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• Our goal is to predict the catastrophic events in SRM
during the flight

• High-fidelity model is introduced to simulate known faults

• Low-dimensional models are derived to infer SRM
parameters with redundancy and to calculate the
probability of the catastrophe to occur at a given time

• The information contents of two sensors is evaluated using
Bayesian model inference algorithm to ensure that we have
multiple evidence of the fault. Prognostics algorithm is
developed to predict the redline time.

• We present an analysis of an example fault: an
overpressure due to various causes (i.e.,  bore chocking)

• Conclusions are drawn and the future work is discussed
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Identification of nonlinear stochastic models from data 

Algorithm for reconstruction of  system state, parameters of dynamical and 
measurement models  from time series 

Data recordData record



)t(D)0()t(,0)t(

,)t(bxxxx

,)t(xxxrxx

, )t()xx(x

ijjii

z3213

y31212

x321

!=""="

"+#=

"+##=

"+#$=

&

&

&

Stochastic dynamical system outputStochastic dynamical system output

Noise intensity is  greater
than deterministic forces

by ~ 1000 times
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We use 50 blocks with 20000 points each to infer parameters shown
in the table. Convergence can be improved by increasing the number
of points.

Inferential framework:

Inference of noise
intensities and
correlations
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Geomet ry of an Idealized Solid Rocket

Pressure
sensor
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Temperature
sensor
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1. Bore choking: Bore choking occurs when the propellant deforms (bulge) radially inward and disrupts
the exhaust gas flow, causing a choked flow condition inside the motor. Bore choking can be most
likely realized near radial slots and segment joints between two sections with a smaller radius of the aft
section. This critical effect is typically caused by localized areas of low pressure arising near such
inhomogeneous. Bore choking has the potential of causing booster over-pressure and catastrophic
failure.

2. Nozzle Failure: Nozzle failure will reduce the thrust being generated.  Failures down stream of the
throat will have no impact on the chamber pressure.  A non uniform failure of the nozzle (such as
loosing a chunk of the aft exit cone, or partially failing a joint) will result in a non-axial component of
thrust.  A failure would also result in the plume moving closer to the aft skirt causing increased heating
the could adversely affect the TVC system.

3. Debonding: Potentially large parts of the propellant debond from the liner and got loose. They can
bend and stick inside the bore. In the large rocket with the large aspect ratio of the bore volume the
depleted propellant can significantly obscure the bore volume leading to chocking.

4. Propellant structural failure: Critical defects are cracks and voids in solid propellant and slots of
booster joint segments. These defects can stimulate the increase of local burning rate that can result in
abruption of lager enough piece of the propellant.  This piece can stick to a narrow place of the burning
propellant or choke minimum cross section of the nozzle. This can cause a sharp catastrophic jump of
the booster trust and overpressure in the chamber head.

Failure modes leading to overpressure

Direct detection



High-fidelity model of SRM (Parameters and variables)

Conservation of mass

Momentum conservation

Energy conservation

•  ρ [kg·m-3] is the gas density,      ρp [kg·m-3] is the propellant density

•  u [m·s-1] is the gas velocity

•  p [N·m-2] is the gas pressure

•  S [m2] is the cross-sectional area of the propellant; S* is the minimum cross section of the nozzle

•  L [m] is the length of the burning propellant

•  l(x)=2πR(x) [m] is the perimeter of the internal cross-section of the burning propellant

•  F(x) [m2] is the burning surface of the grain up to the point x along the axis of the SRB

•  R(x) is the internal radius of the propellant

•  e = cVT+u2/2 [J·kg-1] is the specific energy of the gas

•  h = cPT+u2/2 [J·kg-1] is the specific enthalpy of the gas

•  H [J·kg-1] is the heat released by the burning propellant
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1D time-accurate PDE model with dynamical noise sources: stochastic integration



Fault model: nozzle blocking

uL ~ 200 m/sec

Nozzle blocking

grain boundary after chocking

grain boundary before chocking

c0 ~ 1000 m/sec



0 20 40 60 80
0

20

40

60

80

t, sec

p
,
 
a
t
m

0 20 40 60 80
0

3

6

9

12

T
/
T

0

t, sec

(b) 

Chamber head temperature and pressure

Patm = 101.23 kPa    Tatm = 288.2 K

Noise is enhanced during the chocking event



Averaging over the combustion volume
1. The  mass dynamics

2. The energy dynamics

3. The dynamics of the burning area

Noise sources
1. Gas flow density fluctuation in the throat

2. Gas flow density fluctuation in the burning surface
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A(t) describes fast nozzle
area change in chocking

B(t) is a slow variable

Low-dimensional dynamic model
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Fault model: Titan IV overpressure fault



 The model includes state driving noises, which are assumed to have unknown parameters.
Noise characterization is important for designing the fault estimation algorithm.

Low-dimensional dynamic model:
System view

Combustion Model (3 states) 
• gas pressure
• gas density
• mean radius of the bore   

 Bore volume

 Burning area
of the grain

Throat area change
(fault parameters)

 Pressure

 Temperature



We used an algorithm for reconstruction of  system state, parameters of dynamical and
measurement models  from time series, see V. N. Smelyanskiy, D. G. Luchinsky, D. A.
Timucin, and A. Bandrivskyy, Physical Review E 72, 026202 (2005).

Fault estimation
based on low-dimensional dynamic model

Optimal Estimation 
Algorithm 

 Bore volume

 Burning area
& radius of the

grain

Throat area change
(fault parameter)

 Pressure

Combustion Model

Case Burst Prediction Expected
redline time

 Temperature

NOTE. That the algorithm of dynamical inference will be embedded into inferential learning
framework that will continuously update the models and parameters beginning from the

stage of development and firing tests.
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Inference of the hidden dynamical variables

Measurement noise

In this figure we show preliminary results of the inference of the gas flow parameters in
the case when the measurements of the pressure, p (a) and density,  ρ (b) are corrupted
by noise and the propellant radius, R (c) is not measured. The actual values of the
pressure, density, and radius are shown by the red, blue and green solid lines
correspondingly. The measured values of the pressure and density are shown by black
juggling lines.

The inferred values of p,  ρ, and R are shown by the red dotted lines.

(a)

(b)

(c)
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Prognostics for the neutral thrust curve

Consider fault which time evolution is arbitrary function of time with characteristic time
scale of a few seconds.

As an example consider slowly varying area of the nozzle throat, which is described by
the following function f(τ)= f(t-t0)= a(t-t0) +b(t-t0)2+c(t-t0)3: a=-0.6, b=0.4, c=-0.1. Fault
occurs at 9 sec. It leads to the case burst 7 sec later. The problem is how soon we can
detect dangerous situation and predict the time of the case burst.

( )2 3

Fault as arbitrary function of time

Fault occurs at 9 sec
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Case burst occurs at 16 sec



We infer parameters of the gas dynamics and use these parameters to predict time when pressure will cross the
dangerous level. To estimate the accuracy of the prediction we also build the distribution of predicted pressure values
which will occur 5 sec after the fault

Here presents the result of the prediction of the time of the case burst after

(i) 1 sec after the fault (greed lines); (ii) 1.5 sec after the fault (cyan lines); (iii) 2.1 sec after the fault (blue lines)

It is clear that prediction captures highly nonlinear behavior of the fault.
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Here presents the resulting distributions of predicted time of the case burst (top figure) and the head pressure,
which will occur 5 sec after the fault.

(i) 1 sec after the fault (red lines); (ii) 1.5 sec after the fault (black lines); (iii) 2.1 sec after the fault (blue lines)

It is clear that prediction becomes reasonable 1.5 sec after the fault. The accuracy of prediction can be father
improved by adding measurements of the thrust.

actual time

critical pressure



Nonlinear dynamics of the bore clogging fault

z

w

L

2

L

2
!

-w

Gas chamber

Moving obstacle of ellipsoidal shape
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Consider an obstacle passing through the nozzle throat. E.g. it can represent a cloud of particles in the
exhaust gases or a piece of the propellant. The effect of this nonlinear dynamical fault is an effective
reduction of the nozzle area. Assume the fault have time evolution corresponding to an obstacle of
elliptical shape passing through the nozzle throat. Then in the first approximation we can write
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Averaging over the combustion volume

1. The  mass dynamics

2. The energy dynamics

3. The dynamics of the burning area

Noise sources

1. Gas flow density fluctuation in the throat

2. Gas flow density fluctuation in the burning surface
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A(t) describes fast nozzle area
change in chocking

B(t) is a slow variable

Low-dimensional dynamic model

Nonlinear fault dynamics



Inference of the model parameters

Convergence of the model parameters: 7 lines from the top to the bottom correspond to the results of
the inference 1.5, 1.3, 1.1, 0.9, 0.7, 0.5, 0.3 sec after the fault. Red lines show actual values of the
parameters.
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Model space for nonlinear dynamical faults of the nozzle clogging
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2. Model parameters

These base functions span part of the model space
corresponding to the dynamics of model clogging fault

1. Base functions
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These model parameters correspond to the dynamics of
model clogging fault
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Continuous prognostic of the nonlinear dynamical fault

Standard threshold for
mission cancellation due to

the overpressure

Nonlinear dynamical inference predicts,
however, that the fault is not critical and

that pressure will not exceed 90 atm maxim
and then will relax to the normal value

Critical level of
case burst

Nominal
distribution

Prognostics of the off-
nominal pressure

distribution at its maximum

67.35 atm



Continuous prognostic of the fault evolution (we predict
the value of the maximum pressure for the fault)
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Low-dimensional model gives accurate representation of
the transient overpressure phenomena in a number of
important fault modes
Accordingly a Bayesian framework is introduced for
prognostics and diagnostics of these failure modes
Case breach
Bore chocking
Gas leak

Conclusions and Further Work



DIRECT DETECTION of faults
Changing of an efficient cross section of the nozzle S*(t) can be found from measurement

of the averaged head pressure p0(t), thrust Fth(t) or pressure jump at a rapid chocking:
dS*/d(t)<0 at the nozzle blocking and dS*/d(t)>0 at the burning case
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Time-resolved picture of fast nozzle blocking
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