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Abstract 

 Managing the International Space Station (ISS) solar arrays 
requires flight controllers to constantly balance multiple 
complex constraints against power needs.  The complexity 
not only impacts planning activities, but has an even more 
acute effect on real-time operations, in particular when 
handling unexpected events or changes in operations plans.  
The Solar Array Constraint Engine (SACE) has been 
developed to assist the flight controllers with the task of 
planning and executing solar array operations in a safe and 
effective manner.  SACE is built on top of the EUROPA2 
model-based planning system, using its constraint 
management and automated planning capabilities to reason 
about the different constraints, find optimal array modes and 
orientations subject to these constraints and user-
configurable solution preferences, and automatically 
generate solar array operations plans. In addition to 
operations planning, SACE provides situational awareness, 
what-if analysis, and optimization functionality.   

Introduction 

As the International Space Station (ISS) nears completion, 
new solar arrays have been added to improve the power 
availability to meet the demands of the new science and 
crew modules.  At the completion of assembly, the ISS will 
have eight solar arrays that can be oriented in two 
dimensions.  This is in contrast to a much simpler initial 
configuration on the ISS, where a single solar panel had 
only one degree of freedom and was largely out of harm’s 
way.  The new solar panels add a great deal of complexity 
to ISS operations planning and monitoring.  The solar 
arrays are designed to automatically track the sun, as the 
station revolves around the earth, to maximize the power 
production.  However, normal ISS operations such as water 
dumps, visiting spacecraft (Space Shuttle, Progress and 
Soyuz), and extra vehicular activities (EVA) put complex 
constraints that ultimately define safe array configurations, 
due to structural load limits, contamination concerns, and 
thermal impacts, which in turn impacts power generation.  
Consider, for example, a visit by a Progress spacecraft, 
which uses thrusters to maneuver around the station.  The 
load from the thrusters on the solar panels is minimized if 
the arrays are oriented with their edge towards the 
Progress. In general, due to the risks involved in human 
flight operations, the operations are very conservative, 

requiring extensive precautions and contingency planning, 
which in turn add more constraints to the problem. 

ISS Mission Operations 

ISS Mission Operations are complex and involve long 
preparatory lead times for planning and validating, real-
time operations, which can involve nominal and off-
nominal situations, upfront and real-time coordination 
among multiple groups, and more.  Operations are con-
trolled by experts in mission control, organized into teams 
that manage certain aspects or subsystems of the station.  
 The Power, Heating, and Lighting Controllers 
(PHALCON) are responsible for planning and monitoring 
the power, heating, and lighting systems for safe 
operations.  This involves constantly balancing multiple 
complex constraints against power needs and power 
production capability.  The power system itself consists of 
the solar arrays, the joints that orient the arrays, the 
batteries, the charging systems, the power loads, etc.  
PHALCONs interact closely with other groups, such as the 
Power Resource Officers (PROs), attitude control experts, 
and, due to the key role that power plays, eventually with 
all other groups.  The interaction of power control and 
attitude control is a good example of the complexity of 
these operations.  Even during routine operations, the 
attitude (roll, pitch, and yaw) of the ISS needs to be 
changed for docking and undocking, debris avoidance, and 
re-boosting for orbit correction.  PHALCONs must closely 
coordinate their plans with the attitude control team, 
because the attitude change is accomplished through firing 
one or more thrusters attached to the ISS or the docked 
vehicles.  These actions put loads on the solar arrays and 
subject them to contamination if they are not properly 
oriented.  Attitude and other configuration changes also 
impact how arrays are best oriented for power generation, 
which in turn might impact power availability. 
 Currently, PHALCONs take about four weeks of 
calendar time to manually produce an ISS solar array 
operations plan for a typical four week planning horizon, a 
process requiring manual transfer of information between 
different teams.  Furthermore, certain constraints can only 
be checked when a plan is fairly complete, requiring 
multiple revisions to the plan before a valid one that meets 
all the different constraints can be produced.  



AI Planning in ISS Mission Control 

At a first glance, it might appear that optimization and 
automated planning in this domain would be 
straightforward and easily mapped to standard 
representation and reasoning approaches.  However,  the 
complexity of the problem, mission operations culture, and 
the nature of AI technology raised a number of interesting 
and hard technical challenges. 
 Flight planners and controllers use certified processes 
and procedures in determining the optimal, but safe, 
orientations of solar arrays.  The processes define 
“imperative algorithms” for safe operations of the solar 
panels.  One of the technical challenges is in mapping the 
implicit elements of these imperative algorithms into 
declarative representations used by AI planning systems.  
Another challenge is in translating the nonlinear 
continuous constraints into a representation that can be 
efficiently reasoned by EUROPA2’s discrete variable and 
value-based constraint reasoning engine.  The very 
important, but often overlooked, challenge is in supporting 
a complex requirements analysis and development process 
for producing flight-certified software, which inevitably 
involved changes in the problem being solved and 
subsequent changes to the solution methods. 
 The objective of this article is to introduce a very real 
and interesting problem to the planning community, to 
describe how AI planning and constraint reasoning 
technology is being used to solve this real problem, and to 
give insight into what it takes to work with customers to 
develop complex applications of planning technology.  The 
paper is organized as follows:  first, we define the problem; 
next we present the approach taken in the tool we 
developed; then we describe the functionality and interface 
of the tool; and finally we end with some concluding 
remarks and notes about future work.  

The Problem 

As previously stated, ISS will have eight solar arrays, each 
of them mounted on a rotary joint called the Beta Gimbal 
Assembly (BGA).  Four each of the BGAs are mounted on 
a Solar Alpha Rotary Joint (SARJ), one each on the 
starboard and the port sides of the ISS.  Therefore, each 
solar array has two degrees of rotational freedom, though 
some degrees of freedom are constrained by the shared 
SARJs.  Further, the rotary joints can be in different modes 
e.g. auto-tracking the sun, parked in a specific position, 
latched (for BGA) or locked (for SARJ).  The objective of 
the Solar Array Constraint Engine (SACE) is to determine 
the appropriate modes and the orientations for the different 
joints for safe operation under different ISS configurations 
and events.  This capability is used both for analysis of 
current or future ISS configurations, and for producing 
long-term array plans. The decision variables are the 
orientations and modes of the different joints, and the 
control variables are those that determine the 
configuration.  The latter include the attitude (roll, pitch, 

and yaw), combination of thrusters firing, the specific 
event – docking, undocking, attitude hold, water dump, etc.  
It should be noted that constraints may only be applicable 
in some joint assignments of the control variables (e.g. 
array loads conditioned on spacecraft docking). 

Solar Array Constraints 

Solar array constraints fall into the following categories: 
power, loading (array and SARJ are treated separately), 
contamination and longeron shadowing.  The power 
availability due to any array will be the maximum if it 
automatically tracks the sun, but this is not always a safe 
mode in which to operate.  If power availability drops too 
low, some ISS subsystems must be shut off.  As described 
earlier, the attitude of the station needs to be changed 
periodically to account for various events by firing a 
combination of different thrusters, which in turn imposes 
structural loads on the solar arrays as well as the joints, 
especially the SARJs.  Further, the thruster plumes and 
water dumps can cause contamination of the arrays, 
reducing their power generation. 
 Additionally, differential shading of longerons, which 
are structural elements that keep the array blankets in 
tension, put stresses on the arrays, with the magnitude of 
the stresses depending on a complex set of calculations.  
An array’s longerons can be shadowed by  its own blanket 
or those of a neighboring array, the amount of shadowing 
depending on the solar beta (the elevation of the sun 
relative to the orbit plane of the ISS), and the orientations 
of the adjacent arrays.  The same factors also impact the 
power generation by the solar arrays; to improve power, 
the arrays should not be shadowed, but to keep the arrays 
from shadowing each other or the longerons, they are no 
longer in an orientation for producing maximum power. 
 The various constraints map array configurations into 
three color-coded zones – red when the constraint is 
violated and the orientation is considered an infeasible 
solution or a keep out zone, green when the operating zone 
is feasible, and yellow an intermediate zone where one can 
operate if there is no green zone solution available.  

Orientation and Mode Optimization 

For a given configuration of the ISS, the main problem is 
to find orientations and modes for the different arrays that 
keep them in a safe operating zone and at the same time 
maximize the power availability. One way to solve this 
problem is to pose it as a (nonlinear) mathematical 
programming problem (or NLP).  The ISS certified 
operations procedures, however, define this problem in 
terms of solution preferences, rather than as a classical 
NLP.  The solution preference for orientation 
determination can be paraphrased as follows: 
In finding a solution, first avoid all orientations that 
cause red power, then avoid red loads, next avoid red 
longeron shadowing, then avoid yellow loads, after 
that avoid red environment, and then find a location 
that maximizes power. 



 Another imperative procedure encodes the solution 
preferences for determining the mode of the solar arrays, 
whether to autotrack, park, lock, or latch the various joints.  
The modes cannot be independently determined for each 
solar array, because of the SARJ shared by multiple arrays.  
For example, a part of the preference procedure can be 
paraphrased as follows: 
In determining a mode, prefer autotrack to park, and 
park to latch or lock.  If the array loads are in the red 
zone, latch the BGA, and if the SARJ loads are in the 
red zone, lock the SARJ.  If the current orientations 
are safe, but if there is a possibility of the loads on 
any joint getting into danger zone during 
autotracking, avoid autotracking that joint.  Further, 
if there is a possibility of the contamination 
constraints getting into the danger zone during 
autotracking, avoid autotracking, expect if operating 
in a contingency mode. 

 The solution preferences for mode determination are 
more complex because of the interdependence of  
BGA and SARJ mode determinations.  Further, restrictions 
on modes for certain joints and preferences between modes 
for other joints could be specified by the user at run-time, 
based on the health of the different BGAs and SARJs. 

Solar Array Planning 

The planning problem is to build a solar array plan to 
change array modes and orientations, given planned 
evolution of configurations and constraints in time.  The 
evolution of configurations is defined by an attitude 
timeline (ATL) and a thruster timeline (TRTL).  The 
events on these timelines can have fixed or flexible start 
and/or end times.  Each configuration is associated with 
contingency configuration variable values as well.  
Together, the main and contingency station configurations 
(C, CA) define the context for when the different sets of 
load, contamination, etc. constraints (X) are active.  The 
ATL defines the flexible time interval over which each 
configuration is active. 
 The problem state (S) is composed of the array 
orientations (α, β), joint modes (m), and the station 
configurations (C, CA).  The possible set of actions (A) 
include the actions to change the mode (park, lock, latch, 
autotrack) of the different BGAs and SARJs, and the turn 
or slew actions to change the orientation of the arrays.  
Both the state and the action have an extent in time, 
defined by the start and end times (ts, te); one or both these 
times could be flexible. The goal of the planning problem 
is to find a set of actions, states, and their extents that are 
consistent, do not violate the constraints (X), and optimal 
with respect to the solution preferences. 
 Additional constraints that govern planning include the 
maximum rates at which the different joints can be slewed 
or turned, and the minimum durations on time intervals 
between switching modes or orientations to account for 
minimum time required for authorizing and issuing 
commands and monitoring their completion.  Further 
objectives during planning include the minimization of the 

turns of the rotary joints, which is preferred to maximizing 
power availability once sufficient power is available to 
meet critical needs (power is in the green zone).  Another 
consideration for slewing actions is to minimize the change 
in direction of rotation of the joints. 
 In summary, each action has complex constraints, in 
particular for a duration that depends on the context.  This 
is made more complex by the impact that context 
dependency has on local instance solutions, as they serve 
to further restrain possible solutions.  The problem is also 
non-directional, as a globally more optimal solution can be 
obtained by making an early action less optimal.  The 
planning problem is NP complete, and given the size of the 
problem at hand, it is impractical to obtain a globally 
optimal solution through exhaustive search. 

The Approach 

Several guiding principles have driven the choice of the 
approach to address the problem.  First, the PHALCONs 
wanted to gain confidence in the approach, so the 
application had to be developed in stages – first to address 
monitoring and optimization for a single configuration, and 
in the next phase planning over a time horizon.  Second, 
we needed to follow already certified procedures as much 
as possible.  We chose a constraint-management based 
approach for monitoring the arrays during real-time execu-
tion, - to ensure that they are operating in a safe manner 
with respect to the different context-dependent constraints. 
We used an exhaustive optimization approach, which uses 
a specially designed cost function that faithfully encodes 
the certified solution preferences to find optimal modes 
and orientations for any specific configuration. 
 Finally, our planning approach uses a model-based 
planning system to model the domain states and actions.  
However, instead of solving the problem as a global 
optimization problem over the entire time horizon, we 
chose a greedy approach that used an optimizer to find a 
locally-optimal solution at each stage of the time evolution 
of the plan.  Even though the solution is not globally-
optimal, it follows the approach currently used by the 
PHALCONs, and thus makes it easier to gain their 
confidence in the solutions produced by the tool. 

EUROPA2: Constraint-based Framework 

SACE uses the Extensible Universal Remote Operations 
Planning Architecture (EUROPA2) framework for 
optimization and automated planning.  This model-based 
planning system accepts a declarative description of a class 
of planning problems consisting of a list of timelines 
(concurrent threads of a plan), a list of states that may hold 
on each timeline over an interval, and compatibilities 
describing the relationships that must hold between 
timelines in order for a plan to be valid.  The EUROPA2 
framework provides an interface that allows programmers 
to build customized planners that meet the needs of their 
applications.  EUROPA2 incorporates special purpose 



modules for reasoning about time, general constraints, 
managing timelines, managing applicability of 
compatibilities, and managing search control heuristics.  
For a detailed description of the EUROPA2 framework and 
the underlying concepts, please refer to (Frank and Jónsson 
2003). 
 EUROPA2 is highly reconfigurable and easily adaptable 
to different domains, and it has been employed in a variety 
of NASA missions (e.g. MAPGEN for the Mars 
Exploration Rovers (Bresina et al. 2005) MSLICE and PSI 
for upcoming Mars missions (Aghevli et al., 2006)) and 
many technology demonstrations.  The same capabilities 
made it suitable for managing the complexities of 
managing the ISS Solar Arrays.  For example: 
1. Conditional applicability of constraints.  EUROPA2's 
language represents such constraints naturally, whether 
the configuration is determined from telemetry or 
specified by the operator. 

2. Aggregation of constraint classes.  Array configurations 
safety is aggregated using a "least-safe" rule over all 
applicable constraints.  These rules are naturally 
expressed using constraints to capture the implications. 

3. Support for flight controller’s desire to selectively 
ignore certain constraints.  Again, EUROPA2's language 
can be used to incorporate flight-controller specified 
desire to ignore or incorporate a class of constraints. 

4. Evolution of the rules.  Over the two years the 
application has been developed, the set of states and 
rules has changed considerably.  The model-based 
nature of EUROPA2 has led to less development of new 
code compared to application-specific methodologies, 
since EUROPA2's rules language is flexible enough to 
incorporate many of the desired changes.   

5. Evolution of functionality.  Again, over the two years 
the application has been developed, the functions of the 
tool have expanded.  Initially all that was desired was 
the ability to assess orientations, then planning was 
desired, then the ability to handle complex adjacent 
array shadowing constraints, etc.  The modularity of 
EUROPA2's code base and API allowed incremental 
expansion of the application. 

Representation of Solar Array Constraints 

As each solar array has two degrees of freedom, defined by 
the SARJ angle (α) and BGA angle (β), the natural 
representation for modeling the different load, 
contamination, and power constraints is as a 2-dimensional 
table, with rows representing different values of α and 
columns representing different values of β.  SACE 
discretizes the domain for the α and β angles into single 
degree increments.  Each cell in the table represents the 
numerical value of the constraint, for example, structural 
load.  As discussed earlier, the constraint values are 
categorized into three zones, and the numerical ranges over 
which a constraint is considered red, yellow or green is 
configurable.  EUROPA2’s constraint representation makes 
it convenient to represent and reason about these tabular 
constraints. SACE allows the user to restrict the domains 

for the various angles; this required special care when the 
domain extends over the 360

o
 to 0

o
 boundary. 

 Detailed analysis models have been developed by ISS 
engineers to estimate the loads, contamination, and power 
availability in different orientations, for different 
configurations of the ISS.  These analyses are too 
computationally intensive to run on-line during planning or 
monitoring; however, they can be performed off-line over 
a known set of configurations.  Such tables are constructed 
off-line and used in SACE.  As some of the constraint data 
is generated at a coarser granularity, SACE uses numerical 
interpolation to find the constraint values for the 
intermediate values of α and β. 
 One of the tougher challenges was translating the 
imperative representation of the mode determination 
procedure into a declarative representation.  Especially 
because of the interdependence of the BGA and SARJ 
modes, this required splitting the procedure into several 
declarative constraints, together called the lock-latch 
constraint set.  
 As discussed earlier, differential shadowing of the 
longerons causes structural stresses that can be catastrophic 
to the solar array.  At any given point in time, one can 
assess the time to criticality by a complex function of the 
time in shadow for the four different longerons that are part 
of a given solar array.  During real-time monitoring, these 
are easy to compute based on the telemetry feeds.  
However, during planning or optimization, the calculation 
of a longeron constraint requires the precise information 
about the starting state of the shadowing timers, and in 
addition relies on a detailed simulation of the shadowing 
for a specific configuration and specific modes and 
orientations of the arrays, as the station revolves around the 
earth.  Therefore, unlike the load and contamination 
constraints, the longeron shadowing constraints cannot be 
evaluated ahead of time for use during planning. 

Orientation and Mode Optimization 

The orientation and mode optimization problem has been 
posed as an unconstrained optimization problem.  Both the 
constraints and the solution preferences have been encoded 
into a cost function (L) that is minimized.  The 
optimization problems for the starboard and port sides of 
the station are independent.  On each side, however, the 
shared SARJ means that the individual arrays cannot be 
independently optimized. In an early formulation, when 
adjacent array shadowing was not considered, the overall 
cost function could be split into n independent functions, 
where n is the number of BGAs sharing a SARJ, and is 
either 2 or 4 depending on the stage of assembly. As tool 
requirements evolved, the need to account for adjacent 
array shadowing caused interdependence between the 
optimal solutions for the arrays. 
 The cost function for each array is a function of the 
SARJ and BGA angles, and can be represented as a 
weighted sum of other cost functions: 
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 The component cost functions refer to the color cost, L
c
 

(due to different constraints being in the red, yellow, or 
green zones), the mode cost, L

m
 (due to modes of the BGA 

and the SARJ), the distance cost, L
d
 (due to distance 

between current orientation of arrays and the solution), the 
direction change cost, L

θ
 (due to change in direction of 

trajectory of arrays), and power cost, L
p
 (due to 

incremental differences in power within a constrained 
power zone).  For example, the color cost encodes the 
preference discussed in the problem formulation section.  
We modeled this as a simple linear program and solved for 
the color costs that encode these preferences.  The weights 
in the above equation are set such that the user-desired 
preference order of first optimizing using the constraint 
color zones, next optimizing the modes, then minimizing 
the distance, etc. is maintained.  
 The second stage of the algorithm for determining the 
optimal orientation is fairly simple.  The cost for each 
orientation (α, β1, β2 …) is calculated, for each α, as the 
sum of the costs for the best βi with respect to the 
corresponding Li. 

 
 

The optimal orientation is then the orientation that 
minimizes the overall cost, L.  With adjacent blanket 
shadowing, however, the power produced depends on the 
orientations of the pair of arrays.  So, the power cost,

pL , 
cannot be independently estimated for each array.  
Therefore, the power cost computation is moved to this 
second-stage of the algorithm.  Further, the second stage 
needs to exhaustively search the (α, β1, β2, …) space to 
determine the optimal orientation. 
 Once an optimal orientation is determined, we then 
determine the modes for the different joints.  The mode 
costs used in the cost function of the first stage are 
optimistic lower-bound estimates.  Therefore, the full 
mode determination preference described in the problem 
formulation section is used to determine the mode. 

Automated Solar Array Plan Generation 

SACE represents the states and actions, described in the 
problem formulation, on timelines in EUROPA2.  In 
EUROPA2, there is no representative difference between 
states and actions, but for this discussion, the 
configurations, array orientations, and joint modes are 
treated as states.  The actions either change the mode 
(Park, Latch, Lock, Autotrack actions) or change the 
orientation (Turn/Slew action).  The basic planning 
constraints are: (a) array orientation does not violate 
feasibility constraints on load, contamination, etc.; (b) 
array modes are feasible for chosen orientations; (c) joints 
are in position before parking, latching, or locking; and (d) 
actions meet minimum duration requirements for 
commanding and execution. 
 SACE uses the optimizer discussed in the previous 
section to address the first two constraints, and uses the 
EUROPA2 planner to address the latter two constraints.  In 
essence, it treats the global optimization problem during 

solar array planning as simply a sequence of individual-
configuration optimization problems.  Such a simplifying 
assumption can lead SACE into a situation where it cannot 
find a feasible solution for a down-stream configuration 
even when one exists, because of a greedy choice for an 
earlier configuration.  The means of handling this situation 
is described in the following paragraphs. 
 In the initial phase of the three-phase planning process, 
information from the ATL and the TRTL are represented 
as tokens on respective timelines.  The event tokens on 
these timelines are then translated into one or more 
configuration tokens on a different timeline, based on rules 
in the planning domain model.  The SACE planner then 
iterates over the configuration tokens, finding the optimal 
orientation and mode using the local optimizer.  Each BGA 
and SARJ is represented by a timeline as well, and the 
optimal solution is translated into state tokens (to represent 
orientation and mode) and action tokens (to change mode 
or orientation) on these timelines.  The constraint 
management system in EUROPA2 restricts the domain of 
orientations the down-stream configurations as the solution 
for a given configuration is specified on the timeline. 
 After each configuration token is optimized, the planner 
validates the resulting orientations and modes generated 
thus far to detect any conflicts. Problems may arise due to 
insufficient duration to turn an array from one orientation 
to the next in between two configurations, insufficient 
duration for lock/unlock a SARJ array and/or latch/unlatch 
a BGA, insufficient duration for commanding a turn action, 
etc.  In case an inconsistency is detected, the planner 
retracts the solution for the previous configuration, merges 
the two configurations, and repeats the process.  To 
elaborate, suppose configurations are treated in order 
C1…Ck.  If an inconsistency is detected after optimizing 
configuration Ci, the planner retracts the solution for 
configurations Ci and Ci-1, merges the configurations, and 
re-optimizes.  In our experience, most conflicts are due to 
insufficient duration for actions and can be resolved by 
merging configurations. 
 Once the entire configuration timeline is processed 
through the optimizer, the resulting BGA and SARJ 
timelines are processed by the EUROPA2 planner based on 
the domain model that defines the latter two constraints in 
the constraint list described above.  The final plan, 
represented by the BGA and SARJ timelines, is post-
processed first to determine feasibility with respect to the 
longeron shadowing constraint, and next to calculate the 
detailed power availability along the timeline. 

The Tool 

The SACE tool has been implemented to assist the ISS 
PHALCONs with the task of planning and executing solar 
array operations in a safe and effective manner.  To 
address the three major functions of the PHALCONs, 
SACE provides a “telemetry view” for situational 
awareness, a “sandbox view” for what-if analysis and 
optimization, and a “plan view” for automated planning.  
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To rapidly demonstrate value, on par with and beyond the 
other tools developed for PHALCONs, SACE has been 
developed in stages, using a spiral development process.  
First, the situational awareness piece was developed; this 
required the representation of the “table” constraints in the 
EUROPA2 framework, as well as translating some of the 
imperative procedures currently used by the PHALCONs 
into declarative constraints or systems of constraints.  Next 
the sandbox capability was added, whereby the user can 
evaluate arbitrary orientations in any given configuration 
in terms of the various constraints and power availability, 
or to automatically find an optimal orientation subject to 
user restrictions on the search space.  Finally, the 
automated planning piece was developed, which required 
modeling the arrays in the NDDL planning domain 
description language supported by EUROPA2, and the 
implementation of a custom planner. 
 Throughout this process, as is common in software 
development, requirements were continually refined, and 
new requirements were added.  For example, metal 
shavings were discovered in one of the SARJs, requiring 
that the SARJ be turned as little as possible and be parked 
or locked otherwise.  Due to the constraint- and model-
based framework used in SACE, this was fairly straight 
forward to model, and required minor changes to the user 
interface.  The major reason for the success of this effort is 
the close coordination between the PHALCONs and the 
development team through twice-weekly teleconferences 
in addition to periodic visits to Mission Control to observe 
the PHALCONs in action. 

Architecture and User Interface 

SACE is a two-tier application built on top of EUROPA2 
model-based planning system.  The back-end provides the 
constraint propagation, optimization, and planning 
services, front-end manages the interaction with the user. 
 Both the telemetry and the sandbox use the same 
interface components with a few operational differences.   
In the telemetry view, SACE receives the state information 
(configuration, orientation, and mode) from the ISS 
telemetry stream through the ISP interface, whereas in the 

sandbox mode, user can input the configuration and other 
state information.  Time-sensitive constraints like the 
longeron shadowing constraint are computed in real time 
on the telemetry side, and are taken to be the worst-case 
over an orbit in the sandbox.  Additionally, the sandbox 
has an interface for invoking the optimizer. 
 The main window, which has a common form for the 
telemetry and sandbox, is shown in Figure 1, and has three 
different areas.  The top left area shows the orientations, 
modes, and over-all summary of the constraint status for 
the BGAs and SARJs.   The top right area shows the 
configuration variables, which determine the context for 
the different constraints.  SACE reads the constraint 
information given in the constraint definition files, uses the 
configuration information in this region to determine the 
set of applicable constraints, and  then evaluates each 
constraint, providing an indication of whether the state of 
that constraint is unknown, safe, caution or danger.  Per-
constraint state information is displayed at the bottom of 
the main sandbox window.   
 Contextual information, providing an indication of 
constraint states for ranges of angles other than the 
currently chosen ones.  The aggregate constraint state for 
all ranges of angles can be displayed in two primary forms: 
a map view displays a two dimensional map, showing the 
aggregate constraint state for any combination of α and β; 
a ring view displays a set of concentric rings, showing the 
constraint state of each individual constraint as well as the 
aggregate state for all β values given an α and all α values 
given a β value for each BGA.  The map view is shown in 
Figure 2, and uses color-codling to display the status of the 
constraints and uses intensity to show power availability. 
 The planning component of SACE allows the user to 
load an ATL and a TRTL from files and automatically 
determines a solar array plan.   The resulting plan is dis-
played as interactive timelines, as shown in Figure 3.  The 
user can review the plan in this window, or dig deeper by 
loading each configuration into the sandbox by clicking on 
the desired configuration.  The user can also edit the plan.  
Possible editing options include moving ATL elements 
along the timeline or adjusting their duration and restrict-

 
Figure 1. The main window of the SACE Sandbox shows the configuration variables on the top right, the orientations and 

modes on the top left and a summary view of the constraint status at the bottom.  



ing the orientations and modes for the different joints. 
 Among the elements in the planning window are the 
SARJ and BGA timelines, showing the modes (including 
orientations) and turns.  Other timelines show the status of 
the longeron shadowing constraint and the power 
availability.  SACE interacts with a trajectory and power 
modeling tool called SOLAR for calculating the power 
availability, the direction of the sun, and the paths taken by 
the arrays while tracking the sun. 

Into Mission Control 

Getting automated optimization and planning technology 
into human spaceflight mission operations is a major 
achievement.  The challenge is to identify a need for the 
technology in mission control, and then provide significant 
value that makes up for the technical risk of bringing in 

new software, especially one based on AI.   In our case, a 
key application was identified by the ISS mission 
controllers, for which the automated planning technology 
seemed to be well suited. The first step was then to build a 
prototype and demonstrate the capabilities offered by the 
technology.  After that, came a phase of requirements 
specification and refinements; this in turn led to a decision 
to commit to the development of the tool. 
 The development of such a tool is far from simple; even 
if no new methods need to be developed.  Requirements 
change over time, and constraints that initially were 
assumed to be simple table constraints turned into complex 
calculations.  During this time, the tool must also be usable 
by customers, so as to enable evaluation and feedback. 

Certification process: The strictest challenge to getting 
software into mission control is the certification process.  
For all mission control applications, this boils down to 
development and testing documentation and a formal 
approval by responsible parties.  Testing  out all possible 
cases and modes is critical to ensure correctness.  This is 
impossible for many software applications, but truly 
insurmountable for AI-based applications.  As a result, the 
test cases had to be developed as being exemplary, rather 
than fully covering.  The formal approval process is based 
on the customer team evaluating the tool, running all test 
cases, as well as being part of the development process to 
ensure adherence to rules about coding. 

Related Work 

The problem addressed by SACE is quite different from 
other problems addressed by automated planning.  A few 
automated planning applications have tackled power 
management for spacecraft, but none have done it at the 
level of complexity that SACE does.  The first AI system 
to manage a spacecraft was the Remote Agent (Muscettola, 
et.al 1998).  Part of the agent was the Remote Agent 
planning system (Jónsson, et.al 2000), which automatically 
generated plans to achieve operations goals, taking a 
simple power model into account. 

 
Figure 2. The map view in SACE shows the status of the 

constraints as a color-coded map, where the Y-axis is α 

and X-axis is β.  The four maps correspond to the four 

active solar arrays in this configuration. 

 
Figure 3. The SACE planning window shows the timelines for the ATL, TRTL, the configurations, and the different 

SARJs and BGAs, among other things.  



 The potential of automated on-board power management 
has been demonstrated for a satellite with signal processing 
payloads (Shriver, et. al., 2002).  The satellite's power 
system is considerably simpler than that of the ISS, and the 
spacecraft attitude (and thus power generation) is fixed; 
however, the onboard system can choose data processing 
options of differing power consumption for different 
expected science return.  Automated power management 
was used for NASA Goddard's ST-5 mission (Stanley, et. 
al., 2005).  In this work, the power management system ran 
in a fully automated mode in Mission Control Center, but 
its role was limited to characterizing the performance of 
the ST-5 power system, and notifying mission planners of 
future constraint violations in the mission schedule due to 
changed expected power availability or consumption.  
 The ASPEN model-based planning system from NASA's 
Jet Propulsion Laboratory was used in a demonstration of 
automated scheduling of a lower-fidelity model of the ISS 
power system (Rabideau, 2008).  However, this model 
lacked the highly detailed, context-dependent models 
required to manage the ISS, and did not manage live 
updates from the ISS telemetry stream. 
 Mixed-initiative planning systems have been used in 
spacecraft operations before.  The first was the MAPGEN 
system, used to build plans for Mars Exploration Rover 
mission (Bresina et.al., 2005).  MAPGEN was also based 
on the EUROPA planning framework and assisted users 
with building efficient and safe rover plans each day.  The 
tool, however, did not have a fully integrated power plan-
ning element, but rather relied on a simplified power model 
to do planning and then checked the plan against a more 
complex calculation.  A more recent AI tool in mission 
operations is the MEXAR2 mixed-initiative planning tool, 
which is used to plan downlink operations for the Mars 
Express spacecraft (Cesta et.al, 2007).  It does not handle 
any power planning, but rather focuses on data storage. 

Concluding Remarks 

We have described the challenging task of automated 
planning and optimization of ISS solar array operations.  
The resulting mission operations tool, called SACE, will 
reduce the time it takes to produce solar array plans from 
weeks to hours by providing an end-to-end solution that 
starts with a timeline of ISS attitudes and events and 
automatically produces a solar array plan and a timeline of 
power availability.  The tool also supports real-time 
monitoring and responses to unexpected events or changes.  
SACE is currently undergoing testing for flight 
certification by the Mission Operations Directorate.  Once 
deployed, SACE will be the first optimization and 
automated planning tool to be used for human spaceflight. 
 The optimizer in SACE was carefully crafted to take 
advantage of the independence of parts of the optimization 
problem.  During the course of the development of SACE 
and station construction, some of these independence 
assumptions were invalidated, requiring the modification 
of the algorithm. This has dramatically increased the time 

for optimization of a single configuration, which in turn 
has increased the planning time to a few hours from about 
half-an-hour in our first implementations.  We plan on 
exploring approaches to improve the optimization speed. 
 During planning, SACE solves for a locally optimal 
solution for each configuration along the timeline.  It is 
possible that a locally optimal solution for one 
configuration can restrict the space for future 
configurations so much that a feasible solution cannot be 
found.  Currently, SACE merges locally optimal 
configurations and makes limited adjustments so as to 
expand the feasible space.  However, such a solution will 
likely be sub-optimal.  Standard search techniques will not 
work, due to the time it takes to evaluate constraints for 
each search node, but we plan on exploring variations of 
backtracking approaches and intelligent search heuristics to 
address this potential problem. 
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