p S

γ

γγγ
 

  = + − = + −  Γ    

,  (37) 

where 
0

* *

0

ex t t

p
J c S S

c

γ
ρ= =

Γ
, 0p is given by Eq. (23) with minh mets s=  and exM  is a maximum root of the 

equation 

( )
1

-1
2

ex

-1
M 1-

2

t
ex

ex

S
M

S

γγ 
= 

Γ 
           (38)  

where  exS is the exhaust cross section of the nozzle. Eq. (37) can be written as  

                                            

-1

0

1
,t

N ex t a ex

ex ex

S
F M p S p S

M S

γ γ
γ    
 = + −   
Γ Γ     

       (39) 

where minh mets s= . During the active part of booster flight 0 ap p≫ .   Therefore, we find from Eqs. (37) and (39) 

                                           
( )

1
-1

1
min

12 1

1

hs t
ex

N ex ex t

sF S
M

F M S S

γ γ γ
γ γγ

γ

−

−   +    
 = +     

+ Γ Γ       

    (40) 

It follows from Eq. (40) that the side thrust is determined by the minimum cross section of the hole and 

min/ 7 /s N h tF F s S≃  for typical values ( 1.3 1.4γ = − , 2exM ≃ , (3 6)ex tS S÷≃ . This means that 

/ 1%s NF F ≥ when the hole radius min 0.04h tr R≥ , i.e. min 10hr cm≥ at 2.5 .tR m=  

According to Eq. (18), the radius and cross section of the hole in the propellant are given 

                                       
0

2

0

( , )
( ) , ( , )

nt

pr pr cm pr pr

mt

p x t
r r x r d S x t r

p
τ π

 
= + = 

 
∫      (41)  

where, as it follows from Eqs. (27), (28), and (32), the pressure is determined by the equations  

 

                              
( )

1

-11
2 2 min

0 pr

-1( 1)
1 , M 1-

2 2

h
pr pr

pr

s
p p M M

S

γ
γγ γγ −   − 

= − =    Γ    
 .    (42) 

Taking into account that minh prs SΓ≪  we find that 

                                                 
( )

2 1

min
0

1 ( , )
( , ) ( ) 1

2 ( , )

n

pr

s x t
p x t p t

S x t

γ

γ
γ

−  −
 = −  
 Γ   

        (43) 
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Thus, the pressure in the propellant hole ( , )p x t is very close to 0 ( )p t and 

0

0
0

( )
( )

nt

pr pr cm

mt

p t
r r x r d

p
τ

 
+  

 
∫≃ . 

C. Burn-through hole in the form of a de Laval nozzle 

In the case f ablv v>  the gas flow will be limited by the cross section of the hole in the insulator layer, 

minh inss s= and the geometry of the burn-through hole resembles the form of a de Laval nozzle with an exhaust gas 

velocity ( 1).exu c M> > The hole in the insulator layer is the throat of this additional nozzle, Fig. 3b. In such a 

throat
8,9

 the gas pressure, density, temperature, and velocity are determined by Eqs. (31). It follows that 

 

1

0

0

( , )
( )

β β− −
   

=    
   

ins
abl m

m ins

p r t x
v t v

p r
         (44) 

 
1-1

-1
1- 20
0 0

0 *

( , ) -1
( ) M 1-

2

met mel
f fm

m met mel

p r t x T T
v t v M

p r T T

ββ β
γ

β γ
− −

     Γ −  
=        

−       
     (45) 

where T is determined by Eq. (29) and 
0M is a maximum root of the equation  

1

-1
2

0 0

-1
1-

2

γγ 
= 

Γ 
ins

met

s
M M

s
           (46)  

In the considered case, the exhaust gas parameters of the additional convergent nozzle are equal to 

 0
* * ins ins

0

s sex

p
J c

c

γ
ρ= =

Γ
, 

-1
2

0 0

-1
1- ,

2
exp p M

γ

γγ 
=  

 
 0 0exu c M= .   (47)  

Therefore, the side thrust is given by the following equations:     

    

-1
2

0 0 0

1

0 0

0

-1
( ) 1-

2

1

s ex ex ex a met ins met a met

ins
ins a met

met

F J u p p s s M s M p p s

s
M p s p s

M s

γ

γ

γ γ

γ γ

γ
−

 
  = + − = + − =  Γ  

 

    
 + −   
Γ Γ     

   (48) 

where 0p  and 0M  are given by Eqs. (23) with minh inss s=  and (46), respectively. Relationship /s NF F  is 

determined by Eqs. (37) and (48) where minh inss s= . In this case /s NF F  is almost proportional to min /h ts S .  The 

radius and cross section of the hole in the propellant are determined by Eqs. (41)-(43) where minn inss s= . 

D. Evolution of burn-through hole of complex forms 

The hole can be a crack of cone-shaped profile passing through the propellant, insulator, and metal layers, Fig. 

3c. In this case the pressure and the hot gas flow density, according to Eq. (15), will drop as 
2

* * min( ) /h h hu c s x s rρ ρ= ∝  with decrease of the hole radius. It follows from Eqs. (17) and (19) that the 

velocities of metal melting and insulator ablation will increase towards the rocket case surface. It means that the 

wedge-shaped hole will reduce to a cylindrical form as shown in Fig. 3d. On the contrary the hole in propellant will 

look more cone-shaped due to the decrease of the pressure.  

The crack can have an elliptical cross section, In this case, the radius hr  in Eqs. (17) and (19) has to be used a a 

substitute for the radius of curvature of the surface. As a result eccentricity of the ellipsis will now increase as is 

shown in Fig. 7. 
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Thus, we see that evolution of a cone-shaped elliptic hole has an intricate behavior. At the same time the main 

characteristics, the change of the pressure and thrust, are determined only by the dynamics of growth of the 

minimum cross section of the hole and does not depend on the actual shape of the hole. In particular, the relationship 

between the main and side trusts according to Eq. (40) is determined only by minhs . Therefore, measurement of this 

relationship can be used as additional information for an analysis of the fault.  The time-dependence of  min ( )hs t  

can be predicted on the basis of the noisy dynamics and 

analysis of data of the pressure and acceleration sensors 

and angle variation of the nozzle based on the novel 

dynamical method for in-flight diagnostics and 

prognostics of SRBs parameters. This will allow us to 

predict the time moment when the side trust can reach a 

critical value and the flight can lose control. This work is 

in progress. 

 

V. Conclusion 

We developed the high-fidelity model of the case breach fault based on a system of stochastic partial differential 

equations for momentum, energy and mass of combustion products (gas) averaged over a cross-section area. The 

model takes into account gas leak through a hole in rocket case, fluctuations of the burning rate, and is suitable for 

simulations of an arbitrary thrust curve for graded propellants. The corresponding low-dimensional model of the 

propellant performance was derived using the introduced system of PDEs. A theory of the front propagation of the 

metal and insulator layers was developed. A self-consistent analysis of the hole dynamics in the propellant, insulator 

and metal layers of a rocket case was performed for various parameters. One of the most dangerous effects of the 

case breach fault is the rise of lateral (side) thrust as a result of the growing hole. We showed that variations of the 

chamber pressure and the value of the normal and side thrusts are determined by dynamics of minimum cross 

section of the hole but do not depend on its shape.     

A problem of reconstruction of the fault parameters from the measurements of the nominal and off-nominal 

values of the chamber pressure was formulated. We developed an iterative procedure of solution of this inverse 

problem. We note that obtained in this work low-dimensional performance model allows one to apply recently 

developed Bayesian framework for diagnostics and prognostics of the case breach fault. In particular, the 

prognostics of the case breach fault, based on the real-time analysis of sensor data, can be used to determine the time 

moment when the fault causes the loss of the flight control. This work is progress.    
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