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Abstract—In many engineering systems, the ability to give an Among these are Bayesian, MAP (maximum a posteriori),
alarm prior to impending critical events is of great importance. maximum likelihood, and the minimax criteria. The latter is
These critical events may have varying degrees of severity, and derived from the Bayesian criterion, and seeks to minimize

in fact they may occur during normal system operation. In this th . isk. S tint i d | t
paper, we investigate approximations to theoretically optimal € maximum risk. Some recent Inieresting developments

methods of designing such alarm systems for zero-mean linear have even described adaptive on-line techniques using the
dynamic systems driven by Gaussian noise. This simple modeling Bayesian formulation [8]. However, there are still considerable
paradigm suffices due to the nature of the engineering and/or computational issues, and a well-defined cost function is still

behavioral systems provided as examples to motivate the use Ofrequired even when the posterior probability is adaptively
these methods. updated’

One example addresses thermal comfort applications for . .
commercial buildings. Another example addresses integrated Here we present two contrasting examples representing
caution and warning health management systems for spacecraft distinct applications. The first example is based upon predic-
propulsion. For both examples, an alarm may be given for any tion and alarm of thermal sensation complaints in buildings,
number of level-crossing events that occur over a specified time previously presented in [3]. As such, some of the technical

period. As such, an optimal alarm system can be designed to warn details for thi | il b ted i .
facility managers or ground-based telemetry data analysts of etails for this example will be presented in a more concise

impending complaints or anomalous engine events, respectively. fgshion. The second example is based.upon fault detection and
This will aid them in making critical decisions about building or  diagnostic work for spacecraft propulsion systems, as alluded

spacecraft operations. to in [9]. However, both examples share the quantification
Index Terms—Optimal alarm theory, Level-crossing theory, Of any numberof level-crossing events that may occur over
Kalman prediction, Anomaly Detection a specified time period. Both examples also assume quite

liberally that the practical events of interest can sufficiently be
characterized by this class of level-crossing events. That is, we
assume that both thermal sensation complaints and spacecraft
T HIS article introduces a novel approach of combiningngine anomalies can accurately be represented by level-
the practical appeal of Kalman prediction techniquegossings, whose processes are characterized or transformed

with level-crossing theory and optimal alarm system desigihto zero-mean linear dynamic systems driven by Gaussian
A comprehensive demonstration of practical application fejpise. More evidence to support this modeling paradigm will
the design of optimal alarm systems has been covered in Bl?presented subsequently.
literature [1], [2], [3]. However, the background theory for several examples of level-crossing events within this class
optimal alarm systems has seen modest coverage by oti@f be studied here, varying from the simple case which in-
authors as well [4], [5], [6], [7]. The latter is by no meansyolves two adjacent time slices, to the much more complicated
a ComprehenSive ”St, but illustrates a cross-section of tbgse that involves a level Crossing event that may span many
primary authors responsible for introducing optimal alarfime slices and exceed the level many times during this time-
systems in a classical and practical sense. frame. The former more simple case is traditionally studied

It was shown by Svensson [1], [2] that an optimal alarh the Swedish literature and invokes ARMA(X) prediction
system is fundamentally based upon a likelihood ratio criteriQfethods [1], [2], [4], [5], [6], [7]. A variant of the latter more
via the Neyman-Pearson lemma. This allows us to design @mplicated case has been investigated by Kerr [10] and uses
optimal alarm system that will elicit the fewest possible falsg Kalman-filter-based approach.
alarms for a fixed detection probablllty This becomes impor- There is an extensive history of invoking Kalman-filter-
tant when considering the numerous applications that mighised approaches within the failure detection literature. A few
benefit from an intelligent tradeoff between false alarms arﬂﬂ the most groundbreaking articles that discuss the use of
missed detections, by applying the theory and methodologyiman filter methods for failure detection have been authored
introduced in this article. by Kerr [10], and Willsky and Jones [11]. Both of these articles

There are several other decision rules that can be used fraave a long history of related methods descending from them,
hypothesis testing/decision theory, in lieu of the Neymame  [12] which alludes to the use of the Neyman-Pearson
Pearson decision rule used as the basis of optimality hefgmma. However, these methods have not been without debate
_ _ _ , over the years, with one recent criticism of [11] addressing the
Manuscript received xxx xx, 2007; revised xxx XX, XxxX. This work was_, . : . .
supported by xxxx. claim of its optimality by Kerr [13].
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terized by a formulation of the anomaly detection problemecognized by Svensson as a potential candidate for study in
involving the GLR (generalized likelihood ratio) test. Thahe context of optimal alarm systems [1], p.93.
method derived by Kerr shows how to derive a failure detection In buildings, time-of-day complaint rates and energy usage
algorithm whose design is performed by computing false alarfhactuate in a predictable manner. Therefore, it is common
and correct detection probabilities over a time interval. Botlo expect a peak in the complaint rate during the morning,
methods are related to, but not directly derived from optimahlled the “arrival complaint period.” The arrival complaint
alarm system theory based upon level-crossings introduggitenomenon was hypothesized by Federspiel et al. [15] as the
by DeMag [5] and Svensson et al. [2]. As was previouslyesult of a naturally high metabolic rate of building occupants
mentioned in this section, we aim to more precisely clogkiring this period. Hence we can look at breaking down the
this gap between the use of Kalman prediction technigues gretiods of interest into two distinct timeframes, described
optimal alarm systems in this article. However, this article iselow.
not meant to serve as an anecdote to the ongoing debate, bdf) Arrival and operating complaintsPrior to the start of
rather as a participation in this discussion from a differemite beginning of the day (eg. 8 am), we want to predict an
theoretical angle, infused by a segment of the literature thatival complaint, and all remaining operating complaints for
has been largely overlooked. Furthermore, it is motivated lysliding window of time of fixed length. An arrival complaint
practical examples whose anomalies can be described frhas no restriction on happening at a particular time (i.e., late
multiple variants within a class of level-crossing events in lieairrivals are allowed).
of only one. 2) Operating complaints onlyFollowing the start of the
day (i.e., conceivably after the first arrival complaint), we
want to predict all operating complaints any point after the
beginning of the day, for a sliding window of time of fixed

Traditionally, examples of failures using anomaly detectio@ngth.
techniques can be characterized by a level-crossing of a criticairhese timeframes each correspond to different level-
level, L, that is assumed to have a fixed, static value. The leygdcrossing events, to be discussed for this specific application
is exceeded by some critical parameter than can be represefieghore detail in the subsequent section. However, regardless
by a dynamic process, which can often be modeled aspfapplication, upcrossings, downcrossings, and exceedances
zero-mean linear dynamic system driven by Gaussian noigge defined as follows:
Most of the theory that follows is based upon this standard 1) Exceedance:A one-dimensional level-crossing event,
representation of the anomaly detection problem. {xy > L}, whereL is some critical threshold level exceeded
by a process whose value at tirhds xy.

2) Upcrossing: A two-dimensional level crossing event,
{Ik <L, Tpt1 > L}.

For the example currently under discussion based on thermag) powncrossing:A two-dimensional level crossing event
sensation complaints, the critical valdeis not fixed. In fact, {zp > L, x31 < L}.
it varies with time, and there are two of these stochastic The apility to predict the average thermal comfort of a
critical levels: one for hot complaints, and another for coloup of building occupants within a zone during either of
These levels represent the temperature at which a grouptg two timeframes listed previously can aid abundantly in
occupants in a zone would complain if too hot or cold. Theyeveloping optimal thermostat setting strategies. Automation
are somewhat artificial, because such temperatures cannopp8ome of the critical decisions that facility mangers often
measured continuously. However, when complaints do occp not have adequate time to attend to within the building

the temperatures can be measured and stored in a maintengpgfations domain can potentially help to save significantly in
management database. Therefore the statistics of these leyglsrating costs.

can be computed from this database repository, as described
by Federspiel [14], and used to generate a model whose output ) ) )
represents the complaint levels of interest. 3. Spacecraft Propulsion System Anomaly Detection Applica-
The two processes to be used for this example are one of tid
two stochastic critical levels (i.e., the hot complaint level) and The primary parameter of interest for this study that is
its interaction with the controlled process of interest (i.e., trevailable and measured for spacecraft propulsion systems
building or space/zone temperature). In order to transform tliés the control system error, or the difference between the
problem easily into one that fits the paradigm of a fixed, stattommanded and actual throttle. Not only is this practically
threshold, we simply take the difference between the stochastjgpealing due to the the fact that there are often hard limits set
critical level and the controlled process, implying tiiat= 0.  on the control system error, but the novel methods described in
Since there are two stochastic critical levels, both hot aritis paper apply quite cleanly to this parameter. This is evident
cold, with differing descriptive statistics, these alarm systendasie to the zero mean of the control system error during non-
will need to be designed independently and implemented tiansient operation, and qualitatively Gaussian characteristics.
parallel. Only one will be presented in the subsequent sectidagrthermore, the control systems were most likely designed
for illustrative purposes. The idea of the critical level itselivith disturbance rejection in mind. Therefore, any anomalous
being modeled as a stationary Gaussian process was asgoursions away from the reference value not explained by

Il. MOTIVATION FOR TARGET APPLICATIONS

A. Thermal Comfort Application
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transients is cause for alarm. As such, the design of a robusAlarm design requires computation of the metrics that char-
detection algorithm and subsequent diagnostic investigatiaaterize the tradeoff that all such systems contend with. This
are of paramount importance in the implementation and deadeoff represents the balance of false alarms versus missed
ployment of such an alarm system. detections. There are several alarm system metrics to choose

A very practical anecdote to the detection problem is tfeom, among them are the ROC curve, percent accuracy,
use of hard thresholds, also commonly known as “redlinegtecision-recall curve, and Type I/l error probabilities, all for
These limits on throttle control system error act as a basic, yetrious border probabilities,). Type /1l error probabilities
very effective measure of implementing anomaly detectioare the probabilities of false alarm and missed detection,
based alarm systems. A mixture ratio control system usesbkpectively. In alarm design, we want to find the value of
aboard a spacecraft propulsion system may also benefit fr@nthat provides the best tradeoff between Type | and Type Il
the application of a similar detection algorithm. Howeveerrors, or one of the other alarm system metrics. For the first
redlines are used for a variety of other parameters not usedmple involving the thermal comfort application, most of the
for control, and the zero-mean linear dynamic system drivamalysis was performed by using Type /1l error probabilities.
by Gaussian noise modeling paradigm may break down adewever, for the spacecraft propulsion system application,
cordingly. Further investigation of the modeling variants fathe ROC curve will be the metric used for comparison of
different spacecraft propulsion system parameters can be foatgorithms. The reason for using the ROC curve is that it is
in [9]. In this article, one of the primary investigative themesmore reliable in the face of uneven examples of nominal vs.
for this application is to compare the redline detection meth@homalous behavior, as described in [16].
to others, including the novel one introduced in this paper. It is not possible to obtain the exact alarm system metrics

Unlike the thermal comfort application, the level-crossingnalytically, or even by means of numerical integration for the
problem can't easily be transformed into upcrossings of a lexamplicated multi-dimensional events we will present here.
L = 0 for either hot or cold complaints. This example require&s an alternative, we may perform simulations to obtain an
a little more complexity due to the nature of the parametestimateof the exact alarm system metrics. These simulation-
of interest. However, there is no need to transform the levédased statistics have well known estimation error properties.
upcrossing problem to be commensurate with a levél ef 0. They are obtained by running a Kalman predictor, and count-
Rather, because the magnitude of the control system error israf the number of correct/false alarms and missed detections
interest, the absolute value of the controlled process exceedimgil their relative frequencies converge to limiting probability
a non-zero levell, becomes the application-specific problemalues. However, with the aid of some approximations, we
of interest. Here again, there are two critical levels of interesfan perform numerical integrations of complex integrals, and
one above the controlled process and one below. In this casan avoid these otherwise often very time and computationally
neither is a stochastic critical level, and both static, fixeidtensive simulation runs.
thresholds are symmetric about zero and the negative of eacin some cases the number of terms required to compute the
other. As such, there is no need to design independent alaetevant probability-based alarm system metrics scale expo-
systems that are implemented in parallel. Rather, a singientially with the number of time steps under consideration.
alarm system can be designed to predict all necessary crossihis is particularly true for the types of level crossing events
events. characterizing complaints for the thermal comfort applica-

tion. As such, approximations are developed to reduce the
IIl. GENERAL APPROACH resulting computational burden. One approximation, the multi-

In certain cases, specifically for the type of level-upcrossirdimensional approximation, can characterize either of the two
events relevant to the thermal comfort application, the comptiull hypotheses to be introduced and tested in the subsequent
cated multi-dimensional level-crossing event can be approsiections. Both correspond to the breakdown of the periods
mated using a variety of methods. The theoretical derivationf interest into two distinct timeframes presented previously.
and comparisons of these different approximations are left gdithough this is the approximation in which the number of
of this article for clarity of presentation. We refer readers tterms scale exponentially with the number of steps in the time
[3] for more details. While cumbersome to present here,imterval, it may also be used to test null hypotheses which
thorough understanding of these details is necessary to fuilyantify any combination of upcrossings, downcrossings, or
appreciate the notation used in subsequent sections. exceedances.

Therefore, we introduce the basic notation as a conveniencd’he multivariate probability computations that result from
to the reader in the following section. The main notationahe theory presented later are performed by using Genz's al-
emphasis will be on characterization of the crossing evemgsrithm [17]. This algorithm is based upon a robust technique
in order to determine alarm regions resulting from use alfesigned to be used for integrations in multiple dimensions.
the likelihood ratio resulting in the conditional inequality Traditionally, this code is more effective and computationally
P(C|D) > Py. This basically says “give alarm when we theefficient for higher-dimensional integrations, but can be used
conditional probability of the event;, exceeds the levaP,.” just as well for lower-dimensional ones. As such, it helps
Here, D represents data being conditioned on, dfdrepre- to mitigate the exponentially scaling computational burden.
sents some optimally chosen border or threshold probabilfurthermore, it provides an anecdote to computing integrals of
with respect to a relevant alarm system metric. It is necessding form necessary for the design of not only optimal alarm
to find the alarm regions in order to design the alarm systesystems, but also other failure detection algorithms such as
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the one most often used by Kerr [18], who specifically cites 1) Two-Dimensional Alarm SystermAlso called a semi-
issues with the computation of these types of integrals.  nave alarm system in the literature [1], [2], it uses the idea of
One might question the merit of using such an unavoidabdptimal alarm. However, the two-dimensional alarm region is
costly and potentially computationally intensive techniquapproximated with asymptotes to “rectangularize” it, making
to design an alarm system, when a simpler one might dbe region of integration much easier to define. This alarm
There are several different types of alarm systems, rangisgstem will be investigated for both applications.
in frequency of use and expense. At one end, we have2) Multiple Sub-Interval Alarm Systemie may also use
alarm systems that require little economic investment othére union of disjoint sub-intervals to approximate the exact
than the accumulation of man-hours of heuristic knowledgealarm region. This approximation was again a recommendation
These systems, although quite inexpensive and often lackigSvensson [1], although not elaborated on in detail, and only
in sophistication, tend to be the most ubiquitous in engineeringeant to capture a single level crossing over a time period.
systems. For the most part, they tend to the job that is requidgdiltiple level crossings over a time period often involve
of them: to give alarm for prevention of catastrophic eventsomplicated multi-dimensional events. Therefore, aggregating
False alarms would cause loss of production and capital dees complicated 2-dimensional alarm regions reduces the
to system downtime from the inevitable system shutdown aemputational load and increases mathematical tractability.
a result of the alarm. However, missed detections may calsach sub-interval can be approximated with asymptotes, again
damage, complete system destruction or loss of life, where tin@king the regions of integration much easier to define. This
costs are immeasurable. Since complex engineering systef@m system will be investigated for the thermal sensation
may encounter events that need to be predicted by these singamplaint example only.
alarm systems, more sophisticated alarm systems may be o) Multi-Dimensional Alarm Systenifhe exact alarm sys-
interest. The following list provides a variety of alarm systentem metrics cannot feasibly be obtained for complicated
to be compared on an application-specific level, ranging fromulti-dimensional events by means of numerical integration.
the most simple one to the more sophisticated ones alludedHowever, an approximate alarm region of integration can be

previously. defined as a tight bound on the exact region via the unions
and/or intersections of hyperplanes. In certain cases, this
A. “Redlines” or Simple Alarm System approximation forms a semi-infinite hyper-rectangular region

i@ R™, wheren is the dimension of the space, or number of
edictive time steps under consideration. This alarm system
ig be investigated for both applications.

Typically there is no computational design cost for this typ
of alarm system, but rather the cost lies in the knowled
and experience of the users, i.e., heuristics. The basic i
is that certain thresholds are chosen apriori to provide a
window of operation within which a random or controlled
process with random components should be constrained. ThisKalman Filtering and Prediction
alarm system will be investigated for the spacecraft propulsionBefore attempting to technically characterize the alarm

IV. THEORY

system example only. regions of interest or explain the approximation methods, it
is necessary to address the basic mathematical paradigms that
B. Predictive Alarm System we'll use. As such, let's assume that a stationary, Gaussian,

An alarm system that uses a predictive method is Oﬁé_ﬁndom process can be characterized in state-space as a typical
called a nave alarm system [6], [1], [2]. Here, a predictedinear system of the form
future process value would trigger an alarm if it exceeds some
fixed_, pre-selected al_arm '_[hreshold. However, even though the Q1 = Aqp + wy 1)
predictor may be optimal in the least-squares sense, the alarm
system would not be optimal in the sense that it triggers
the fewest false alarms for a fixed detection probability. This where qy. is the unobserved state of the process with
alarm system will be investigated for the spacecraft propulsioneasured output;. Apriori statistics for the input and mea-
system example only. surement noise sequences, andvy, also need to be defined.

Their covariances are

zr, = Cqi+ v

C. Optimal Alarm Systems

Described before, an optimal alarm system is derived based Q
upon a likelihood ratio criterion via the Neyman-Pearson R
lemma. The resulting optimal alarm system requires the use
of predicted future process values to elicit the fewest possit¢e also assumev; and v, are zero-mean Gaussian white
false alarms for a fixed detection probability. As stated earlierpise sequences without loss of generality, such that~
there are several approximations which may be used as &if0, Q) and vy, ~ N (0, R).
alternative to designing the optimal alarm system based uporPropagation of theunconditional covariance matrix is
simulation, i.e., the “counting method.” These approximatiorshown below in Eqn. 2.
are listed below, and are the ones to be studied in depth in
this paper. P..1 = AP AT +Q )

E[wkwg]

E[vkva]

e e
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wherePy, = Elqrql]. indicesi, j. Similarly, we will need to compute the predicted
The algebraic equivalent to this propagation equation figture process valug; ;-
PL = APLAT + Q, wherePL, -~ 0 (PL is positive

definite) and it is also the solution to this discrete algebraic . A

Lyapunov equation. The time and measurement update steps Prgilr = Eloeyilo,..., 2] (12)
of the recursive Kalman filtering equations are shown in Egns. = CElak+ilzo, ...,z (13)
3-5. Egn. 4 represents the Kalman gain. = Clptifr (14)

Obviously, Z;,;, can be expressed as a functiondgfy,,

Arsik = Adpp (3) but unlike V., it will fluctuate as new measurements are
A T T 1 made. This is apparent due to Egn. 5, which is directly
) Frape = 1?k+1|kC (CPry1kC" + {3) ) dependent upon measurements. ;.
Aiti1jbr1 = Der1jk T Frgrp(@rrr — Cppan) (5)
wheredy, N Elaw|zo, - .., zx)- B. Alarm Regions for Crossing Events and their Approxima-

The counterpartconditional covariance propagation time 1ONS

and measurement updates for the Kalman filter are shown int) Thermal Comfort Level CrossingswWe first present

Eqgns. 6-7, respectively. the conditions for alarm based upon the thermal sensation
complaint application. The null hypothesi%{,, shown in
Eqgn. 15 is for at least one complaint during normal building

Pir = APy AT +Q (6) operating hours, where: refers to the number of steps in the
Piiijpr1 = Preir — Frop1pCPryapi (7) prediction window. Them + 1 dimensional event region is
given byQc, ...,
where
A ~ ~
Pri = El(are — aue) (ar — ) |20, - - 2] Ho : (XeQc.,.., CR™ (15)
Combining the two equations 6 and 7, we obtain the Tk
following: X =
Tk4+m
Piiijp = APy 1 AT — AFy;,_1CPy 1 AT +Q (8) Cegact = {X€Qc,,.., CR™}
The stationary version of Eqn. 8 gives us the solution to the = aow <L @pm < LY\ {2 > L}
discrete algebraic Riccati equation, as follows: In Eqn. 15,- is the logical equivalent ofiot, and the event

given by {z; < L,..., x4+, < L} refers to the fact that

Pfs _ APiAT _ AFSSCPESAT +Q ) there are no level crossings &f= 0 (complaints) from t!me
A SR T (DR T 1 ktok+m,orz; <L,Vje{k,...,k+m}. The\ notation
F., = PLC(CPC +R) (10) denotes set subtraction of the event defined{by > L},

whereF; represents the steady-state Kalman gain Hov\\’/V—hiCh corresponds o arrival complaints.
ss TeP y gain. In this case, the condition for alarm leads to the inequality

ever, we're interested in the updated aposteriori steady-st%e

. . S : . own in Egn. 16, via the Neyman-Pearson lemma [1], [2].
covariance matrix, which is the stationary version of Eqn. 2, . . : :
given by: his inequality and Eqn. 15 are meant to characterize the

“operating complaints only” scenario as accurately as possible.
In Eqgn. 15, operating complaints can be defined with any se-
PE = pPE _PECT(CPECT + R)"'CPE (11) quence of process values above or below the critical threshold,
as long asall of the values don't lie above the threshold, and

Because we're primarily concerned wighediction we will e first process value is not above the threshold (to keep from
need to compute variances of the form counting arrival complaints).

A
Vk+i\k¢ = Var(xk+i|x0, . ,.’Ek)

. P LID)-P L,... m < L|D) > B 1
and covariances of the form (zx < LID) (@ < LyooosBhym < LID) 2 B, (16)

. _ where: D = {zo,...,z;}. The corresponding exact alarm
COV( ki, Thej|To, -, Tk condition can be partitioned as follows:

where i, j are prediction window indices for future process
values. It can be shown thaf, ;;, and its covariance coun- Acpoct A {X =N c R™H)
terparts are functions oP;, and Py, and thereforePZ%, o oot

L i = {X : P(Cea:act‘p) Z Pb}
and P, respectively. As a result, they can be expressed as .
being independent of the time indéx although they cannot = {X:P(zy < L|D)

be expressed as being independent of the prediction window —P(zp < L,...,xp1m < LID) > Py}
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where: alarm. The exact2D alarm region is approximated with
asymptotes, making the revised region of integration much

;Zil A Sﬁﬁlﬁk egsier to parameterize. The “rectangularization” is apparent in
X= i , X=E[X|D] = ) Fig. 1.
: o To find the asymptote correspondingig,, we derive the
Thktm Lhtm|k limiting distribution as the remaining dimension is marginal-

Hence it is easy to write the formulae for correctz€d Py takinglims, . . ... of Eqn. 20, yielding Eqn. 21,
alarms/detections:

P(xk<L7$k+m>L|x07~";xk)2Pb (20)
Let x = |: §§ ] (17) R hm—»oop(‘rk <L,1‘k+m >L|a:0,...,xk.) =
X ki
Correct Alarm: P(xy < Llxo, ..., zx)
P Ce;rac ) AEZL’GC
P(Cexact|Aezact) ( P At t) (18)
(Acract) P(zy < Llzo,...,21) > By
_ fQCEzact fQAea:u,ct N(X; i Zx) dx II
Jon N pg, Bg) dX 1
Correct Detection: T < L — 7/ Vi@ (Py) (21)
P CSIGC ) AEZL’GC . .
P(Aczact|Cezact) = ( P(Ct ) ) (19)  where ®'(-) represents the inverse cumulative normal
exact

standard distribution function. Similarly, to find the asymptote
fncwm fmmct N (5 i, ) dx corresponding 0y ,,x, We derive the limiting distribu-
fQC N(X; pux, Xx) dX tion as the remaining dimension is marginalized by taking
ot img, oo Of EQN. 22, yielding Eqn. 23.

lim,
These probabilities are necessary in order to compute the
required alarm system metrics, in particular the Type I/1l error

probabilities. The probability of correct alarm measures the P(zy < L, Zgym > Llzo,...,x1) > By (22)
ability not to generate false alarms (purity), and the probability —  1im  P(xy < L, 2410 > Llzo, ..., 78) =

of correct detection measures that ability not to miss any  “rr—=°

critical anomalies (completeness). We know that computing P(zgtm > Llzo, ..., zx)

these integrals, specifically the alarm regiofy,,q.;, iS an

) . ) P(xg L|zo,...,z) > P
intractable problem. Therefore we must use a simulation to (@htm > Llzo,..., zx) 2 By

obtain estimates of thexactType I/ll error probabilities. But iy
instead of using this “counting” method via simulation, we
can compute their tractable and much less computationally Trtmie > LA\ Vigmu® ™ (Py) (23)

intensive approximations.

The first approximation for the exact alarm region corre-
sponding to operating complaints only and givenAy,.: =
{X:P(xy < LID) — P(xy, < L,...,&p4m < L|D) > P} is
a single interval two-dimensional approximation. In this case
we only consider two time sliceqi = 0, ¢ = m}, which The alarm region can therefore be approximated by the two-
span the entire time interval being considered. The proceadimensional intersection of the two inequalities represented in
value,z;; is below the critical threshold at the very beginningegns. 21 and 23.
of the interval, z;, and above it at the very end . Notice that there are several two-dimensional alarm regions
The exact null hypothesis captures at least one complaghtown in Fig. 1, for values of, ranging fromo0.1 to 0.9, in
or upcrossing, where the process itself is not restricted geadations of).1, all for m = 5. Each of the regions is convex,
being above or below the critical threshold at the end of th#ghove and to the left of which is considered the alarm regjion.
interval. Therefore, this approximation will miss around haldowever, performing an integration over this two-dimensional
of the upcrossings/complaints caught by the exact conditicxlarm region may require storing the contour points along its
However, using it will greatly reduce computation time, antdorder, or other approximation methods that consume quite a
the answer can be achieved via numerical integration, withdsit more compute cycles than the respective “rectangularized”
the use of simulation. 2D alarm region. For the specific case Bf = 0.99, we can

The upcrossing approximation is shown in Eqns. 20-24. Bye the asymptotes in Fig. 1 that define the approximation,
using it, not only do we reduce the dimension of the alarmhich bound the two-dimensional alarm region. Integration
region fromm + 1 to 2, shown in the first step via Eqgn. 20,
but a “rectangularized” two-dimensional approximation is used' These sample alarm regions were generated by using a very simple

. . . example (c.f. Process 1 from Svensson et. al. [2]) solely for illustrative
for further ease of computation. Recall that a two—d|men5|on&>]

. ' - Ptrposes at this point. None of the alarm regions are based on models
alarm system is one that actually uses the idea of optinygherated from experimental data.

where:

A
Vk+i|k = Var(ilik_i_i‘fﬂo, . ,Ik) (24)
CA'(PT ~PL)(AT) + PL)CT + R
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2D aarm regions for various by indicess; and s; ;. The approximate alarm region can
Pb values, above the solid curves therefore be written asi,pprox = Uf\;sl A;. Formulae for

50F p 2099 3 correct/false alarms and correct/missed detections can be de-
as?/mptﬁs’ o 0.9 veloped, as shown in Egns. 29-32.
40r ‘ ‘0-:8 | FH0.8 Correct Alarm:
|4 P(Cezac ,Aa rox
J ’\ 07 ‘ L ,07 P<Ce:cact‘Aapprox) _ (C‘ °t pp ) (29)
30 29/ 0.6 | 1 P(Aapprox)
= 05 - 10.6 Correct Detection:
i - : ' / P(Cewac 7A11 TO$)
<§ 20r : t10.5 P(Aapproxlcewact) = P(Ct’ezac:))p (30)
L 0.4 False Alarm: P(C/ | |
10r P ! A . _ exact’) “lapprox 1
03 (Ce;cact‘ app?oa,) P(Aapp'r‘occ) (3 )
o 0.2 = 1- P(Cearact|Aapprox)
Missed Detection:
5 15 155 16 16 01 P(Cezact: Auppros)
145 15 155 16 165 17 P(A C _ exacts Lapprox 32
jklk ( approg;| emact) P(Cemact) ( )
= 1- P(Aappror‘cemact)
Fig. 1. Approximation to the&D Alarm Region forP, = 0.99 In order to compute the deceivingly simple-looking for-

mulae in Egns. 29-32, we need more detailed equations for
over this region is much easier, and the magnitude of the erto éfé’gaoﬁa] [];](Céxgégffﬁg?fge igi'g)éﬁﬁg;)éfvzrﬁghmiﬁple
introduced by this additional approximation will not be onyhinterval approximation method is that less complicated 2-
par with the approximation of theri + 1"-dimensional exact imensional alarm regions are aggregated, thus reducing the
reglon_wnh a reduced—dmensmngl region. i computational load and increasing mathematical tractability.
To improve upon tr:e approximation introduced in the 5o syb-interval can be approximated with asymptotes, again
previous sectloq, and. catc_h more of the cases m|§sed king the regions of integration much easier to define. The
the single two-dimensional interval, we can split the interval,qo iseq to llustrate the approximation above was for a fixed
into N, disjoint two-dimensional subintervals, and constructisical threshold, considering operating complaints only.
alarm systems for each subinterval. Here we'd like to compute s \va \were to have considered both arrival and operating

the relevant aggregate Type I/l error probabilities for the,mpjaints, a different alarm region would have resulted. As
entire interval in question, by taking thenion of the alarm g0y it is worthwhile to consider the fact that arrival com-
systems corresponding to each subinterval. Practically, thigints are defined as “exceedances,” defined earlier. Because
means that if any one of thé/; sub-interval based alarm gy ceedances are defined in single time slices, we don’t know
syste_m_s sound, ther_l the alarm_ syste_m as a WhOIe_ sou%ut the arrival complaint until the exceedance terminates in
Obtaining the approximate two-dimensional alarm regions fgbme subsequent time slice. Therefore, the arrival complaint

each subinterval is easy, and is based upon the same Iqgiey et pe determined with knowledge of a downcrossing,

in Egns. 20-24. In order to determine the aggregate Type Igg opposed to an upcrossing.

error probabilities, we use Eqns. 29-32. But first we need 101 final approximation method is meant to provide the best

define the alarm sub-interval approximation provided in Eq”ﬁossible approximation to the alarm region for the thermal

25'28' ) sensation complaint application, given b.,..: = {X :
First, recall: P(z < LID) — P(zy, < Lyagsr < Ly, psm < L|D) >
Cogact = {xp < L,...,2p4m < LY\ {zx > L} (25) P,}. We know that the alarm region does not serve as a

) ) . well-defined region of integration. Therefore, thgactalarm
The resulting alarm sub-interval approximations are as fQlysiem metrics cannot feasibly be obtained for complicated

lows: multi-dimensional events by means of numerical integration.
Ai = {&ppsip < Xy Epgsipagh > Vo) (26) To iIIus_trate this fa_tct, Fig. 2 shows the exact alarm regipn, for
. operating complaints only, whem = 3 and the multivariate
s = L—\/Vira, @ (D) (27)  Gaussian integrand id-dimensional. The alarm region is
B 1 aboveand to the left of the surface shown.
Vsin = L+ V Vitsin k@™ () (28) It is apparent from the figure that the surface of the exact

alarm region boundary is quite complex and does not serve

. 2This is also a sample alarm region generated by the same example as in
where the extremes of the 'merval < Si:Si41 = M Fig 1. Itis provided solely for illustrative purposes at this point and not based
correspond to endpoints of all possible subintervals, given models generated from experimental data.
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Exact alarm region for Pb =0.99 ¢
30 U Vi (34)
=1
Furthermore, for the remaining asymptote corresponding to
=9 2y, We have:
[a\]
3
8 _lim Pz < LID)— P(zx < L, ..., Tk4m < L|D) =
10 X\ &) —00
~ lim  P(xp < L,xgy1 > L,...,Zp4m > L|D) + ...
X\ & — 00
O I rk+i>L,ViE[1,m]
15.5

lim Y P(z), < L,T;|D)

X\.’ik‘k—MXJ

J

ZTk|k 145 16 14

where

18
20
14 24 22 :Eki—|—1|ki

>

-

7

{ (xgyi > L Vi Ty < L) |3 apys < L}
Fig. 2. Exact Alarm Region fom = 3 v

1

~lim Pz < Lyxgi1 > L,...,x51m > L|D) =
as a feasible, parameterizable integration region. However, anX\2xx—oo
approximate volume can be defined as a tight bound on the
exact region via the unions and/or intersections of planes. P(xy < L|zo, ..., xx)
This approximation forms a semi-infinite hyper-rectangular
region in multi-dimensional space. For operating complaintﬁ
only, the region of integrationAqpproz, has the following t

wk+i>L,Vi€[1,m]

and due to the definition of the s&f, if 3¢ : x4, < L,
en

representation:
P Clim Y P, < LTD) =0
X\ &) —00 ;
A ? m
Acgact = {Sfi € Qa,,,., CR™} Therefore
= {X:P < L|D) —
(X2 Plaw < LID) lim  P(ay < LID) — P(ax < L,...,2pem < L|D) =
P(:Ek <L,..., Tham < L|D) > Pb} X\Z | —00
{ Multi-dimensional approximation P(xy < Llzo, ... 1)
Auppros 2 {XeQa,,, . C R and
o " >
- {X:Aoﬂ U 4 } (33) Plae < Lizo,.. 2e) 2 Py
i=1 11
Xo
Gpp <L — 4/ Vi ® (P, 35
where Ay £ Gy < L—/Vip® ' (Py) k= k@ (F) (33)
A Taking the intersection of Eqns. 34 and 35 yields the
X 1 2 ; T
Ai = Tppie = LA Vi@ (B) approximation shown in Eqn. 33. A similar procedure can

be used to derive the multi-dimensional approximation to the

alarm region for both arrival and operating complaints. In this

case, the null hypothesis and resulting level-crossing event
The multi-dimensional approximation shown in the chain gthanges, as shown below in Eqn. 36.

logic above can be further elaborated on. For all asymptotes

Vi
Vi € 1,....m

corresponding ta;;x, Vi > 0, we have: Ho : (XeQe.. . CR™ (36)
~ lim P(xp < LID)=P(xp < L,...,Tpym < L|D) = Thid
A\E g ——00 X = :
1— P(xg4i < Llzo, ..., xk) Thtdim
and Cegact = {X€Qc,,., CR"}

1 _P(kari < L|{,C0,...,.’L'k) > Py,Vi >0 = _‘{kard < L7~~'7xk+d+m < L}
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The resulting the region of integratio,,,..., has the logic for this stems from the fact that the control system
following representation: error is the primary parameter of interest, which can be either
positive or negative. Therefore, the process value is within
the interval[— L, L] at the very beginning of the interval, and

A < m+1
Aczact = {3§ €Qpeee CR } outside of it at the very end. The probability(Ceract) IS
= {X:1-Plagra<L,..., shown in Eqgn. 38, and is the same regardless of the alarm
Thtd+m < L|D) > Py} system used.
{$ Multi-dimensional approximation
JAN S m
AGPPT‘OJ«‘ = {X € QAapproz - R +1} P(Ceazact) - P(|mk“ < L) |xk+d‘ > L) (38)
m —L L
= {X:UAZ} (37) = / / N (X; fixe; Bn) dx + . ..
R —oco J—L
120 0o L
0 bl N 7 X Ex d
= {X: U Thydtilk = yd+i} /L -L ol )
. 2:? . . . X = Tk = C‘uq c R?
Eqgn. 37 gives the approximation for the candidate region of = Thid ) b = Ciiq
|ntegra_t|0n for both arrival and operating _cornplalnts, qnd can . CPSLSCT R CPSLS(AT)dCT
be derived fqr all asymptotes corresponding’tQ g%, Vi > x = CAdPsPSCT CP§SCT TR
0, as follows:
£ Elay
lim  1— P(@rra < L,...,%%sdsm < LID) = Ha g

R\Eppasip——00 . . :
b) End of interval up/downcrossing eventhis event

1 — P(2gtdti < Ll|zg, ..., xx) is similar to an up/downcrossing event spanning an interval,
except that the two time slices are adjacent and the event

and occurs at the very end of interval, shown mathematically in
1= P(gtar: < Llxg,...,x5) > Pp,Vi > d Eqgn. 39.
A
:[I Ceract = {‘$k+d| <L, ‘$k+d+1| > L} (39)
U Tpyayip = L+ W/Vk+d+i‘k<1>_1(Pb) The probability P(Ce.qct) is shown in Egn. 40, and is also
i=0 the same regardless of the alarm system used.
Vati
Note that the future predicted values do not begin udtil
steps out, in order to allow for a finite window of prediction P(Cezact) = P(|zgrdl < L,|Trrar1| > L) (40)
prior to the beginning of the day. This is distinct from the -L L
steps corresponding to the prediction window during normal = /_OC /_LN(X;/‘X’Zx) dx+...
building operating hours. The formulae for correct/false alarms 0o pL
and correct/missed detections for both cases are similar to the / / N(x; pix, xc) dx
ones shown in Egns. 29-32. Again, the computational details of L J-L
P(Aupproz)s P(Ceracts Aapproz)s @Nd P(Cezaer) are omitted « - { Thtd ]
here for the sake of clarity, and are provided in [3]. Thtd+1
2) Spacecraft Propulsion System Anomaly Detection Appli- CPSLSCT +R CcX,,CT
cation: As with thermal sensation complaints, anomalies that Xx = CcX,.CT CPLCT +R
occur within a spacecraft propulsion system may not have a X, = Ades(Ad“)T L. - Ade,s(Ad)T

direct operational mapping to any one type of level-crossing
event. Therefore, we will provide a comprehensive review of L, = AL,AT +AQ

many different examples within the class of level-crossing ) . ]
events having a fixed threshold. The examples are listed with €) End of interval exceedance/fade evefihis event is

detailed explanations, all of which use a prediction windogimilar to the end of interval up/downcrossing event, only
denoted byd. differing in the fact that an exceedance is a one-dimensional

a) Up/downcrossing event spanning an intervalhis event. Therefore, the level crossing condition reduces to Eqgn.

event is very similar to the single interval two-dimensiondtL-

approximation described previously for thermal sensation Cezact = {|zk+a|l > L} (41)
complaints. Recall that two time slices spanning the entire

time interval {|xx| < L,|zxt+qa| > L} are considered. The The probability P(Cezact) is shown in Eqn. 42, and is
main difference is that the absolute value of the processalso equivalent to the-value. This important relationship has
considered, mimicking an envelope detection problem. Tipeactical value and will be discussed later.
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j—1
ﬂ |@ktil < L,|zpgs] > L) (46)

/ / / ijaﬂxjv Xj)dxj
/ / / N (%53 i, » Bx,;) dx;

For each of the five listed casea:e we will study and
compare the results of three distinct types of alarm systems,
previously introduced. The alarm system metrics of interest for

(43) this application are the ROC curve statistics: the true and false

All exceedance sub-events in the expression are mufigsitive rates. Eqns. 47-48 summarize the formulae necessary
ally exclusive. The expression represents all combinatiols compute these statistics. Notice that the true positive rate
of exceedances within the given prediction windaly, The shown in Eqn. 47 is identical to Egn. 29, for the probability of
probability P(Cezact) is shown in Egn. 44. correct alarm, also know as recall. There is overlap here, and
there is also usefulness in looking at different alarm system
metrics, which is discussed at length in [16]. In general,

P(Cezmct) = P(|xk+d| > L) (42)
L

\/CPLCT + R

d) At least one exceedance/fade event within an interval:
This event was introduced by Kerr [10] as a problem for study, +
and can be represented as shown in Eqgn. 43.

P(Ceract)
= 20

= P

Il
Il M& i M& i M&

d [j-1
A
Ceact = {lzr| > L}U U [ﬂ |Tkti| <L, |wh4s] > L

j=1 Li=0

P(Cezact) = Pllax] > L) +... as long as the following three probability computations are
d j—1 .
performed-P(Cexact)v P<Aapprox)u and P(Cemacthapproz)u
Zp(ﬂ |Zhpil < Ly lewss) > L) (44) any relevant alarm system metric can be derived.
j=1 =0
d -1
= p+ Y P([) |wksil < L, |wryj| > L) True positive rate:
=1 i= P(Ceract, A )
P Cexac Aa o _ exacty ‘lapprox 47
d - L L ( tl PP ) P(Aapprox) ( )
=p+ Z/L /L . ~/LN(Xj;ij,ij) dx; False positive rate: ,
J=t B B P(A |C/ ) _ P(Oexact’AaPPTOI) (48)
d - L e cvact P<Cézact)
+Z/_OC /_L"'/_LN(Xﬁ“waXJ) dx; a) “Redlines” or Simple Alarm Systemin order to
=1 introduce the use of redlines we first make the distinction

between the critical levelL, and the redline, denoted as
L 4. The critical level represents the threshold above which

Tk Cliq ' damage or some significant decrease in quality of a behavior
X; = : ) Mx; = : eR/! or process may potentially occur. There are some cases in
Thi Cliq whic.h t.his critical level is not 'known, havg not been designed
£ (i B CPLCT+R 1<ii—ip<j+1 a priori, or When kr_10wn _crltlcal levels yield alarm systems
x; (11,12) = cX..cT 1 <iy£ip< i+l that are practically infeasible. The latter case usually occurs
_ 58 ! 2> when the thresholds are set to levels so extreme that the
Xos = A"PL(A?)T + Ly — ALy (A™)T resulting probability computations default to null values. As
Ly, = AL, AT +A2"1Q wherei; < iy such, sometimes it is beneficial to use values that are based
A upon statistical outlier detection and hypothesis testing via the

Ha [ p-value. The relationship between the critical levg],and the
e) At least one up/downcrossing event within an intervap-value is shown in Eqn. 49
This event is identical to the previous level-crossing event

except that two-dimensional up/downcrossings are considered Lequiv = @71 (1 _ B) \ /CpfsCT +R (49)
in lieu of exceedances. The expression describing this event 2

is actually simpler, as in Eqn. 45. The redline value given by 4 is a different parameter
4 than the critical level,L, and essentially acts as a design
A4 PR parameter with which to tune the alarm system sensitivity.
Cevact = U1 'ﬂo |Zhil < Ly |wpeg| > L (45) Its value is the level at which an alarm would literally sound,
Jj=1 \i=

and whose selection may be performed manually via brute
The probability P(Ce.qct) IS shown in Eqgn. 46, with force gridding, or related to the use of a log-likelihood based
identical definitions ofx;, 1, Xx, as in the previous case. method. Using the log-likelihood based method provides an
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alternative method of design for the alarm system that is
essentially equivalent to choosing a redline value via the

distribution using the following equations: (Aapproc) = PllZkral > La) (52)
L
L ~T = 20| —
P(log(p(zk; 0, CP,C" + R)) <) = \/CAd(PL _ PR )(AHTCT
1 We present the formulae for computing the probability of
2 - L ~T _ .
1=Xi < 2 {l T3 log(27) + log \/ CP,,CT + RD = P(Cozact; Aappros) for all level-crossing events of interest in

Appendix II.
c) Optimal Alarm System:The optimal alarm system

2P <_\/_2 [g + % log(27) + log \/CPL CT + RD = uses a concept introduced earlier, by defining the alarm region,

Aeract, as follows:

20 (—La . A

( ACQMU) Aczact = {X : P(CexactHIOa cee ,Ik}) > Pb}
Therefore, Eqn. 50 represents the equivalent valuelfor ~ whereX is a vector of all predicted future process values,

where! is a design log-likelihood based threshold. i.e., &4k, Zxiqr that correspond to the future time steps

in the definition of the critical eventC.,,.;. In this case,
there is no fixed, static threshold,,, akin to the redline or
_ 1 L ~T predictive methods to act as a design parameter. However, the
Lcyusn = \/_2 {l + 2 log(2m) + log m} border probability,?,, acts in place of. 4 as an alarm system
(50) design parameter. As seen previously for the thermal sensation
In general, using the log-likelihood value as the basis fa@omplaint application, the alarm region can be approximated
outlier detection allows for greater accessibility of infinitesieasily by using a variety of methods which use inequalities
mally small values of the significance level (i.e+= 1x10~8) involving predicted future process values, I8 pq)k. De-
for the corresponding hypothesis-based decision test. A m@ending on the the type of event under consideration, the
thorough discussion on the use of this approach for ala@pproximation will vary. However, in general there are two
systems can be found in [9], [19] and [20]. Note that atypes of approximations that can be made for the spacecraft
equivalentp-value for the design parametdr,, can also be propulsion system anomaly detection application.
found with Eqn. 49. The probability of alarm for a redline Unlike the probability of alarm for a redline or predictive
alarm system regardless of level-crossing type is given hjarm system, the optimal alarm system’s probability of alarm
Eqgn. 51. Note that the alarm system never uses any prediciedependent on level-crossing type. As such, detailed formulae
future values, only the value at the current time, such thitr P(A,ppr00) 8N P(Cegact; Aappros) fOr all level-crossing
Aapproz 2 {|lzx| > La}. events of interest are provided in Appendix Ill. However, as
a precursor, we must derive the two types of approximations
to the alarm regions required for computation of these proba-
P(Awpproz) = P(lzk| > La) (51) bilities. We begin with an up/downcrossing event spanning an
interval, whose alarm condition is shown in Eqgn. 53.

L
= 20| -—— =2
L
Y CP,CT + R P(jek| < L, |@kyal > Llzo, ..., 2x) =2 P (59)
As mentioned previously, the probability of the crit- mﬁfﬁémpﬂmk\ <L,|zg+al > Llzo, ..., x1) =
ical event, P(Ceract), as well as the probability of P(|lzx| < Llzo, ..., z1)
alarm, P(Aupproz), and the joint probability of the two, T
P(Cegacts Aappros), SUffice to compute any relevant alarm i
system metrics. Since we already have the necessary formulae Pllan| < Ll ) > P (54)
k 0s---rbk) = LD

for computing P(Cegact) @and P(Agppros), We provide the
detailed formulae fo?(Cezact Aappros) IN Appendix I. The first approximation can be thought of as a “closed-
b) Predictive Alarm Systenithe predictive alarm systemform” approximation, meaning that at least one of the re-
uses a similar fixed, static thresholl,, akin to the redline sulting inequalities involvingz, and ;.4 can be ex-
method. However, rather than the current process valye, pressed directly as a function of the model parameters. The
being used, predicted future values,, 4, are compared to second approximation can be found as a one-dimensional
the alarm level,L 4. The probability of alarm for a predictive scalar nonlinear root-finding problem, [21]. The asymptote
alarm system regardless of level-crossing type is given bgrresponding td, ;. for the first approximation can be found
Eqgn. 52. For the case of the end of interval up/downcrossiimgclosed form by taking the intersection of the inequalities in
event, the predicted future value 9f ;. is used in lieu Eqns. 55-56, culminating in the alarm region represented by
of Zp gk Eqgn. 57. An additional approximation is introduced by taking
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the intersection of these two inequalities. These inequalities Cl0sed form approximations (spanning event for 1 ster
C . — N Alarm regions for L =3 Alarm regions for L = 6
come from Eqn. 54, which is derived by finding the limiting

C - : S L 20 0.9
distribution as the remaining dimension is marginalized by U 08
taking hm|56k+d\k|—’00' 10 J 10 / 0.7

= W=h = — 0.6
P(ay, < Llzo,...,ax) > Py ) &% g = o
P(zy, > —L|zg,...,zx) > Py (56) L [/ ﬂ -10 /”@ ‘ 03
0.2
¢ —20e L LAl UL- g g
. o _ -10 0 10 -10 0 10
|Tge] <L —/Viap® " (Py) = L, (57) Tk Tk

Alarm regions for L = 11 Alarm regions for L = 16

The closed-form approximations shown in Egns. 53 and

0.9
57 are similar to the optimal two-dimensional alarm region 20 w 20 J 0.8
approximations from the previous application found in Eqgns. 10 ML Y : 0.7
22 and 23, respectively. The sole difference is thaf is < 3 0.6
used in place of;, for the current example. The root-finding g 0 }2 0 05
approximation can be found by solving for the zerog 6 ,;,) « 10 [= \ ® 0.4
shown in Eqgn. 58, given a particular value B, yielding the f = o0l 7 I 03
asymptote for the alarm region correspondingitg, such -20 ( 0.2
that |2xx| < L for f(&y) > 0. Therefore, no additional -20 0 20 20 o 20 01
approximations are introduced beyond using the asymptotes Lk|k Tklk

themselves.

Fig. 3. Closed-form approximations for sample alarm regions

Pl = @ (L VL""‘) 9 (L Vi""i) P, (8)
klk il and X (i1, i2) =

When deriving the asymptote fay, , 45, there is no limiting
approximation as in Eqgn. 54. As such, in order to make CPRCT + R =iy =1
closed-form approximation, we use an intuitive approach b JOR L 58 AT e , ]
taking the union of the following inequalities, culminating in C [A (P —Pg) (A ) + Pss} C'+R i1=ip=2
the alarm region represented by Eqn. 59, again introducing an C [pi — (AT)d} cT i1 # o
additional approximation.

Figs. 3 and 4 depict the qualitative nature of both the closed-
form and root-finding approximations to generic sample alarm

P(@gra > Llzo,.. . xx) = Py regions for values of?, shown in gradations of 0.1, respec-
P(zgra < —Llxo,...,71) > B tively. These sample alarm regions are based on various levels
& as shown in the titles of the subplots in the figures and the
following covariance matrix:
|Zeraiel = L+ 1/ Viran® ' (By) = L} (59) . [ 16 6 ]
Although this provides a closed-form approximation, there * 6 9

is inherently no mathematically defensible argument for doinhis simple covariance matrix was generated by forming a co-
so. As such, we provide the more mathematically corregiriance matrix based upon the following standard deviations
approach, which is akin to the root-finding approximationf the random vectoxk:

method, by solving for the zeros off(ix |k, Tryajr) |2,.=0 4
shown in Eqn. 60, given a particular value B, yielding the [ 3 ]

asymptote for the alarm region correspondingefq 4, such ) o . ) )
that [Z5 k| > L% 08 f(Zkiks Eapape) lop =0 0 The correlation coefficient used is= 0.5 in order to simulate
CTalkl — S| R cTalk k|k=U= **

the eccentricity that would most likely be introduced in real
data so as to illustrate that the data are not independent, but

F@riks Terae) = P(lze| < Ly [wk1a| > Llzo, ..., 21) = Py correlated
(60)  These alarm regions are based upon Eqn. 53, and the closed-
L oo L L form and root finding approximations are shown in Figs. 3 and
= (/ L/L +/L/ ) N (x5 pix, Ex) dx — Py 4, respectively. Looking very closely at the figures, one can see

the exact plots are represented by the curved regions, and are

where
. SAs such, these sample alarm regions are again generated solely for
x — Lk|k _ Lk|k c R? illustrative purposes and are not based on models generated from experimental
Thetd|k Thtd|k data.
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Root finding approximations (spanning event for 1 ste L} can be found by solving forf(ijiqr) > 0 and
Alarm regions for L = 3Alarm regions for L = 6 FlEkra Exrarie) log.qn=o> 0, Where

20 0.9
u U 0.8
10 A L—z —L—-2z
10 \~ 0.7 N k+d|k k+d|k
% f@rpap) =@ | —F—— | — Q| —F7—="| - D
3 o 3 0.6 | V Vi+dlk V Virdk
T oo , T oo 0.5 . A
& p— & = 0.4 and f(Lrajk, Thtdtin) =
-10 -100 i 0.3 P(|zpyq| < L, |Tkyds1] > Llzo, ..., xx) — Py
0.2
-20 0.1 ) dx — P,
-10 0 10 “10 0 10 (/ / / / ) (% e, Xx) dx =
Lk|k Lk|k
Alarm regions for L = 11Alarm regions for L=16  Where
0.9 Thtd|k Tryd)k 2
20 J . X = =1 . eR
L 20/ | ! ,,,, 83 [ Thtd+1lk } i [ Thtdrilk }
= 10 = 0.6 and X« (i1,42) =
T o T o 0.5 .
<$ <§ 0.4 CPk+d|kCT +R 11 =12 = 1
-10 i = 0.3 CPk+d+1|kCT +R i1=1iy=2
| —20} |II’ ! ' CX,,CT in #i
~20 r\ 20 ( 0.2 ss 1 7é 2
0.1 where
=20 ) 0 20 -20 ) 0 20
Lk|k Lk A -
d(PR L d L
Piiap = AYPL—Py) (A7) +P
. .. . . . AN ~ L T L
Fig. 4. Root-finding approximations for sample alarm regions Pirape = Ad+1(Pi -P2) (Ad'H) + P
~ T T
X,, = A¢ {Pg (AT - LSS} (A" + Ly,

approximated by the rectangular bounds that represent both the
closed-form and root finding approximations. Improvement nk
the approximations can be discerned by closely examining the
tightness of the rectangular bounds. Notice that the approxm%/
tions improve ad. increases in both Figs. 3 and 4 due to the
eccentricity of the alarm regions. In contrast, for smaller values P(|zhtal > Llzo, - .. 2k) 2 Py (64)

of L, and asP, increases, the closed-form approximation Again, we will forgo the derivations of the two types of
WOorsens as seen in Flg 3. The same is true for the rOOt-fIndlggproximaﬂons to the alarm regionS, as they are similar to

method, however, as seen in Fig. 4, the asymptotic bounfigse for the previous cases. As such, the resulting closed
are tighter. This implies that the alarm region represented ®tm alarm region is shown in Eqn. 65.

Egns. 57 and 59 (closed-form approximation) provide a poorer
approxmatlon to the glar.m region than with Eqns. 58 and 60, |Eppa] > L+ \/mq)_l(Pb) _ LX (65)
when using the root-finding method.
The alarm condition for an end of interval up/downcrossing The resulting root-finding alarm regions are governed by
event is shown in Eqgn. 61. the same inequality in Egn. 6521( can be found by solving
for f(&y4qx) > 0, where

dLSS = AL, AT + AQ
The alarm condition for an end of interval exceedance/fade
ent is shown in Eqn. 64.

P(|£Ck+d‘ <L, |£C]€+d+1| >L|{,C0,...,.’Ek) > B, (61)

. o A Zya + L —Zpyar — L
We will forgo the derivations of the two types of approxi- f(Zx+ajx) = ® A + — |~ P,
mations to the alarm regions, as they are similar to those for V Vktdlk Vv Vhketdlk

the up/downcrossing event spanning an interval. As such, therhe alarm condition for at least one exceedance/fade event

resulting closed form alarm regions are shown in Eqgns. 62 awéthin an interval iSP(Cepact|D) = P(Cezact| o, - -+, 1) >
63. Py, and is expanded in Eqn. 66.
|Zesael < L= /Vigap® ' (B) =L,  (62) .
| | A P(lzi] > LID) + > P(( l2aril < L, |ziss] > LID) > Py

V

7 -1 =Lt =1 =0
[Zktrdriel = L/ Vipapp®  (P) =L (63) j (66)

The resulting root-finding alarm regions are governed To determine the approximations to the alarm regions, we
by the same inequalities in Eqns. 62 and 63, and can again use either the closed-form or root-finding methods.
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Closed form approximations (at least one exceedance in 2

Using the closed-form approximation, we intuitively use the Alarm regions for L = 3  Alarm regions for L = 6

same logic as in previous cases. Specifically, we can use an 1 15 0.9
extension of the alarm region found in the derivation of Eqn. 0.8
. . S 10
37, even though it was presented for a different application. 5 e P 0.7
As such, the closed form approximation can be represented for Lo f | 0.6
all asymptotes corresponding &y x|, Vi > 0, as shownin = N/ g 0 05
Egns. 67 and 68. & < /| G g 0.4
-5 | N~ \—r 0.3
Aappror = | 1Erpitel = L+ [ Viqip® ' (P)  (67) -1 -15 0.1
Z-L:JO Z Z o o0 10 7710 0 10 |
L Tk Tk
] o ) o ) Alarm regions for L = 11 Alarm regions for L = 16
Using the root-finding approximation, the same union of  5q 0.9
inequalities applies, as in Eqn. 68. _ 20 —— — 0.8
e — 0 \
d 107 10 (1 8'2
Agpproz = |J [Errape| > LY, (68) = | = '
approx ZL:JO| +1i| | A; z 0 ja 0 0.5
53) NS
However, the alarm region can now be found by the inequal- _1a |l v -10 L gg
ity f(X) |X\jk+ilk:02 0, where the asymptoteifj;i can be e 0 NS =7 0:2
found by solving for the zeros of(X) = P(Cerqct|D)— Py = -2 0.1
) =20 0 20 =20 0 20 '
L Tp)k Ty
P(lzx| > LID) + Y P(() leksil < L, |wky;| > LID) — Py
j=1  i=0
R I R I Fig. 5. Closed-form approximations for multiple exceedance alarm region
Tr|k + —Tp|k —
= Zkik T2 +® “hklE T +
vV Vilk VALY
4 approximations can be used to form a hypercube, outside of
o rk L which integrations to compute relevant alarm statistics may be
Z . N (x5 px» Bx, x5 + .. erformed
/L J-L -L p .
-L (L L Root finding approximations (at least one exceedance in 2 sl
Z/ / . / N (x5; i » Bx;) dX; éAIarm regionsforL=3  Alarm regions for L = 6
=1 -0 J-L -L 1 0.9
— ——m————
) 0.8
I+ 5 10 = 0.7
o = ") < 0.6
Tk|k Tk|k 0 =] o 0.5
1 < ©
Xj = » Mx; = eR* s P « 0.4
. -5 0.3
Thtjlk Thyjlk -10 0.2
. T 1 =1 —_
Sw(in,ia) = { CP%_;(“C%T"_ o=t Yo 0 0 -10 o 10 O
ss 11 7é 12 i‘k\k .@Mk
where Alarm regions for L = 11 Alarm regions for L = 16
_ A pi PR _plL i\ T L 20 0.9
Pk+21|k = A (Pss Pss) (A ) + Pss —— = 20 = = 0.8
. “R .\ T T 10 ;'/ ’ N ’ 0.7
X, = A"[PE(AR) L) (A +L. T | 10 06
andL,, = AL, A7 + AQ e IR o
This alarm region may span many dimensions, but can _;q || = 41 -10 03
also be shown in two or three dimensions. As such, we — 20 — 0.2
provide Figs. 5 and 6, which illustrate the qualitative nature _2% 0.1
of both the closed-form and root-finding approximations in  ~ 0 ‘@gk 20 -20 @gk 20

two dimensions for sample alarm regions, as in Figs. 3 and 4.
Again, we see that the root-finding approximation provides
a better bound on the alarm region than the closed-forfig. 6. Root-finding approximations for multiple exceedance alarm region
approximation. We also show a sample three dimensional

alarm region in Fig. 7, for illustrative purposes. The same Finally, for at least one up/downcrossing event
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Alarm Region for at least one application. As such, we may use Egns. 55-57 to define the

exceedance/fade in 3 steps closed-form or root-finding approximations and the asymptote
for [Zyx|, previously used for the derivation of Eqn. 57 in the
beginning of this section. For the closed form approximation,
it is given by the same inequality, shown again in Eqn. 72.

20

|Zf?/c‘k| <L-— Vk|k(1)71(Pb) =L, (72)

Trto)k
<

Furthermore, the root-finding approximation can again be
found by solving for the zeros of (¢,) shown below, just
as in Eqn. 58 provided previously. Given a particular value of

20 Py, the asymptote for the alarm region corresponding i@

0 5 is defined byL, where|z,| < L for f(y) > 0.

220
20

Tpt1lk -200 20 Tr |k

L — @y, —L — @y,
f(@rk) =@ <% | —— | -
Fig. 7. Multiple exceedance alarm region in 3 dimensions Vk|k Vk"“

The combined alarm region is the intersection of Egns. 71

within an interval, the alarm conditionP(Cepact|D) = and 72, yielding Eqn. 73.

P(Cexact|®o, - .., 2x) > Py, is expanded in Eqn. 69.

d
a it A = 1&sarl = LE] () [1Eek] < L7]  (73)
approx k+ilkl = 4, klkl =~ L
P(() |#nsil < L |oxij| > LID) = P, (69) 1:LJ1 1
j=1  i=0

] o ) This alarm region is the last of the optimal regions to be
To determine the approximations to the alarm regions, Wescyssed. However, there may be many more that can be
can again use either the closed-form or root-finding methodRsfined from within the class of level-crossing events having
Both approximations can be represented identically for a|l fixeq threshold, using the same techniques. This particular
asymptotes corresponding [0y, x|, Vi > 1, @s shown previ- gyent in which at least one up/downcrossing occurs within an
ously in Egns. 67 and 68. However,‘ here these_approxmathﬂﬁarvaL may also span many dimensions as in the previous
are good only for the asymptotes > 1 as distinct from gyample. We show a sample three dimensional alarm region in
Vi > 0 with at least one exceedance/fade event within )y g for illustrative purposes. The approximations provided
interval. The alarm region approximations for this subspags; ihis alarm region can be used to form a rectangularized
are represented by Eqns. 70 and 71, for the closed-form afi,nq again outside of which integrations to compute relevant

root-finding methods, respectively. alarm statistics may be performed. In two dimensions, this
d event is identical to the first one covered in this section, an
U | &) > L+ /Vkﬂlk@fl(pb) (70) up/downcrossing event spanning an interval. The correspond-

im1 ing relevant approximations are shown in Figs. 3 and 4.

+
LAi

Alarm Region for at least one

d
(71) up/downcrossing in 3 steps

U [#ksael = L,

i=1

For the remaining asymptote corresponding|g;|, we

provide the same two alternatives again for either the close 20
form or root-finding approximations based upon the derivatic ..
provided below. 0
<3
d i1 -20
_lim P(( |zk4il < L. |anes| > LID) =
X\ljk\kl"oojzl i=0 407
20
P(‘xk| < L|$0, cee 7:17/6)
0
T

Ept1l 40 20 Tp |k
P(|lzg| < Llxo, ..., 75) > Py

This follows from the same logic that leads up to Eqrfig- 8. Multiple up/downcrossing alarm region in 3 dimensions
35 for the previously addressed thermal sensation complaint
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V. EXAMPLES

For both of the examples to be used as a demonstrat
testbed for the theory presented in the previous section, !
use variants of data-driven methods to arrive at statistica_ (%)
viable models. It is possible and in some cases preferable
use a model that incorporates physics and is based upon 1
principles. In these situations, model fidelity is of paramoul
importance, so that simulation of the model results in
realization that both quantitatively and qualitatively resemble
real system behavior. These models are often of use when
implementing algorithms that automatically take correctivieig. 9. Closed-Loop Control System Block Diagram
action, or respond appropriately to caution and warning alarm
signals. In some cases, philosophical or political drivers man-

date the' use of SUCh. models, Wh?n intuitive _‘"‘”d physigakhion. As such, the control system error provides an excellent
explanations are required for the implementation of alargyameter for monitoring in the face of latent faults that may
systems. present themselves in a more nuanced manner. This measure
However, developing such models often requires extensiH%y serve as a more advanced technique to complement
labor and expert domain knowledge. Invoking the data-driveflyorithms that use direct sensor measurement which have

approach ameliorates this requirement. Furthermore, dafgsre physically intuitive interpretations when applying the
driven models are sufficient for our purposes here becaysgit check paradigm.

statistical characterization is a reasonable first step in applica:l.

i £ al ¢ based irol ‘ M here are two primary control systems that operate in
lon of alarm Systems based upon controt system error. Ogﬁ(iport of the Space Shuttle Main Engine (SSME), the

extensive models may be required when developing automafe cfecraﬂ propulsion system which is the driver for all of

response strategies as in [3]. As such, we present models bq &% models developed in this section. One is the throttle
upon the data-driven approach at different stages for boé

. . trol system, which regulates the main combustion chamber
the spacecraft propulsion anomaly detection and the therrﬁ?gssure. The other major control system that functionally
sensation complaint example.

supports the SSME is the mixture ratio control system. This
system maintains the oxidizer/fuel mixture ratio at a desired
A. Spacecraft Propulsion System Anomaly Detection Applidavel. We use the throttle control system error due to the
tion commanded throttle qualitatively being the apparent driver for

The model used for the spacecraft propulsion system anop®-many other sensor readings.
aly detection application will be briefly reviewed here. More In Fig. 9, the closed-loop control system representation
extensive details can be found in [9]. This model is basddustrates that the actual throttle levelit), is subtracted from
upon control system error, with a fixed critical threshold d&e desired or commanded throttle leve(f), to obtain the
the primary indicator of criticality. The data used for trainingontrol system errore(t) = r(t) — x(t). The block labeled
of the model is also discussed in detail in [9]. For th€ represents the controller, which we can nominally assume
example presented here, the model is based upon the redueelde a very simple Pl (proportional-integral) controller. The
dataset discussed in [9] that eliminates certain tests ba&ddcontroller takes the control system error and computes the
upon functional categorization. There are several motivatioBgpropriate actuation to deliver to the plant, labeled as block
behind training a linear dynamic system using control systefy The plant may be subject to input noise(t), which is
error for the spacecraft propulsion system anomaly detectigyiroduced directly into the state dynamics. Finally, as the
application. One relates to the fact that the data requiremef@gdback loop is closed, measurement noigg), may be
are quite modest. The training data is univariate, he= 1, additively introduced to the output of the plant to forrt),
and represents the difference between the commanded thrdtgied by the control system.
and actual throttle. In control systems terminology, this is the There are several transfer functions that can be formed from
control system errore(t), traditionally used as the input tothe closed-loop state dynamics. The one that we are most
a controller, as shown in Fig. 9. At the same time, we canterested in from the machine learning standpoirif i, ..,
provide for a richer description of the dynamics of the dataor the closed loop dynamics that represent the transfer function

We also appeal to the use of control system error agairfisim input noise to error. Because the data available to us
limit checks or redlines in the design of various alarm systenfsr training is the control system erroe(t) = r(t) — x(),
Disturbances that influence a control system during nominae can reformulate the dynamics of the closed-loop feedback
operation may cause a threshold to be exceeded. Howewemntrol system into a standard representation that can be
other non-environmental disturbances may represent subtletreated as an unsupervised problem in machine learning (i.e.,
in the dynamics of the system being controlled. These anomsing output observations only). This is performed by loosely
alous excursions may potentially stem from latent faults @pproximating the measured control system error using the
the controlled system that are precursors to incipient failuresansfer function,I'F,,,_... Further discussion of the nuances
and may eventually manifest themselves in a more serioafsthis point are provided in [9]. However, everything within

v(t)
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the dotted line can be reformulated to represent the closedFig. 10. Details of this procedure are provided in Zoubin
loop dynamics, where the desired outpute(g). Ultimately, and Hinton [26] as well as Digalakis et al. [27], and it is
we would like to be able to express these dynamics as shoimplemented using Murphy’s BNT (Bayes’ Net Toolbox) [28].
in Egns. 74-75 below. In Eqns. 74-75(t) is used as a generic Initialization of the parameters shown asn Fig. 10 is also
placeholder for the transfer function outputs), rather than performed using some basic heuristics. By initializig-= 1

for x(t) shown in Fig. 9. This allows for us to match theand clampingv,, during training, we can back out the learned
notation used in Section IV. value of the damping ratig. Initial values forA. and B,,
can be derived as a function ¢fandw,,, C. = [ 1 0 | is
fixed during learning, and is initialized by mak2ing a guess

a(t) = Acqt) + Buw() (74) at the SNR (signal to noise ratio), so that= <7z (02 can
z(t) = Ceq(t) +v(t) (73)  be computed directly from the data).
again, where U§ing the_se assumptions, a_nd by use of steady-state
continuous-time Lyapunov equations for Eqns. 74 and 75 (cf.
wt) ~ N(0,Qc) PL, from Fig. 10), we can find an adequate initialization
v(t) ~ N(O,R.) for Q., as is performed in [24], [3]. We then discretize

) ) ] ] all parameters using the sampling intervB] = 0.04 sec
All matrices in the equation above are also subscripted Wlwbtained from the data in [9]) , and the procedure outlined

c or“w” in_ order to disa_mbiggate betwee_n the continuougy [3], allowing us to form Eqns. 80 - 81, which support the
time dynamics and the discretized dynamics yet to be pigsriaples shown in Fig. 10. Furthermore, they also support all

sented, which mimic those used in Section IV. EAns. 74-G} the theory presented in Sec. IV, beginning with Eqn. 1,
need to be discretized in order to fit the digital implementatioQnich are identical to Egns. 80 - 81.

of the algorithm. However, prior to discretization we can
generate statistics from available data that map to parameters
in controllable canonical form. The controllable canonical drk+1 = Aq, +wyg (80)
form shown in Egns. 76-78 includes two intuitive canonical z, = Cqu+ vk (81)
parameters: the natural frequency,, and the damping ratio,

¢. We can estimate the natural frequency by making anwhere
assumption of(t) to be represented by a zero-mean stationary

Gaussian random process. In this case, we can use Rice’s ~ N(0.Q)
formula for the level-upcrossing rate [22], [23], as shown in ~ J\i(% R)

Eqgn. 79, to compute the natural frequency, = o This
formula can be derived very easily [24], and is used in similar
studies [15], [25], [3].

= €

(eAT: —T)A'B,

s aw»s 3
Il

= C,
R,
0 1 - 7
Ac = |: —w? _2Cwn :l (76) TST
0 Q = / eAAB,Q BLeA N )
o= 2] ) 0
" Throughout learning, we attempt to retain the controllable
Ce = [ 1.0 } , (78) canonical structure in order to allow for determination of the
vi o= T —5(F5Lm) (79) learned value for(. Furthermore, it allows for an intuitive
2moy interpretation of the model's parameters and resulting realiza-

By using L = 0 as a candidate level, we may count th&ons. This is easily performed by the allowance for enforce-
number of zero-upcrossings of the sample data, and compuotent of arbitrary constraints in Murphy’s BNT [28], and slight
the 2"4-order statistics,:,, and o,,, in order to use Rice’s modification of the appropriate open-source routines. Doing so
formula to findw,,. In caseu, = L = 0, we simply need/;", introduces sub-optimality into the learning procedure, which
becausev, = %= = 27v;. means that the learning curve will not necessarily increase

After discretization, Eqns. 74-75 fit the modeling paradigmonotonically. However, a reasonable sub-optimal local min-
represented by our machine learning problem representednmum will be found that best represents the parameter space
Fig. 10. The modeling paradigm in this figure is expresseudth enforcement of the controllable canonical form constraint.
within the probabilistic graphical model framework. Here we In the results section we will perform a comparative analysis
can see that the model to be learned is a dynamic systafithe alarm systems discussed thus far: redline, predictive, and
The observed data are represented by shaded nodes andpiienal, for each of the level-crossing events introduced in
unobserved state represented by hidden unshaded nodes. Beth IV. The manner in which the analysis will be performed
are continuous (Gaussian) random variables, the latter isfvia the ROC curve. For each level-crossing event, four
which need to be inferred. different prediction windows will be investigated:= 1 (0.04

During the learning procedure for the linear dynamic sysec),d = 2 (0.08 sec)d = 5 (0.2 sec), andl = 10 (0.4 sec),
tem, the EM algorithm is used to find the parameters showm allow for the study of a variety of cases for potential early
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Observations

Fig. 10. Linear Dynamic System

detection. It is important to note that for certain level-crossing The building temperature process is also defined first in

events, the computational burden of the alarm system designtinuous time, and both have the same canonical parame-

increases with the number of steps in the prediction windowization as in the previous example shown in Egns. 76-78.
The data-driven model derived in this section represents a

more advanced statistical method than will be presented for

the thermal sensation complaint application in the next section. a(t) = Apq(t) +Byr(t) + Buw(?) (83)

We've demonstrated here that a training procedure involves z(t) = Cuq(t) +o(t)

Iearn!ng via use_of the EM algorlthm_, etc. Typically, mac_hme All of these systems must be discretized for the discrete time
learning/data mining methods require a formal experiment

to be conducted such that a data set is partitioned in%walysm in Sec. IV to apply. This is done by performing a zero-

i . I order hold on all of the above systems as shown in [24]. As

mutually exclusive training and validation hold out subsets. o
L uch, a sampling interval;, must also be chosen. As a rule

The validation hold out set serves to test the model on da . : NN

of thumb, we choose a discrete time sampling interval based

:jrgisneiﬁg ggt;h%gﬁgeel)gm%?ef gfe(;g/fa q;:s/r;ner;nfégfsgr{::fp%&on a fraction of the shortest time constant of the dynamics
this more formal procedure are as follows: [29], [30], [31], [9] all relevant processes. More details of the selection of the

The latter reference uses the same model derived hesr%mpllng interval are available in [3]. However, the valugof

where a more formal experimental treatment is provided. e20 min, which certainly provides evidence that the dynamics

\ . . : ére are quite different than in the previous example. Again,
don’t use the same formal procedure in this article, because .” - .
. o . . .apriori statistics for the zero-mean input and measurement
the main point is to introduce an alternative alarm design . o
. : . gise processesy(t), v(t) and n(t) need to be quantified.
technique and to compare it to others based upon its theoreti .
are scalar processes, such that), v(t), n(t) € R. Using

rather than its experimental merits. One of the theoretic& : X NG
o : aussian assumptions, we have the following:

merits lies in the fact that we can design an alarm system

based upon the model parameters derived from the training

data without having to form a ROC curve empirically based wt) ~ N(0,Qu)

upon examples of failures. o(t) ~ N(O,R)

t) ~ n
B. Thermal Sensation Complaint Application n(t) N, Qn)

The second example is based upon a similar state-spacBlote thatr(¢) € R is a scalar fixed control input, which in
model which can be used for complaint prediction in therm&Ur application acts as the thermostat setpoint. Note also that
comfort applications. Recall that this model involves a randof? is only applicable to the building temperature process, as
threshold, and the dynamics are quite different than in tifelS the measured process, an) is only applicable to the
previous example. Here, the hot complaint level is arbitrari§emplaint process, where there is no defined “control input.”
chosen as the example of interest to prevent redundancySiice we assume that modeling the complaint levels requires
is assumed that distinct hot and cold optimal alarm systefi@ direct control input term, the mean of the input noise
for the two processes can be designed independently. THINg these processes is taken as the mean of the output.
state-space systems for the hot critical level as well as ti¢s0, no measurement noise needs to be modeled for the
building temperature process of interest can easily be paf@Mmplaint levels because there are no measurements of these
meterized. The subscripts of the system matrices for both ttobserved processes. For the building process, typically the
complaint and building levels areh* and “b”, respectively, Output measurements oft) come from a DDC (Direct Digital
to disambiguate between the continuous time and discretiZe@ntrol) system associated with more sophisticated commer-
representations yet to be presented. We first define the st&f@l building systems. Otherwise, these types of measurements

space equation for the hot complaint level in continuous timften come from micro-dataloggers that record the temperature
for a preset period of time.

_ Table | provides the relevant parameters and respective
z(t) = Apz(t) + Bpn(t) (82) values for all three processes in continuous time. With the
y(t) Crz(t) exception of the last two columns, these parameters come
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TABLE |
TABLE OF BUILDING AND COMPLAINT TEMPERATURE STATISTICS

ng ~ N(ur,Qn,)

T

2

HT or o w ¢ _ 915

B pL T

C,PLC]
Hot | 91°F | 5.06°F °F vad | 1 -, & PL
: 11455 | 0.6645524 whereP,, = Q—
n4

= APEAT +B,,BT

wq

Cold | 5o.gep | 014°F | 4085E | goo53zed | 1
' also:
Bldg T4°F 3.57°F 0.91]171: 0.2682% 1 Wi~ N_(O’ Q)
T,
Q = / A B, QuBLeA M)
0
2
from Federspiel’'s work [25]. The fourth column’s))Y values where@,, = &
were derived from the first three using documented methods Cp.C"
[15], [25], [24]. The fifth column’s () values were selected andP, A P,
heuristically for simulation/analysis ease [24], [32]. ) Qu
The measurement noise can be computed by a procedure AP.+P.AT = B,B?
discussed in [3], where relevant assumptions are also discussed
. . . : and:
in detail. The primary reason for computing the measurement
noise is for use in Kalman filtering and prediction, which
is an implementation prerequisite of the type of optimal vy ~ N(O,R)
alarm system introduced in Sec. IV. The formulae relating R = E[ul]

the remaining discretized, discrete-time parameters to their

continuous-time counterparts are shown in Eqns. 84-87. TheEquations 84-87 relate back to Eqn. 1 in support of theory
state-space parameters are discretized by performing a zeesented in Sec. IV. This is not as apparent as in the
order hold of the two processes. The input noise discretizatiprevious example, where there was a more straightforward
results are also provided for the building temperature procesgplication of the theory developed. In this case, the level-
using a documented procedure [33], [34], [35], [36]. Therossing problem can be reformulated because two processes
input noise variance for the hot complaint level process wiseract, the stochastic critical level associated with hot com-
not discretized, but found by using discrete-time Lyapunddaints, and the building temperature process. In this case the
analysis of the discretized state-space system. A documenkeédman filtering and prediction would only be performed on
method [24] shows details on how to derive the discrete-tinflee building temperature process. Reformulation of the level-
input noise based on a continuous and discrete time Lyapuris@ssing problem entails transformation of the problem into
analysis of the statistics for these processes. one that fits the paradigm of a fixed, static threshold. In doing

Discretization of state-space equations for both processes® we simply take the difference between the stochastic critical
level, y., and the controlled processy, implying that the

Zir1 = Apazi + Bpang (84) critical level is given byL = 0, due to upcrossings af = 0
Y = Chrazi (85) by zx = . - .
Furthermore, the conditional expectations necessary for
Qet1 = Agp + By +w (86) arriving at the Kalman filtering and prediction formulae require
vy, = Cag+uvg (87) a slight recasting. This will not result in a large deviation from
the alarm theory previously presented, but BBe; term in
where Eqn. 86 needs to be accounted for and propagated through
AT, all of the equations in Sec. IV. In addition, the level-crossing
Apg = et problem can be reformulated even further due to the fact that
Bha = (eArTs - A, 'B, the conditional expectation of the stochastic critical leygl,
Cw = Cp conditioned on the observations is given as shown in Egns.
A = AT 88-90. This is due to the assumption that building temper-
AT . atures are uncorrelated with, or independent of the hot and
B = (eM -DA "B, cold complaint levels. This independence assumption made in
C = G Federspiel's study [14], is valid if the coping behaviors of

building occupants do not vary with building temperature. As
and such, the reformulation of the problem from the alarm theory
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standpoint as presented in Sec. IV is for the procegsto covered in Sec. IV. ROC curves provide the basis for Figs.
interact via upcrossing with the levél = p7, . 11-15 presented in this section. The formulae for true and
false positive rates required to form the ROC curves were

. A presented in Sec. IV as Eqns. 47-48. We know that as long
Derae = Elynralzo, -, 2] (88) 45 the following three probability computations are performed:
= Opyilk, Vi >0 (89)  P(Ceract), P(Auppro ), AP (Copact, Aapproz ), @NY relevant
= ur, (90) alarm system metric can be derived from them, including the

true and false positive rates required to form the ROC curves.

Again, our problem is to design an optimal alarm system )
tThe formulae for each of these probabilities were provided

that predicts at least one operating complaint, or at leas detail f I al d level .
one arrival and operating complaint. For the former case, W detail for all alarm system types and level-crossing events

use al2-step ahead prediction window, on — 12. This of interest, both in Sec. IV and in the appendices. As such,

corresponds to a-hour period in which operating complaintsCoMPuting integrals of the form necessary for design and com-
rison of the alarm systems require multivariate probability

can occur either during the morning or afternoon period of 1 s X )
day. For the latter case, we use the same- 12 step ahead computations. These computations are performed by using

prediction window, andi — 3 as the number of steps prior toG€NZ'S algorithm [17], based upon a Monte Carlo-style in-
the start of the day. In this-hour period prior to the beginningtegrat'on' Due to the Monte Carlo nature of the computations,

of the day, we want to predict both arrival complaints and fixed number of random samples must be set. For the results
operating complaints in the ensuirghour period presented below, the fixed number of random samples for each

All results and subsequent discussion for the application Bfegration performed was set 8600 sample points.
the theory presented in Sec. IV to this example are providedThere is an important property of the ROC curve to consider
in thorough detail in [3], in lieu of presentation in this articlewhen evaluating the results presented in the section from an
In [3], a comparative analysis of the differing approximationgbsolute standpoint. The diagonal line corresponding to equiv-
used for the level crossing events defined above is providédent true and false positives values represents the boundary
Furthermore, an error analysis for these approximations @gove which a system performs better than randomly guessing
well as comments on accuracy and computational desifjithe level-crossing event occurs. From a relative standpoint,
time are provided. Unlike the previous application, the alarhis property is less important because the objective is to
system metrics used are Type /Il error probabilities (falggerform a qualitative comparison among different types of
alarm/missed detection probabilities, respectively) in lieu @arm systems.
the ROC curve. Many of the results shown in Figs. 11-15 actually lie very

The extent of the data-driven method as applied to thisose to, if not along the random guessing line. This mainly
example lies in generation of a model derived from statistidsas to do with an increase in the prediction window size, or
It is still possible to characterize the building temperatum@r prediction of an event that lies at the end of a prediction
process through the same control loop as shown in Fig.window. Naturally, there is more difficultly with accurately
as for the previous example, although there is a differepiedicting events that are defined with large prediction win-
transfer function of interest ... However, the parametersdows or that that lie further out into the future. There is
shown in Fig. 10 are not learned via the EM algorithm for thisven potentially the possibility of insufficient resolution to
example. Rather, the model derived purely from statistics th@ipture the full curvature of the ROC curve in some cases.
would typically serve as the starting point for such an alggurthermore, the ROC curve is only as good as the given
rithm is used. However, if we apply the canonical constraintfodel parameters, since the ROC statistics are a function of
as for the previous example, the resulting distribution basgtese model parameters, which are implicitly a function of the
on the learned parameters may not change significantly frefata. Therefore, a different training data set may have resulted
the initial parameters. As such, using the model derived froj a ROC curve that has a different shape that would be more

statistics is a feasible alternative for this application. robust to increases in the size of the prediction window.
For the curves presented in Figs. 11-15 below, the re-
VI. RESULTS sults of the optimal ROC curve true and false positive rates

All of the results presented in this section are only for theere obtained via approximation. As presented in Sec. IV,
spacecraft propulsion anomaly detection example. As stathé optimal alarm system alarm regions had two different
previously, detailed discussion of the results for the thermapproximations available: the “closed-form” and the “root-
sensation complaint example can be found in [3]. Chapter 3firiding” approximations. Both approximations yielded very
[3] details the fidelity of various approximations to the exadimilar and in some cases nearly indistinguishable results for
optimal alarm region, and Chapter 7 covers the implementatialh of the cases presented below. However, as evidenced in
of the resulting alarm systems. In general it was found thkigs. 3 - 6, the ranges aP, over which the alarm regions
improved approximations to the exact alarm region wegere feasible differed by a modest amount. As such, where
possible at the expense of an increased computational burdere approximation yields an infeasible solution, the other

There are no comparisons to other types of alarm systemsajproximation is used in its stead. This is performed for all
[3] as will be presented here. As such, we present the resuhise and false positive rate computations for the optimal alarm
for all alarm system types and each of the level-crossing evesystem results displayed in Figs. 11-15 below.
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ROC Curve (d = 1 step = 0.04 sec)
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Predicted Event: End of interval up/downcrossing
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Fig. 11. ROC curve for up/downcrossing event spanning an interval Fig. 12. ROC curve for end of interval up/downcrossing event

A. Up/downcrossing event spanning an interval

Predicted Event: End of interval exceedance

ROC Curve (d = 1 step = 0.04 sec)

ROC Curve (d = 2 steps = 0.08 sec)

By observing the ROC curves in Fig. 11, we can imme- L - 1 — redline
diately discern that for the two smallest prediction windows ® 08 Predictive
(d = 1, d = 2), both the optimal and the predictive alarm & / = —— Optimal
systems perform better than the redline alarm system, and$ 06 Los
their performance is qualitatively identical. As the prediction 7 4 g 04
window increases, all alarm systems appear to have identicalg —radie 1| 8 ’
performance, which lie along the random guessing line. Fo.2lf Predictive F 02

: — Optimal
B. End of interval up/downcrossing event % 0.5 1 % 05 1
False Positive Rate False Positive Rate

By observing the ROC curves in Fig. 12, we can tell that the

redline alarm system clearly outperforms the predictive and the ROC Curve (d = 5 steps = 0.2 seq)

ROC Curve (d = 10 steps = 0.4 sec)

optimal alarm systems for all prediction windows. The optimal ! — Rediine ! " Redline

alarm system outperforms the predictive alarm system only Predictive 08 Predictive
marginally. From an absolute standpoint, however, this is an§ ||~ Optima g | [ ——Optima
unimportant distinction due to the fact that both systems yield ¢ 06 206

performance that lies along the random guessing line. Thisg 7

can mainly be attributed to the fact that the up/downcrossing § 04 § 04

event occurs at the end of the prediction window interval. = 02 = 02

Because the crossing event occurs at the end of the interval, the ™ '

alarm systems that introduce predicted future process values g 0

are already at a fundamental disadvantages in comparison 0 ° i potverae - ° FasePoiveRae

the redline method.

C. End of interval exceedance/fade event Fig. 13.

In Fig. 13 we can qualitatively observe that the optimal
alarm system outperforms both the predictive and redline
alarm systems for all prediction windows. However, this is

ROC curve for end of interval exceedance/fade event
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Curiously, the predictive alarm system performs worse than 1 1
the decision rule dictated by the random guessing line. This
indicates that the information in the model and parameters areﬁ 08 : § 08
being used incorrectly [16]. Using the optimal alarm system g (¢ 06 g
method therefore drastically improves the predictive capability /| Redine 2
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False Positive Rate False Positive Rate VIl. DiscussiON CONCLUSIONS & FUTURE RESEARCH

It is not easy to draw a general conclusion from the results

presented in the previous section. Comparatively, in consid-

Fig. 14. ROC curve for at least one exceedance/fade event within an interdahtion of all alarm systems, determining the best performer
depends on the type of level-crossing event, and which alarm

systems introduces prediction of future process values. How-

D. At least one exceedance/fade event within an interval €Ver in case of the latter category, the optimal alarm system is

Fia. 14 illustrates that th litati ¢ £ th i clearly the best performer, even in light of the approximations
| '9. It ustra e;s at the quairtative lna ureé) it € '?hp MY¥Ysed. Redline alarm systems do not have predictive capability
alarm system performance Is again always better than § She sense that no predicted future values are used, although

predictive alarm system for all prediction windows. Howevefh(iy may practically provide predictive capability in the sense

in this case its performance in general is never qune as 999t an alarm may sound prior to a critical event. Optimal and
as the rgdlme alarm systems. For smallgr prediction windo edictive alarm systems have predictive capability in both
the 'opt|mal alarm system does marginally outperform t. ®nses. In fact, these alarm systems can be thought to provide
redline alarm sys_te_m for a small range of_vglues of the OIeSIggtrlier detection of potential faults than provided by redlines.
parameter/%,. This is _"’"?’0 tru_e of the predictive alarm SyStenCI'his therefore introduces some bias into the comparative
for the smallest prediction window. analysis. Furthermore, the use of Kalman filtering allows for
. o ) estimation and prediction of states that would otherwise be
E. At least one up/downcrossing event within an interval nohserved or immeasurable using the redline alarm system.
Finally, in Fig. 15 we can observe that again the optimal For the spacecraft propulsion anomaly detection example,
alarm system performance is again always better than tfweo distinct levels were used for redline analysis: one for
predictive alarm system for all prediction windows. For thémit checking, and one for alarm design. This technique was
smallest prediction windows, the predictive alarm systemsed in lieu of a single level having both functions for the
outperforms the redline alarm system, otherwise it is alwaysdline analysis because the ROC statistics can be expressed
a poorer performer. As such, this is again indicative of thes a function of the model parameters when using two levels.
fact that using the optimal alarm system method improves th&is is not always possible for analysis in the case of a



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-XX, NO. X, XXX 2007 23

single level, specifically in regards to the technique used & means to motivate the use of such algorithmic novelty for
generate the ROC curve statistics. Furthermore, two levelther potential applications that require health management or
are often used in practice for the design of fault detectidault detection. The basis of the theory itself is quite pedantic,
algorithms that involve limit-based abort decisions. A “yellowand can naturally be extended to more realistic scenarios that
line” limit check is often used as a precursor caution aridclude non-linear dynamic systems, non-Gaussian distribu-
warning threshold to the “redline” abort threshold. The formdions, and potentially the use of extended/unscented Kalman
can be used as an alarm system design parameter, whigtering, and/or particle filtering. In addition, adaptive model
the latter may serve as a hard limit determined apriori vigpdates may be considered, as is in work presented by Antunes
extensive experimental validation. et al. [8].

When there are insufficient examples of failures, the ROC

curve statistics (the true and false positive rates) can beNothing yet has been mentioned about the actual alarm
estimated empirically as limiting fractions, using only a singlgesjgn procedure or results from its implementation, which
redline level. This is akin to the "counting” method discusseégyn pe performed by selecting the optimal border probability,
in the introduction, and as such it might also be possible This porder probability serves as a free parameter, and
to simulate failures with the model in lieu of using actughence as the primary design metric. The steps required for
observations of failures. As such, this method could have be@&ign of an alarm system have been covered in previous
used to demonstrate a cqmparative anglysis of a redline algpgyy [1], [2]. However, they tend to be based either on purely
system, based upon a single level. This “Monte-Carlo” sty|gistic trial-and-error approaches, or cost functions. For cost
technique is computat|o_nally intensive, and is still based UPRihctions, sometimes it is easy to assign particular costs to
the model-generated failures as opposed to actual observatigiis,s that penalize the probability of alarms, false alarms, and
of failures. A similar empirical approach detailed in [20] can,isseq detections, etc. Assigning these costs requires heuristic
be used to form the ROC curve. knowledge of the risk-reward tradeoff in terms of relevant
Alternatlvgly,_we_z could have used the model parametesg, m system metrics. This is cause for further study, in which
using the x~ distribution as presented in Sec. IV for thepeqe challenging design and implementation issues will be
analysis involving a single level. However, this technique Willo areqd in earnest. In future work we can look at creative

generate ROC curve stafistics that belong to two complemepsys 1o select the value df, for the optimal alarm system
tary hypotheses. This paradigm differs from the one used dgoy the appropriate criteria and investigating different cost
generate ROC curve statistics presented throughout this PaRgictions.

We based our alarm statistics upon distinct definitions of a

critical event as the hypothesis, and an independently designed i ) i

alarm system. As such, ROC analysis cannot be performed*n iSSue which has not been addressed in detail for the
using our paradigm in the case of a single redline levéiPacecraft propulsion anomaly detection application is the
However, in the other paradigm, alarm systems merge t.‘:uiwmt|f|catu.)n of the appr_oxmatlons usgd. In [3],. the error
functionality of limit checking and the use of an alarm desigWtrOduced In such.approxma.uons was @scussed n deFall for
parameter into a test of two complementary hypotheses. the thermal sensgtlon complaint appllcatlon.' We' wquld like to

Using this method, it is not possible to decouple indepeH§ able_to determine: (1)_the _Ievel of sub-optimality mtroduc_ed
dent alarm design from the critical event, which provides & Making these approximations for the spacecraft propulsion
measure of functional distinction. This method is also the of&0Maly detection application, and (2) if they can be improved.
most commonly found in the literature, i.e., [20], [10], [11]_It is known that better approximations to th(_e two-dimensional
Arguably, the critical event should be based upon the physi@@'m regions are possible, documented in Chap. 4 of [3].
of the failure, and the alarm design parameter should be ugggensions to these same sorts of approximations to alarm
to predict it. The distinction between these two paradigni€9i0ns that “shrink wrap” the exact alarm region under certain
is one of the most discernable differences in the theoreti€gnditions are cause for further investigation for alarm regions
techniques used here and in other literature, [1], [2], [3], [4]} Multiple dimensions.

[5], [6].

Subject to certain constraints, design of the alarm systemThe basic engineering approximations introduced in this
can proceed without the need to observe actual examplesagicle addressed the main objective of demonstrating the
failures, and there is no need to estimate the alarm systability to initiate an alarm with as large a prediction window
metrics empirically using either paradigm. This obviates ttrees possible in advance of critical events. Our presentation here
need to rely upon having actual available examples of failurasts as a necessary precursor to the computationally efficient
for alarm system design to generate the ROC curve. Thatdissign and implementation of optimal alarm systems, as well
because they are based on the model and design parametersmprovements to these approximations to be presented in
However, the hypothesis-based level-crossing event must sséquel articles. Furthermore, the theoretical novelty of this
ficiently characterize an actual physical failure for the modebaper has been demonstrated, in an aim to participate in the
based analysis to be of great benefit. Kalman filter-based fault detection literature discussion from a

All of the alarm theory presented in this paper has also bedifferent theoretical angle. In doing so, we hope to have more
supported by the thermal sensation complaint application. Theecisely closed the gap between the use of Kalman prediction
resulting details are presented in [3]. We present both exampleshniques and optimal alarm systems.
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APPENDIX | and P(|xg| > La, |xg+al > L) =
REDLINE ALARM SYSTEM COMPUTATIONS FOR
o] L
P(Cesacts Aappros) [ N ax
La

A. Up/downcrossing event spanning an interval -L L
/ N (x5 pxe, X)) dx + ...
The probability,P(Cezact, Aapproz ), fOr this event is shown —oo JLa

) [e%s) La
in Egn. I.1. / N(x; pixe, X)) dx + ...
P(Cezacta Aapp'r‘oz) =
—LA
0 LA > L / N X MX7 x)
P(LA<1‘k<L ‘Jik+d|>L)—|— T
) L < L k 2
P(—L <z, < —La,|xptd| > L) 4 * = [ Thyd } €R
0 La>1L
Jo o, NS 1, B) dx D. At least one exceedance/fade event within an interval

J7L I N, Sx) dx+ ., < (1)

on f_—LLA N i, ) dx £ .. The probability,P(Cezact, Aappros ), TOr this event is shown

T, in Egn. 1.4.
f—oc f_L N(X; Hx; Ex) dX P(Cemacta Aappro.r) =
_ Tk 2
x = |: Tk+d :| €R P(“rk| > maX(L LA)) LA <L
Z] 1PJr + Py, (1.4)
P(lzg| > maX(L LA)) Ly>1L
B. End of interval up/downcrossing event where
The probability,P(Ceyact, Aappros ). fOr this event is shown j—1
in Egn. 1.2. P;; = PLa<axp<L, ﬂ |Tkyi| < L, |Tps;] > L)
P(OemactyAapprox) = . I
- / / / N (x5 s, Bx;) dxj +
= P(lzx] > LA7 [Zktal < L, |@ktar1| > L) L J-r  J-rJL,
—L L L L
= / / N(X Nxa )dX+ / / / N(Xj;,uxjazxj) de
LA —o0 J-L —LJLa
/ / /\/(x,ux7 x) dx+... i1
L
) P, = P(-L <z <—La, [ )|%h4il < L. |wigs| > L)
[T e
oo L L —La
= N (x5 px,, B, ) dx; +
[ // e A T Y P
—L L L —La
/ / / N(xj;uxj,Exj)dxj
x = $k+d c R3 —oco J—L —LJ-L
Lh+d+1
Tk
X; = € RIt!
C. End of interval exceedance/fade event Thtj
The probability,P(Cezact, Aappros ), TOr this event is shown
in Eqn. 1.3. E. At least one up/downcrossing event within an interval
P(Cezact; Aapproz) = Finally, the probability,P(Cesact, Aappros), for this event
is shown in Eqn. 1.5, with identical definitions <Ef+ , and

{ Pllag| > max(L, La)) — d=0 4 x; asin the previous case.
P(lzk| > La, |xpsal > L) d>0

d _
> PFr+P- Li<L
max P exacaAa rox) = J=17a; @i .
where P(|z| > max(L, L 4)) = 2® (— CP;L;;;;) (Cezact: Aapproa) { 0 Ly>L (15
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APPENDIXII C. End of interval exceedance/fade event
PREDICTIVE ALARM SYSTEM COMPUTATIONS FOR
P(Cezact, Aapproz) The probability,P(Cezact, Aappros ), fOr this event is shown
A. Up/downcrossing event spanning an interval in Egn. 11.3.
We begin with the probabilityP(Cepact, Aappro ), for this — P(Cezact, Aapprox) =
event, shown in Eqgn. 11.1.
P(CewactyAapprom) = |xk+d| > L |xk+d\k‘ > LA)
= P(lax| <L, |zktd| > L, 21| > La)

/A/ N (x5 pixe, Bxc) dx + ..
/LfL/ / o e /LLA/ N (X5 pix; Bxc) dX + ...
/ A/L /LN(X;MX,EX) dx + ... _;O _LL
/_;o/_L/L_Mx-u Yy) dx + /LA /‘“N(X;MX7EX)dX+M
LALA ) X X /LA /LN(X;‘LLX’ZX) i (”.3)
/ / / N (X pix, Xxc) dx (1.1) e T

x = { Akard ] €R2
Cliq Th+d|k

x = xk+d x = | Cuq | €R?

Thtdlk Cuq

S, (i1, d2) = o CPLCT +R iy =g =1
T (i1, 82) = { CA‘(PL, — PR)(AHTCT 0.W.
CPLCT + R 1<ip=ip <2
CAYPL —PE)(AHTCT i1=1iy=3
CPL (AHTCT

1<i; #i,<2
117512 7,1\/7,2—3
B. End of interval up/downcrossing event

CAYPL — PR)CT D. At least one exceedance/fade event within an interval

The probability,P(Cepact, Aapproz ), fOr this event is shown
The probability,P(Cisact, Aupproz ), for this event is shown M EdN- 114.
in Egn. 11.2.

P(Cezach Aapprox) =
P(Cezacta Aapproz) =

P(|zgyal < Ly |2gyar1] > Ly |@pqav1e] > La)

d
P(lzk| > L, [&hran] > La) + Y Pa, (11.4)
/ / / N(; g, Bxc) dx + .. j=1
LALA
/ / / N(x; iy, Xx) dx + . ..
—00 L —L
oo —L L
/ / / N(x; px, Bxc) dx + . ..
Ly J—o0 J—L

where P(|zy| > L, |Tptqk| > La) =

CX,,C?
CA‘(PL, - PL)(AT)TCT
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—La —L L LAL L
3ty 2x 1.2 —ha oo
B /m [LN(X,M ) dx (11.2) / / N S dx
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Thtat1)k Ciq La
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and The probability,P(Cegact, Aappros ), fOr this event is shown
j—1 in Eqn. 111.2.
Paj = P(m |(Ek+i‘ < La |xk+j| > ijjkde\k > LA) P(CezactaAappror) =
oo_ o L L R o "
= / / / / N(Xj;/txj72xj) dx; + ... P(lzk| < L, |wpqal > L, |Zp| < Ly, [Zrgaqnl > L)
LaJL L

—LiL L
LALA L 0o L, 0o
/ / / NX]?/’LXJ’ XJ) dx] - /—L/L /—L /LXN(X;MX,ZX) dX+

L gpoo pL, p—L%
/ /./\/xj,,uxj7 Yy,) dx; [L/L [L[ N(x;px, Xx) dx + ...

: . - +
R . c RI*+2 L - Ly —Ly
X; .~ /L . N(x; pix, 2xc) dx (111.2)
~ — —oo J—L, J—0o0
T _
‘ k+d|k < é Tk 1 C,LLq c RQ
ZXj (21; @2) = ¢ | Th+d Ve Cuq
é [ ‘iklk — C,Uq R2
CPfSCT +R 1< =< j+1 a L ik—&-d\k :| » Fxa I: C,uq ] <
CXssCT 1<iy 7é 2 <j+ 1 [ Xc Mx, R4
CAd(Pgs _APg)(Ad)TCT .1 = i? = .7 +2 x = | Xa L Hx, <
CAY(PL —PE)AWV)TCT iy #£iy iy Vig=j +2 5 | CPLCT+ R CPL(AT)ICT
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E. At least one up/downcrossing event within an interval
Finally, for this event,P(Cepact, Aapproz) = Z;l:l P.,,
with identical definitions ofP, ;, x;, andXy; as in the previous

case. B. End of interval up/downcrossing event

The probability of alarm, P(Auppros) and
P(Cegact; Aapproz) Can be computed as in Eqns. 1.3,
and II1.4, respectively.

P(Aapproz) = P(li‘k+d|k‘ < LZa |i'k+d+1\k| > LI)

APPENDIX I
OPTIMAL ALARM SYSTEM COMPUTATIONS FORP(Aqpproz)
AND P(Cezactv Aapprom)

A. Up/downcrossing event spanning an interval
The probability of alarmP(A,pro), fOr this event can be

: L, o)
computed as in Eqn. I11.1. = / N(x; pix, Bx) dx + ...
-L, JL}
+ LZ _LX
P(Aapproo:) = (|xk|k| < Ly, ‘xk+d|k| >L ) (1.1) / N(X;ux,zx) dx (n.3)
—L, J—o0
/ L+ N(X Hx x) dx + ... x = |: Ajijrdlk :| ERQ
Tox Thtd+1|k
/ N (x; px, Xx) dx
Z —
B ) CA* . ca? 1"
eR _ L _ PR
X |: +d|k: :| Ex - |: CAd+1 :| (Pss Pss) |: CAd+1 :|

= [ one 2P|
* CAd CAd and P(Ceract7Aapprox) = P(|$k+d‘ < L7|xk+d+1| >
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L #sakl < Ly, 1Ektasnel > LE)

[
15
L oo L -LY
[ e
-LJL J-L; -0
L =L pL, oo
// / N (X pix,
—LJ—oo J—L; JLT
L

Yx) dx+ ...

Ye) dx+ ...

Yx) dx+ ...

A A

L - Ly p—L%
/ / / N(x;px, 2x) dx - (111.4)
—LJ—c0 J-L, J—o00
a | Tk4d Cliq 2
c = s Ux, = eR
* | Thtd+1 } Hxe [ Cpq }
| Thtd+1|k Crq
Xe Hx. 4
= s Ux = N eR
<= [l li]
[ CPLCT+R  CA'PL(AT)CT
ZX = T
‘ CAHPL, (CAd) CPLCT + R
[ CA¢ . ca’ 1"
Exn, = I CAd+l :| (Pgs - Pfs) |: CAd+l :|
[ S, Sy,
Yo = | Ox. Zx, }

C. End of interval exceedance/fade event

The  probability  of
P(Cegact, Aappros) Can be computed as in Egns.
and 111.6, respectively.

P(Aapproz) = P(|&ptap! = L}) (111.5)
+
— 2 |- La
\/CAYPL, — PR)(A%)TCT
and
P(CemactaAapproz) =
P(|zyial > Ly |2xpae] > L)
/ / N X MX7 ) dX+
Lt
/ / N(x; px, Xx) dx + . ..
—o0 L
oo —L
/ / N(x; iy, Xxc) dx + ...
LX —00
-LY —L
/ / N (x; px, Bx) dx (l.e)
x = |: Axk-&-d :| c R2
Lk+d|k
CPLCT +R i1 =iy =1

Yix; (i1,12) = { CAd(Pﬁs _ Pi)(Ad)TCT 0.W.

alarm, P(Auppros) and
.5
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D. At least one exceedance/fade event within an interval

The  probability of alarm, P(Aappros) and
P(Cepact; Aapproz) Can be computed as in Eqgns. 1.7,
and 111.8, respectively.

d
P(Aapproz) P(\J |&rsal = LE) (I11.7)
=0
d
= ﬂ |Ze4iel < LK)
= 1_/ / NX Hx x)d
d+1
Tk Crq
X = y Mx = : ERd+1
Thtalk Crq
C c 1"
Yx = (PsLs_f)Es)

CA“ CA“

Mathematical curiosities of this type of covariance ma-
trix as related to control theory, specifically the property of
observability, are discussed in greater detail in [3]. Further-
more, it is convenient that the number of terms required

to compute the complicated multi-dimensional level-crossing

events as presented in Eqn. IIl.7 above can be reformulated
to achieve better scaling properties. This is largely due to the
way in which the aggregate probability computation can be
rewritten using basic axioms of probability. Computing the
same probability for the events related to thermal sensation
complaint application shown in [3] requires the brute force
inclusion/exclusion rule which results in an explosion of terms.
Therefore, reformulation of the probability computation works
advantageously, and this can also be applied to probability
computations for events related to the thermal sensation com-
plaint application. However, using the inclusion/exclusion rule
for these computations may provide a similar accuracy for less
computational burden for reasons discussed in [3].

P(Cewacta Aapproa:) = P(Cewact) -

d
P(lzg| > L, () egganl < LE) —

=0
d j—1 d
S P(() |zksil < Lolawngs| > Lo () epsanl < LE)
j=1 =0 i=0

(111.8)
where P(Ceuqct) Was previously given in Eqn. 44, and
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d ~
P(lzk] > L,Ni_p |93k+i|k| < LZ) =

[
/ /LAO LAd /\/(x i, D )dX

./\/(x P, D)X + ..

d+2
I Clqg
Tk|k 442
X = . ,MUx = : eR
' C
Thtdlk Ha
C T
k. =C(PL -PL) |
CA¢
C c 1"
CA* CA‘?
s _ CPLCT+R %,
x ch Yk,
and
P“j
d j—1 d
ZP(ﬂ |Tkti| < L, [wp4s] > L, ﬂ |Zhap] < L)
j=1 =0 i=0

L L oo eL} Ly,
P
-L -LJr J-Lf, ~LY%,
L L =L L%, L},
/ / / / / | N(x, pix, Xx)dx
—L —LJ—o0 J-L} —LE

dtj+2
S
Cuq
. Thti | = ; € RiHi+2
Tk )
Cuq
L Tktdk |
o)~ { CPLOTER T1<i=i<jin
xe\01,02 - CXSSCT 1§'617éz2§j+1

X, = AYPEL(A®)T 4L, — AUL, (AMT
L,, = AL, AT + A7 Q wherei; < iy
C c 1*
zxa = : (Pés - Pi)

CA? CA?

C c 17
Exca (Pgs PR )
CA/J CA‘
ZXC Zxca
Ex B |: cha EXG :|

E. At least one up/downcrossing event within an interval

The probability of alarm, P(Aupprox) and
P(Cegact; Aapproz) Can be computed as in Eqns. 1.9,
and 111.10, respectively.

d
P(Aapprox) P(|Zpk| < Ly, U |Zkak] = L5, )(111.9)
1=1
= P(lanel < Ly) -
d
P(jxpel < Ly, () [&rsael < LE)
i=1
_ Ly
J/C®L —PR)CT
_L_
\/C PR CT
/ / . N(X i, x )dX
d+1
Tk [ Cuq
X = : s Hx = Rd+1
Thtdlk | Cuq
C rc 1"
Se=1| 1 | ®PL-PI)|
CA‘ CA‘
And finally,
P(Cemacthapproa:) =
d j—1
Zp(ﬂ |xk+z| < L, |xk’+j‘ > L, |jk|k| < LZ) — ...
j=1  i=0
Cezact
d d
> P(Cezact (), 2wkl < L, () &gl < LF)  (111.10)
j=1 i=1
WhereP( -0 |.’17k+l| < L |$k?+]| > L |$k\k| < L )

Lo
[ f L s
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Tk C,Uq
. c Rj+2

%
I

’,Ux =
Tk
Tk
CPLCT+R 1<ij=ip<j+1
CXSSCT 1§7117éz2§]+1

Crq

Yk, (i1,42) = {

Xos = A"PL(A™)T + Ly — ALy (AM)T
L., = AL AT + A2~1Q wherei; < iy
C T
CA‘
s _ [ Bx x,
| Zk C(PL-PL)CT

and

P(Ceract; |jk|k| < LZv m |£k+i\k‘ < L:X) =
1=1

L L oo pLy L}, LE,
-L  J-rJL J-r,J-L}, ~L%,
- + +
L L =L Ly L%, L,
N (%, pix, Xxc ) dx
—-L —LJ—oo J—L, J-L} ~L%,

d+j+2
S
Cuq
Thoi )
X = N » Hx = : € RT*?
Tk
Cuq
| Thtar |

CPLCT+R 1<ij=ip<j+1

ZXC(7/17Z2) = { stscT 1<, 75 o <j+1

X,s = A"PL(A2)T 4L, - A"L, (A™)T
L,, = AL, AT +A2"1Q wherei; < iy
C c 17
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