
Slide 1

Self-Healing Approaches for 
FPGAs and Wiring Manifolds

Sarah Thompson
USRA/RIACS, NASA Ames Research Center
thompson@email.arc.nasa.gov

Alan Mycroft University of Cambridge
Guillaume Brat USRA/RIACS, NASA Ames
Arnaud Venet Kestrel Technologies



Slide 2

Reparing FPGAs with SAT 
Solvers



Slide 3

FPGAs
FPGA = Field Programmable Gate Array

Offer many of the advantages of full-custom ASICs
High density, >10 million gates per chip is possible
Mass savings roughly equivalent to similar gate count ASIC 
(depends mostly on package)

Disadvantages:
Order of magnitude worse power consumption
Order of magnitude slower

But…
Extremely cheap (no NRE charges whatsoever)
Can be reconfigured in-flight



Slide 4

Cosmic ray damage



Slide 5

Single-Event Effects
(Relatively) low energy impacts can cause Single Event 
Effects (SEUs and SETs)

One or more transistors turn on for a brief time, causing 
a voltage spike to be propagated around the circuit

Features:
Many SEEs are harmless and do not affect functionality
Some may alter memory contents, or corrupt state machines
SEEs affecting critical control signals must be carefully 
handled



Slide 6

Permanent Damage
Higher energy impacts can cause permanent damage

Various mechanisms
Gate rupture due to latch-up
Failure due to long term total dose effects

May manifest as:
Stuck at 1
Stuck at 0
Power to ground short



Slide 7

Radiation Hardening Techniques

Non-Standard Fab
Large geometry transistors are less susceptible to damage
Wafer processing can be tweaked to reduce susceptibility

Internally-Redundant Standard Cell
Rather than e.g. 2 FETs per inverter, use 4, 6 or more
Reduces perfomance, increases power consumption
Works well (e.g. RAD6000, RAD750)

FPGA Dynamic Reconfiguration
New approach
Uses internal redundancy in FPGAs to work around 
permanent damage



Slide 8

Undamaged FPGA



Slide 9

Cosmic Ray Impact



Slide 10

Repaired FPGA



Slide 11

The Genetic Approach
Several groups (e.g. Lohn at Ames, Stoica at JPL) have 
used genetic algorithms to ‘evolve around’ damage.

Results are encouraging

There are drawbacks, however:
Very CPU intensive
Soundness problem



Slide 12

The SAT Approach
David Greaves at Cambridge has suggested the use of 
SAT solvers for generating FPGA layouts

The big idea: since FPGA layout is thought to 
be NP-complete, why not attack the problem 
with a SAT solver?

We propose modifying this approach in order to 
generate work-around configurations for damaged 
FPGAs.



Slide 13

Boolean SAT in a Nutshell
It is known that all NP-complete problems can be 
converted to Boolean SAT problems in P time.

Convert your problem into a Boolean expression such 
that:

If a solution exists, some set of variable bindings will cause the 
expression to evaluate to true
If no solution exists, the expression evaluates to false for all 
possible bindings

Usually:
If a solution is possible, the variable bindings themselves 
represent the solution in some way



Slide 14

FPGA Repair as a SAT Problem



Slide 15

FPGA Repair as a SAT Problem

Where
i is the inputs of the slice under repair
f is a model of a correctly functioning FPGA
f’ is a model of the damaged FPGA
b is the original bit stream
b’ is the derived work-around bit stream



Slide 16

Proof-of-Concept Demonstrator

Zero budget simulation

Our implementation:
Implemented in C++ under Linux
FPGA-like circuit modeled with HarPE
Circuit was flattened using partial evaluation
Initially we converted to CNF then used zChaff
Later we implemented a non-CNF (non-clausal) SAT solver 
from scratch (NNF-WALKSAT)



Slide 17

Test Circuit



Slide 18

Experimental Results
Initial results were promising:

A surprisingly large amount of damage can be accommodated 
in many cases
To be repairable, resource utilisation needs to be less than 
100%

• (which is normally the case)

Time-to-repair is usually rapid (seconds) on typical CPUs



Slide 19

Repair Success Rate



Slide 20

Mean Repair Time



Slide 21

Conclusions
The proof-of-concept exercise was successful.

As-yet untried in real FPGAs

Many open questions remain:
Can COTS FPGAs be tested (e.g. via JTAG) accurately enough to enable this 
approach?
Can faults be fixed within a realistic time scale given typical available CPU 
performance?
Under radiation testing, what proportion of faults can be worked around, 
and what proportion render the FPGA too badly damaged to allow 
recovery?



Slide 22

Self-Healing Reconfigurable 
Wiring Manifolds



Slide 23

Typical Small Satellite 
Configuration



Slide 24

Typical Fixed-Architecture Satellite 
Block Diagram



Slide 25

Reconfigurable Manifold



Slide 26

Just like a big FPGA?
Not quite…

Need to support analogue, power, high current and 
microwave
FPGA architectures don’t scale up well for this application –
satellites aren’t a ‘sea of gates’ interspersed with wiring
Need to be able to compute wiring plans rapidly (NP-
complete is too slow)
FPGA routing is not complete.

Pre-digital era circuit-switched telephone exchanges are 
actually a better model.



Slide 27

Signal Types
Power

+28V Supply Rails
High current analogue

Motor/solenoid drives, torquer bar drives
Low Current, low-speed analogue

Temperature sensors
Low Current, High-Speed Analogue

CCD image sensor feeds
Low Speed Digital

Simple sensors, limit switches
High Speed Digital

Networking, USB
Low Power Microwave

Antenna feeds

High Power Microwave
Optical



Slide 28

Switch Technologies
FPGA
FPTA
Digital crossbar switch ASIC
Analogue crossbar switch ASIC
Digital/Analogue permutation network ASIC?
MEMS relays
Full-size relays
Discrete MOSFET/IGBT



Slide 29

Handling Multiple Signal Types



Slide 30

Handling Multiple Signal Types



Slide 31

Physical Architectures
Single Manifold

Appropriate for small satellites

Manifold-of-Manifolds
Better bet for larger systems
Advantageous for ‘parts-bin’ construction, because the 
manifold-of-manifolds scales with the number of parts added.



Slide 32

Single Manifold



Slide 33

Manifold-of-Manifolds



Slide 34

Switching Architectures
FPGA ‘sea of gates’ approach doesn’t scale

Satellites simply aren’t that (logical) shape
Computing configuration bit streams is too difficult (NP-
complete)
They can not support all possible permutations of inputs and 
outputs (incompleteness)
Self-healing is possible, but computationally difficult (NP-
complete, though feasible with a good SAT solver)



Slide 35

Crossbar Switch



Slide 36

Switching Architectures
Crossbar Switch

O(N2) complexity is less than ideal, but OK for small switches
Computing switch plan is relatively trivial
Supports Make-Before-Break and many-to-many connections
Complete

Permutation Network
O(N log N) complexity, better for larger switches
Computing switch plan is also O(N log N)
Doesn’t support Make-Before-Break directly
Doesn’t support many-to-many connections directly
Complete



Slide 37

Permutation Network



Slide 38

Other Possibilities
Clos Networks

Multiple layers of interconnected, small crossbar switches
Well known in telecommunications
Switch plan can be computed efficiently

Shuffle Networks
E.g. Omega Network
Essentially an incomplete permutation network
Recent result proved that composing two Omega networks in 
sequence gives a true (complete) permutation network



Slide 39

Omega Network



Slide 40

Other Possibilities
Embedding into Arbitrary Graph

Most general solution – all other architectures are special 
cases
Can be complete or incomplete
Generalised routing is NP-complete, which is very bad for 
dynamic reconfiguration and self-healing



Slide 41

Dynamic Discovery

To enable the responsive space paradigm, it is essential 
that a reconfigurable manifold should be able to 
discover its connections automatically, and configure 
itself dynamically without outside intervention.



Slide 42

Space Velcro



Slide 43

Space Velcro



Slide 44

Probe Circuit



Slide 45

Power Scavenging



Slide 46

Discovery Algorithm
1. Power scavenging provides power for manifold’s 

CPU
2. All connections are announced/detected via 

protocol
3. Manifold reconfigured to route new connections
4. All connections refreshed periodically via make-

before-break
5. Old connections time out and are torn down by 

default

… which gives self-healing for-free.



Slide 47

Make-Before-Break



Slide 48

Make-Before-Break Workaround

(Can add a 3rd/4th permutation network for modular 
redundancy)



Slide 49

Conclusions
This work is still at an early stage

Not yet flown
Has been ground-tested in a limited sense by AFOSR (small 
MEMS relay based prototype) 
Plenty of spin-off applications both within and outside 
aerospace

Formal methods challenges
Reliability estimation
Completeness/correctness proofs for hardware architecture 
and routing algorithms
Correctness proofs for glitch-free, make before break 
switching



Slide 50

Acknowledgements
The author wishes to acknowledge the support and 
encouragement of Jim Lyke and others at AFOSR, Kirtland AFB, 
NM.

Much of the work presented here was carried out in collaboration
with Alan Mycroft, Guillaume Brat and Arnaud Venet, for which 
thanks are due.

This work has been financially supported by:
US Air Force Office of Scientific Research, Space Vehicles Directorate via the 
European Office of Aerospace Research & Development
NASA Ames
St Edmund’s College, Cambridge
Intel
EPSRC



Slide 51

Questions



Slide 52

Contact Information
Sarah Thompson

sarah.thompson@cl.cam.ac.uk

Alan Mycroft
alan.mycroft@cl.cam.ac.uk

Guillaume Brat
brat@email.arc.nasa.gov

Arnaud Venet
arnaud@kestreltechnology.com


