
A Software Safety Certification Plug-in for
Automated Code Generators

Feasibility Study and Preliminary Design

Ewen Denney

USRA/RIACS
NASA Ames Research Center, Moffett Field, CA 94035

edenney@email.arc.nasa.gov

November 29, 2006

1 Executive Summary

This report summarizes the results of a feasibility study into the applicability of automated
certification technology to auto-generated code, and presents a preliminary design for a
software safety certification plug-in (working title, AUTOCERT) to the MathWorks Real-
Time Workshop (RTW) automated code generator. The proposed tool is an adaptation of
a pattern-based annotation inference technology previously developed in NASA funded
research at NASA Ames.
The principal functionalities to be offered in the first version of the tool, building on

RTW’s code generation features, are safety certificate creation, and tracing between certi-
fication artifacts—comprising verification conditions and their proofs—and the generated
code. This will build on the existing model-to-code tracing features of RTW.
The Vertical Motion System flight simulator project at NASA Ames was used as a

case study. RTW was used to generate code from Simulink models provided by the VMS
developers, and the code was analyzed by the verification tool. The results of the analysis
were presented to the VMS team, who also provided feedback on the top-level preliminary
design and functionalities of the tool.
We conclude that the use of a tightly-coupled generation/analysis tool can allow system

engineers to concentrate on modeling and design, with less need to worry about low-level
software details, and that the core idea of pattern-based annotation inference is a feasible
basis for such a tool.

1

This report includes an analysis of the language subset targeted by the code generator,
the extensions which are required to the underlying logical framework of the analysis tool,
and the proposed architecture for integration with the Matlab environment. The prelimi-
nary design consists of logical adaptations of the existing Prolog analysis engine, with an
addition of a backend to generate V&V artifacts in a form which can then be inserted in
RTW-generated files.
The report concludes with plans for future development of the tool and opportunities

for further application within NASA.

2

2 Background

We begin in Section 2.1 with some necessary background on automated code generation
and different approaches which can be taken to V&V. We then give the background to our
formal certification approach in Section 2.2. In Section 3, we describe our case study with
the Vertical Motion Simulator. The next two sections give the preliminary design of the
AUTOCERT plug-in being developed in this project, concentrating first in Section 4 on the
integration with the Matlab environment, and then in Section 5, on the adaptations to the
core logical machinery. Finally, Section 6 summarizes our results and describes our plans
for future development.

2.1 Automated Code Generation

Model-based design and automated code generation are being used increasingly at NASA.
They promise many benefits, including higher productivity, reduced turn-around times,
increased portability, and elimination of manual coding errors.
There are now numerous successful applications of both in-house custom generators

for specific projects, and generic commercial generators. One of the most popular code
generators within NASA is the MathWorks Real-Time Workshop (with the add-on product
Embedded Coder), an automatic code generator that translates Stateflow/Simulink models
into embeddable (and embedded) C code. By some estimates, 50% of all NASA projects
now use Simulink and Real-Time Workshop for at least some of their code development.
Code generators have traditionally been used for rapid prototyping and design explo-

ration [SD06], or the generation of certain kinds of code (user interfaces, stubs, header
files etc.), but there is a clear trend now to move beyond simulation and prototyping to the
generation of production flight code, particularly in the Guidance, Navigation, and Control
domain. Indeed, the prime contractor for the CEV has announced that code generators will
be used for the development of the flight software.
Nevertheless, there remain substantial obstacles to more widespread adoption of code

generators in such safety-critical domains, principally, how auto-generated code should be
assured.
Ideally, the code generator, itself, should be qualified. However, this is a non-trivial

and expensive process, and is therefore rarely done. Moreover, the qualification is only
specific to the use of the generator within a given project, and needs to be redone for every
project and for every version of the tool. Also, even if a code generator is generally trusted,
user-specific modifications and configurations necessitate that V&V be carried out on the
generated code [Erk04].
Since code generators are typically not qualified, there is no guarantee that their output

is correct, and consequently the generated code still needs to be fully tested and certified.

3

Certification requires more than black box verification of selected properties, other-
wise trust in one tool (the generator) is simply replaced with trust in another (the verifier).
Moreover, some understanding of why the code is safe helps the larger certification pro-
cess. However, without tool qualification the regeneration of code after the model has been
modified can require complete recertification, which offsets many of the advantages of
using a generator. Finally, the direct V&V of code generators is too laborious and compli-
cated due to their complex (and often proprietary) nature, while testing the generator itself
can require detailed knowledge of the transformations it applies [SC03, SWC05].

2.2 Automated Code Certification

In contrast to approaches based on directly qualifying the generator, itself, or on testing
of the generated code, we instead propose a generator plug-in to support the subsequent
certification of the code created by the generator. Specifically, our tool will support certi-
fication by formally verifying that the generated code is free of different safety violations,
by constructing an independently verifiable certificate, and by explaining its analysis in a
textual form suitable for code reviews. This will enable missions to obtain assurance about
the safety and reliability of the code without excessive manual V&V effort and, as a con-
sequence, increase the acceptance of code generators in safety-critical contexts. The gen-
eration of explicit certificates is particularly well-suited to supporting independent V&V.
The key technical idea of our approach is to exploit the idiomatic nature of auto-generated
code in order to automatically infer logical annotations. Annotations are crucial in order
to allow the automatic formal verification of the safety properties without requiring access
to the internals of the code generator, as well as making a precise analysis possible. The
approach is independent of the particular generator used, and need only be customized by
the appropriate set of patterns.
We follow the tradition in formal methods of referring to techniques which conclu-

sively demonstrate the absence of bugs (rather than simply search for existing bugs) as
performing certification. However, in an IV&V context, we must consider the larger pic-
ture of certification, of which formal verification is a part, and therefore produce assurance
evidence which can be checked either by machines (during proof checking) or by humans
(during code reviews).
Rather than use a separate third-party analysis tool, we are designing a plug-in that is

tightly coupled to the Real-Time Workshop code generator. We adopt the working title,
AUTOCERT/RTW (AUTOCERT for short), for this safety certification plug-in. Following
the plug-in philosophy, the tool acts as an extension of RTW, and is therefore closely
integrated from the user’s perspective, but the implementation does not require a deep
integration with the internal operations of RTW.
The following sections describe the components of our system: the style of safety

properties which we check, the inference of annotations, the creation and discharge of

4

verification conditions, and the overall system architecture.

2.2.1 Safety Properties

AUTOCERT supports certification by formally verifying that the generated code is free of
violations of specific safety properties. In our approach, we distinguish between various
kinds of safety properties. Language-specific properties concern those safety aspects of
the code which only depend upon the semantics of the programming language. Examples
include memory safety (e.g., absence of array bounds violations), variable initialization,
and scoping requirements. Domain-specific properties relate to details which are specific to
the use of a given code generator in a particular domain. For example, all values of x for an
interpolation table (x,y) must be disjoint and in increasing order. Finally, project-specific
and application-specific properties talk about guarantees for a family of applications or a
single application, respectively. For example, flight-rules can be considered to comprise
typical project-specific properties.
For the case study, we focused on initialization safety, but a range of other safety

properties, including absence of out-of-bounds array accesses and nil-pointer dereferences,
have already been formalized [Nec97, DF03] and can in principle be used with our algo-
rithm. Initialization safety (init) ensures that each variable or individual array element has
been explicitly assigned a value before it is used. In total, we have defined five differ-
ent safety properties and implemented the corresponding safety policies. Array-bounds
safety (array) requires each access to an array element to be within the specified upper and
lower bounds of the array, and is a typical example of a language-specific property. Matrix
symmetry (symm) requires certain two-dimensional arrays to be symmetric. Sensor input
usage (inuse) is a GN&C specific property which is a variation of the general init-property
guaranteeing that each sensor reading passed as an input to a state estimation algorithm
is actually used during the computation of the output estimate. Another example (norm),
from the data analysis domain, ensures that certain one-dimensional arrays represent nor-
malized vectors, i.e., that their contents add up to one.
Details of how safety properties are formalized in our approach are given in Ap-

pendix A.

2.2.2 Hoare-Style Safety Certification

Our certification approach uses the well-known Hoare-style framework to prove the safety
properties. This is based on proof rules that derive triples of the form P {C} Q, meaning
“if pre-condition P holds before execution of statement C , then Q holds after”. For each
safety property and each statement a corresponding rule is given. A verification condition
generator (VCG) then applies the rules to a program, which produces a number of logical
statements or proof obligations.

5

Unfortunately, the Hoare-style framework requires a large amount of logical annota-
tions attached to statements of the code, which describe pre- and post-conditions and loop
invariants. This has so far limited its practical applicability. However, it is important to
observe that correctness of the proofs does not depend on correctness of the (untrusted) an-
notations; rather, they can be seen as hints which guide the proof process. This allows us to
automatically infer the annotations without compromising the safety guarantees provided
by the certification tool.
For each notion of safety the appropriate safety property and corresponding policy must

be formulated. This is usually straightforward; in particular, the safety policy can be con-
structed systematically by instantiating a generic rule set that is derived from the standard
rules of the Hoare calculus [DF03]. The basic idea is to extend the standard environment
of program variables with a “shadow” environment of safety variables which record safety
information related to the corresponding program variables. The rules are then responsi-
ble for maintaining this environment and producing the appropriate verification conditions
(VCs). This is done using a family of safety substitutions that are added to the normal sub-
stitutions, and a family of safety conditions that are added to the calculated WPCs. Safety
certification then starts with the outermost (i.e., at the end of the program) postcondition
true and computes the weakest safety precondition (WSPC), i.e., the WPC together with
all applied safety conditions and safety substitutions. If the program is safe then its WSPC
will be provable without any assumptions. See Appendix A for some example rules.

2.2.3 Annotation Inference

For arbitrary (i.e., manually written) code it is impossible to automatically generate the
required annotations and most annotations must be provided by the user—a prohibitively
tedious and costly task. However, a code generator like RTW produces highly structured
and idiomatic code. Consequently, only a few, standardized annotations need be used.
Intuitively, idiomatic code exhibits some regular structure beyond the syntax of the pro-

gramming language and uses similar constructions for similar problems. Even manually
written code already tends to be idiomatic, but the idioms used vary with the programmer,
and are much less regular. Automated generators eliminate this variability because they
derive code by combining a finite number of building blocks.
The idioms are essential to our approach because they (rather than the templates) de-

termine the interface between the code generator and the inference algorithm. For each
generator and safety property, our approach thus requires a customization step in which
the relevant idioms are identified and formalized as patterns. Note that neither missed id-
ioms nor wrong patterns can compromise the assurance given by the safety proofs because
the inferred annotations remain untrusted. They can, however, compromise the “complete-
ness” of the approach in the sense that safe programs can fail to be proven safe, and in our
experience, a few iterations can be required to identify all patterns. Note also that the id-

6

ioms can be recognized from a given code base alone, even without knowing the templates
that produced the code. This gives us two additional benefits. First, it allows us to apply
our technique to black-box generators. Second, it also allows us to handle optimizations:
as long as the resulting code can still be characterized by patterns, neither the specific
optimizations nor their order matter.
We have developed a generic pattern language to describe these code idioms. The pat-

terns let us define annotation schemas to encapsulate certification cases for matching code
fragments. The annotation schemas are then applied using a combination of planning and
aspect-oriented techniques to produce an annotated program, which can then be certified
in the Hoare-style framework. We can thus check conformance of generated code with a
range of safety properties fully automatically. As an example, consider a matrix that is
initialized using a nested loop. In order to verify that the code completely initializes the
matrix, we need at least four annotations: inner and outer loop invariants, which formalize
“snapshots” of the matrix initialized “up to that point”, and inner and outer post-conditions,
which formalize successful initialization of all or part of the matrix. Different annotations
are required for row-major and column-major memory layouts. Additional complications
arise when information from the initialization block needs to be propagated to parts of the
code where it is needed, taking into account scope, control flow, and context. However, al-
though the resulting annotations can become quite complex, several underlying principles
can be used to generate them automatically. The only input which is needed is the basic
pattern of two-dimensional iteration (which captures both memory layouts), and a defi-
nition of the initialization safety property. We already have a prototype of the inference
engine, and a library of patterns which allows us to infer annotations for code generated by
our own generators, AUTOBAYES [FS03] and AUTOFILTER [WS04]. We have also used
the engine to analyze code produced from models in the VMS project (Section 3).

2.2.4 VC Processing

The implementation of the VCG is quite straightforward — it simply implements the se-
mantics of the programming language and the proof rules of the safety policy.
The VCG traverses the annotated code and applies the rules of the calculus to pro-

duce VCs. These are then simplified, completed by an axiomatization of the background
theory and given to an off-the-shelf high-performance automated theorem prover (ATP).
If all obligations are proven it is guaranteed that the safety property is obeyed and the
resulting proofs comprise the evidence for that. The VCG can be seen, therefore, as per-
forming a compositional verification of the property. Note that the ATP has no access to
the program internals; hence, all pertinent information must be taken from the annotations,
which become part of the VCs. For full functional verification, annotations are thus usually
very detailed and, consequently, annotation inference remains intractable for this case. For
safety certification, on the other hand, the safety conditions are regular and relatively small,

7

checker

trusted

untrusted

proofsproofs proof

certificate

rewrite
rules

axioms / lemmas

inference
code

VCs

annotated code

VCs

domain
theory

annotated codecode annotation

simplifier

 code

safety
policy

annotation
library
pattern

 generator

 ATPVCG

schemas

model

Figure 1: System Architecture

so that the required annotations are a lot simpler. For example, initialization safety just re-
quires that the logical annotations entail at each use of a variable x that the corresponding
shadow variable xinit has the value INIT.

2.2.5 System Architecture

Figure 1 shows the overall system architecture of our certification approach. At its core
is the original (unmodified) code generator (in this case, Real-Time Workshop) which is
complemented by the annotation inference subsystem, including the pattern library and
the annotation schemas, as well as the standard machinery for Hoare-style techniques, i.e.,
VCG, simplifier, ATP, proof checker, and domain theory. The architecture distinguishes
between trusted and untrusted components, shown in Figure 1 in red (dark grey) and blue
(light grey), respectively. Trusted components must be correct because any errors in them
can compromise the assurance provided by the overall system. Untrusted components, on
the other hand, are not crucial to the assurance because their results are double-checked
by at least one trusted component. In particular, the assurance provided by our approach
does not depend on the correctness of the two largest (and most complicated) components:
the original code generator, and the ATP; instead, we need only trust the safety policy,
the VCG, the domain theory, and the proof checker. Moreover, the annotation inference
subsystem (including the pattern library and annotation schemas) also remain untrusted
since the resulting annotations simply serve as “hints” for the subsequent analysis steps.
We will omit further technical details. These components and their interactions are

described in more detail in publications [DF03, DFS06, DF06a, DF06b].

8

3 Case Study: Vertical Motion Simulator

Our case study involved analyzing code which had been autogenerated using RTW, from
Simulink models provided by the Vertical Motion Simulator (VMS)1 facility at NASA
Ames.

3.1 Overview of the VMS

The Vertical Motion Simulator (VMS) is a world-class research and development facility
located in the Aviation Systems Division at NASA Ames Research Center, that offers
unparalleled capabilities for conducting experiments involving aeronautics and aerospace
disciplines. The six-degree-of-freedom VMS, with its 60-foot vertical and 40-foot lateral
motion capability, is the world’s largest motion-base simulator. The large amplitude motion
system of the VMSwas designed to aid in the study of helicopter and vertical/short take-off
landing (V/STOL) issues specifically relating to research in controls, guidance, displays,
automation, and handling qualities of existing or proposed aircraft. It is also an excellent
tool for investigating issues relevant to nap-of-the-earth flight, and landing and rollout
studies.
Since the VMS is effectively a piloted vehicle, the system must be human rated. Specif-

ically, the VMS satisfies NPG 8705.2A, “Human Rating Requirements for Space Systems”.

3.2 Mode Control Unit

The VMS has four hydraulic axes. Three rotational axes control roll, pitch, and yaw, re-
spectively, and a linear axis that controls longitudinal movements. The VMS developers
provided a Simulink block diagram of a single hydraulic rotational servo axis controller
for use with our analysis tool. Although the Simulink block diagram provided has not yet
been implemented into the VMS system, plans are underway to replace the old analog elec-
tronics that now deliver this functionality. This model was originally built with MATRIXx
System Build block diagrams. Preliminary testing was conducted with this model control-
ling the simulator motion. Later, the model was manually converted from MATRIXx to
Simulink and it is this Simulink model that will be integrated into the VMS.
The hydraulic axis model will be executed on a VME platform with a Motorola single

board computer. VxWorks will be used as the real-time operating system. Real-Time
Workshop will be used to generate C code from the Simulink model. Analog and discrete,
input and outputs are provided by third party vendor VME boards. The model implements

1We had originally planned to work with the RASCAL project, also at NASAAmes. However, due to some
unanticipated ITAR issues this turned out not to be possible. Fortunately, we were able to find a replacement
case study without any significant impact on the schedule (see Initiative Revision Request submitted on 2006-
06-30).

9

a servo loop controller with a servo current loop, a velocity loop and a position loop. The
model accepts position and velocity feed forward signals over a fiber optic digital network
and provides current drive to the hydraulic actuator.
Another controller in the VMS is the Mode Control Unit (MCU) which provides the

interface between the host aeronautic computer and the motion control electronics and
provides manual control for the motion safety operator. This unit, once implemented with
analog electronics was replaced by a digital controller built up on VME using MATRIXx
and its components, System Build, AutoCode and RealSim. Plans are in place to con-
vert this system to Simulink by manually converting the model and then using Real-Time
Workshop to produce C code that will run under VxWorks.

3.3 IV&V

Since the VMS project is moving to the use of a new autocoder, namely Real-Time Work-
shop, the engineers are interested in tools which can ease the transition from the previous
MATRIXx models.
The VMS team supplied us with their Simulink model for the MCU, and described the

settings they typically use for generating code using RTW. We were then able to generate
the same C code as they do, and manually translated this code into the intermediate rep-
resentation format of our analysis tool. Next, we analyzed the code for the initialization
safety property using a range of simplification settings.
On most settings, the code could be verified with all VCs already discharged (i.e.,

proven) by the simplifier. This takes under one minute. At the other extreme, performing
no simplification at all produces over 700 VCs. Clearly, some experimentation is required
to determine the settings which provide the most insightful output.
V&V activities for the conversions to digital controllers are done in the VMS at the

system level. This is a time consuming process but is critical to get safety certification for
human occupancy. For the the conversion of the MCU from MATRIXx to Simulink, the
VMS team will be replacing only the software on the device and the same hardware plat-
form will be used. The VMS developers report that they expect to see much benefit from a
tool that would help them to verify that the new software (autocoded by RTW) behaves like
the old software, adhering to all the requirements, without having to repeat all the many
functional tests that were required when the initial installation of digital equipment was
done. A tool like AUTOCERT will obviate the need to construct a huge test-suite to ensure
that no low-level errors exist, and therefore helps engineers concentrate on higher-level
properties.
We conclude that it is feasible to use our tool to analyze RTW-generated code, but

further case studies should be carried out. The VMS engineers will provide additional
models as the migration to Simulink/RTW progresses.

10

4 Integration with Matlab Environment

In this section we describe how we plan to integrate the existing Prolog annotation in-
ference prototype with the Matlab environment, in general, and Real-Time Workshop, in
particular. There are several ways in which this could be done: using the Matlab command
line, using the RTW configuration capabilities, and through the Simulink graphical envi-
ronment. We first describe a number of use cases for the functionality which we want to
support, and illustrate these with some mock-up screenshots. Then we describe the imple-
mentation approach which we are proposing, which centers on replacing the existing PHP
backend of the Prolog engine with a JavaScript backend, in order to produce the browsable
verification artifacts. We also discuss some alternative implementation strategies.

4.1 Matlab Environment

Figure 2: Simulink Model

Simulink is the MathWorks environment for creating graphical models of dynamic
systems (Figure 2). Real-Time Workshop is not a standalone tool, but rather a set of menu
options within Simulink, which allow executable C code to be generated from the model.
A further add-on product, Embedded Coder (EC) has various additional features which are

11

Figure 3: Choosing Certificate Options

useful for generating C code tuned for embedded devices. EC will not be discussed further
in this document, since the differences from RTW are not relevant at this level of design.
More relevantly for our purposes, however, RTW provides browsing capabilities for its
generated code by generating parallel HTML files, which can be viewed with the Matlab
browser. That is for every .c and .h file it generates a parallel c.html and h.html file.
These files contain hyperlinks to type declarations and back to Simulink model elements.
Clicking on a link to a model element in the code causes the corresponding box in the
Simulink model to be highlighted.

4.2 Certification Functionality

We will describe the proposed integration of AUTOCERT with RTW from the point of
view of the user via a series of use cases or scenarios. Note that the screenshots below
are based on a current standalone implementation, so should not be taken as representative
of exactly how the GUI would appear. They are used only to illustrate the functionalities
being described.
The integrated tool will offer functionality in three main areas: code creation, certifi-

cate creation, and browsing/tracing between the various artifacts.

Certificate Creation It is assumed that the user has already generated code from their
model using RTW. The generated files can be viewed in Matlab’s “Current Direc-
tory” frame (the leftmost in Figure 4) for the project. Now the user selects the
appropriate file (here rtwdemo counter.c) and via a right mouse click, brings up the
AUTOCERT choices dialog which allows them to choose a variety of certification
options as shown in Figure 3.
First the user selects a safety policy from a predetermined list of choices – this choice

12

Figure 4: Generated Code and VCs

determines what kind of property of the code is to be certified. Then the user can
select to generate annotations. If, and only if, the user selects generate annotations,
the next choice is made available, namely whether or not to generate verification
conditions (VCs). Again, if, and only if, that choice is made, the user is allowed to
choose whether or not to generate certificates (formally verified proofs of the VCs).
The user then selects OK to invoke AUTOCERT or Cancel to escape.
The results of the analysis can be viewed in the Matlab browser. The browser can
also be started either from the menu or from the command line (using the Matlab web
command). The top-level generated file is XXX certification.html. The browser can
be docked with the Matlab development environment (see Figure 4).

Tracing between Code and VCs The user can browse the generated code, and by select-
ing a line, see the list of VCs (bottom right frame) that are dependent on that line
(Figure 5).
The user can also select a VC and navigate to its source in the code (Figure 6). This
action highlights the lines in the RTW-generated code (in the left hand pane of the
browser) which “contribute” to the chosen VC (that is, they had either an annotation
from which the VCG generated the given VC or contributed a safety obligation).

13

Figure 5: Tracing Code to VCs

Figure 6 shows how the tracing information can be used to support the certification
process. A click on the source link associated with each VC prompts the certification
assistant to highlight in boldface all affected lines of the code. A further click on
the verification condition link itself displays the formula (see Figure 7), which can
then be interpreted in the context of the relevant program fragments. This helps
domain experts assess whether the safety policy is actually violated, which parts of
the program are affected, and eventually how any violation can be resolved. This
traceability is also mandated by relevant standards such as DO-178B [RTC92].
In practice, safety checks are often carried out during code reviews [NS04], where
reviewers look in detail at each line of the code and check the individual safety
properties statement by statement. To support this, linking works in both directions:
clicking on a statement or annotation displays all VCs to which it contributes.

Along with RTW’s model-to-code tracing capability, the code-to-VC tracing provides
users with the ability to navigate from VCs to model elements. A more thorough and
integrated functionality that permits a user to navigate directly from VCs to model and
vice versa is planned.

14

Figure 6: Tracing VCs to Code

4.3 Implementation

The use cases described above will be effected by reusing (with some modifications) ex-
isting code along with some new code. We will now consider the case of tracing code to
VCs in some more detail, as it is the one that requires the most additional functionality.
There are two aspects to consider for implementing the interface. First, the mecha-

nism by which tracing information can be incorporated into RTW-generated code; second,
the representation format and language for implementing the tracing and controls (imple-
mented as a backend to the inference engine).

4.3.1 Integration with RTW

There are a number of options for providing links from the code to the VCs. The first, and
easiest, would be to generate parallel files that are very similar in structure to their HTML
but contain links to the VCs instead of links back to the model. However, this is not very
desirable from a usability standpoint as it would require the user to co-ordinate between
two very similar files (the RTW generated foo c.html and our generated file foo cert.html.
This option was not considered further. A second approach would be possible if we had
access to the HTML documentation templates used by RTW (similar to the way in which

15

Figure 7: Viewing the Formula of a VC

the code generation templates can be customized). In that case, we could alter the HTML
generation so we can add in our own links (e.g., to the VCs) in addition to the ones to the
model generated by EC. Navigating between code, VCs, and model would then be seam-
less. Second, we could re-generate the HTML that RTW currently generates augmented by
our additional content into a single HTML file. Third, we could post-process the generated
HTML files to insert additional links, using an XSL script or a custom Prolog program.
The work involved in each of these options is summarized below:

1. Generating Integrated HTML by changing the RTW/EC HTML templates

(a) Determine the required changes to the templates to incorporate (frame based)
JavaScript instead of HTML

(b) Implement changes to templates

2. Generating Integrated HTML by generating both the existing RTW navigation and
our additional navigation. In addition to (1) above we would also need to:

(a) Determine how to propagate tracing information from model to code (and ulti-
mately vice-versa)

16

(b) Connect datatype definitions and usage
(c) Design the HTML templates/schemas incorporating the above, as well as exist-
ing Matlab formatting information, such as highlighting and/or code formatting
options.

(d) Augment the RTW build process to generate the composite HTML

3. Generating Integrated HTML by post-processing the generated HTML

(a) Write a weaver program that combines the RTW generated HTML with the
annotations and line number information generated by the inference engine
into calls to pre-generated JavaScript functions

(b) Determine the required JavaScript to be generated
(c) Implement changes to the backend code generator

We chose option (3) as RTW does not currently provide access to the HTML code
formatting templates, while option (2) would essentially require duplicating much of the
work already done by the RTW/EC backend. The weaver program can either be an XSL
script or a Prolog program that imports the RTW-generated HTML using packages such as
sgml2pl and sgml write available in SWI Prolog. The XSL script would require some way
of exporting Prolog data to the XSL engine, whereas the Prolog program has the advantage
that it does not require a way of passing Prolog terms to XSL.
Further integration could be achieved if the files generated by AUTOCERT could be

viewed in Model Explorer instead of the browser, but that would require modifying either
the Matlab generated file XXX contents.html or the template that generates it. At the time
of writing, however, it appears that this is not possible, although MathWorks has indicated
that it may be provided for in a future release.

4.3.2 AUTOCERT Backend

There are several alternatives for representing the tracing information and we discuss these
now. One option is to retain as much as possible of the existing prototype, which is based
on PHP; another option is to use Matlab’s native interface language (GUIDE); finally,
and the option which we have chosen for the integration, we can use a JavaScript-based
solution.
PHP Based Implementation

The user brings up their model in Simulink, selects the RTW menu item, and then re-
quests code generation, with additional options being generate annotations, generate ver-
ification conditions, and generate certificate. The Matlab browser is started either from

17

the menu or from the command line (using the Matlab web command). From here it is
possible to connect to the web server and display the top level xxx.certification.html file
and interact as is done currently. Alternatively RTW generated HTML code files can be
browsed. The traceability links to the model in the RTW generated HTML files work as
expected. The browser can be docked with the Matlab development environment.
This approach has the benefit of being able to retain most of the current PHP setup,

including the Prolog that generates it. It would enable quick prototyping of the actual
functionality that we wish to demonstrate.
However it has drawbacks. It offers little possibility of integration into the Model

Explorer component of RTW. This is because, unlike JavaScript, PHP must be executed
on a web server. This in turn requires the user to switch between two different places:
the browser for the VC traceability and Model Explorer for the rest of the functionality
provided by RTW/EC. It also requires access to a PHP enabled web server.
Matlab GUI Based Implementation

In this approach, a separate GUI window, developed using the GUIDE language, would
be launched from the Matlab command line. All widgets and text displays are done using
Matlab GUI controls. Functionality previously implemented in PHP would be carried out
using GUI callbacks.
This has better integration with Matlab than using PHP but is still a separate standalone

piece of functionality from RTW. The rest of the tracing and reporting functionality pro-
vided by RTW/EC is browser based (that is, the code is viewed in an internal browser,
navigation is via hyperlinks). Integrating the AUTOCERT navigation into the RTW gener-
ated HTML code files would not be possible with this option. The existing Prolog format-
ting code would also have to be enhanced significantly to generate Matlab GUI formatting
information. Also, functionality that usually comes “for free” in a browser (e.g., hyper-
linking and search, extremely useful when searching for text within code) would have to
be explicitly programmed. Finally the GUI controls and callbacks would be implemented
in Matlab’s custom language, thereby making it harder to port this functionality to other
code generation environments.
JavaScript Based Implementation

A JavaScript based implementation allows us to integrate our functionality into Matlab
in the most seamless manner. This is because JavaScript files are just HTML files with
additional functions (defined in JavaScript) that are interpreted by the Matlab browser.
That is, they do not require an external web server. It also allows us to retain the framework
of the existing Prolog code that generates PHP since they both assume an HTML output
format (as opposed to a Matlab GUI, which would be quite different).

18

Having chosen the post-processing option above, we need to identify the exact infor-
mation required by the weaver in order to produce the resulting code.
Consider the following simplified example of the HTML of C (foo c.html) produced

by RTW/EC2:

1 int x = 0;
2 for (int i = 0; i < 10 ; i++)
3 x := x + i;

The inference engine takes the actual C file (foo.c) and produces a renumbered anno-
tated output (in intermediate form). For example:

1 int x = 0;
2 forall(t1): 0 < t1 < 10
3 XXX
4 for (int i = 0; i < 10 ; i++)
5 x := x + i;
6 x == YYY

where lines 2 and 3 represent an invariant, and line 6 represents a postcondition. This is
then simply output as a renumbered listing table, using pp html3 to correctly format the
annotations as HTML strings. The <n> entries refer to their corresponding lines in the
original RTW generated C:

1 <1>
2 " forall(t1): 0 < t1 < 10"
3 " XXX"
4 <2>
5 <3>
6 " x==YYY"

In addition we have some JavaScript definitions for functions displayCode and
displayAnn in a file defs.js. These function definitions test to see if the current line
has been selected and if so display it differently otherwise they display it in the standard
manner. They will have been separately generated by pp html or pp javascript.
Now the weaver program takes each line from the renumbered listing, except numbered

references are replaced with their corresponding lines from the RTW-generated code, and
weaves them together to generate calls to the predefined JavaScript functions. Note that

2Actual RTW/EC generated code uses “classes” to define the various styles, and also formats the line
numbers, but the idea is similar.

3In general, pp X is the function in the backend which renders internal artifacts in a given format.

19

the formatting (font size, color, etc) as well as displaying the line number as an anchor is
handled by the JavaScript functions so we only need to pass the relevant data:

displayCode(1, "int x = 0;")
displayAnn(2, " forall(t1): 0 < t1 < 10")
displayAnn(3, " XXX")
displayCode(4, "for (int i = 0; i < 10 ; i++)")
displayCode(5, " x := x + i;")
displayAnn(6, " x==YYY")

The functions displayAnn and displayCode (along with displayComment,
not shown above) are pre-generated, parameterized by the model name, and with the RTW
code style definitions hard coded.
We outline the definition of the JavaScript function displayCode below. The re-

quired functionality is as follows: If a particular line contributes to a selected VC then that
line is shown in red, preceded by the word “VC” and the number of the VC to which it
contributes. Otherwise it is shown normally. In each case the line number serves as an
anchor to the .log.html file.

parse URL arguments -> sourcingLine#s, VC#

function displayCode(line#, line)
{
if (L<n> in sourcingLine#s)

showLineSpecial(VC#, line#, line)
else

showLineNormal(line#, line)
}

function showLineSpecial(VC#, line#, line)
{
output "VC" followed by VC#
output line# as blue anchor
output font change -> red
output line
output end font change

}

20

function showLineNormal(line#, line)
{
output line# as blue anchor
output line

}

Accessing Matlab

The following is a fragment from the RTW/EC generated xxx c.html file showing how
RTW/EC allows linking back from code to model:

/* Sum: ’
<I><Root>/Sum</I>’
*/

The use of the matlab: designates the namespace, and rtwprivate informs the Mat-
lab command line interpreter that what follows is an internal function, namely the rtwc-
tags hilite function. We could probably use a similar mechanism to enable navigation
between Matlab model elements and our code if needed.

4.4 Summary

We have described how we plan to integrate our additional functionality (AUTOCERT)
with the Matlab/RTW GUI in a way that preserves the user experience and is as seamless
as possible. Existing RTW navigation is HTML based, so we have chosen to continue with
that in order to preserve the user experience. AMatlab GUI based approach was considered
but rejected because it would not have been consistent with the HTML based approach
used by Matlab. Although retaining the existing PHP approach would have minimized
work effort it would have required access to a PHP enabled web server, and also would
have precluded integration into Model Explorer.
The functionality of the use cases will generally be provided by emulating the func-

tionality of several generated PHP files. That is, we will need to design JavaScript files that
are similar to their PHP counterparts, and additionally change the presentation generators
(in AUTOFILTER and AUTOBAYES) to generate this JavaScript instead of PHP.

5 Adapting Certification Infrastructure

In addition to our pilot study using the VMS, we also carried out a more general analysis of
the code produced by RTW, using some alternative models. We first look in Section 5.1 at

21

the C code generated by the Real-Time Workshop code generator from Simulink/Stateflow
models. We analyze the code constructs and idioms used by the generator, based on a
range of discrete-time input models. The purpose of this is to identify the necessary exten-
sions of the AUTOBAYES/AUTOFILTER intermediate code used in the certification system
(Section 5.2), possible pre-processing steps to simplify the input for the certification plug-
in, and analyze the (initialization) code patterns which are used by Real-Time Workshop
(Section 5.3).

5.1 Language and Code Structures

The analyzed code base uses two different versions of the Real-Time Workshop code gen-
erator:

• RTW V6.1 (R14SP1), dated September 05, 2004, together with TLC V6.1, dated
August 24, 2004

• RTW V6.4 (R2006a), dated February 03, 2006, together with TLC V6.4, dated Jan-
uary 31, 2006

V6.1 is used in one application, while V6.4 is used in three other applications.

Figure 8: RTW Options Window

22

RTW has a number of options for the generation of code from a given Simulink model.
An options window (Figure 8) is used to select the appropriate options. RTW also provides
a number of target configuration files (Figure 9). All code analyzed in this case study was
generated using the Simulink setting “fixed step, discrete (no continuous states)” and the
template file4 ert.tlc, i.e., using the RTW Embedded Coder without a specific configu-
ration. In addition to the selected target architecture and platform, both the model structure
and the specific blocks used in the model can influence the amount and type of code that is
generated. For example, a model in which updates are computed with different frequencies
induces the generation of a rate-monotonic scheduler and changes the calling convention
by introducing individual step functions for the different frequencies. Similarly, using
RTW’s “absolute value” library block introduces the function rtw FABS. However, both
aspects are (mostly) ignored in the case study.

Figure 9: RTW Target Browser

5.1.1 Overall Code Structure

Real-Time Workshop produces six files for a Simulink model model:

model.h This file contains type definitions for the block states and external (i.e., root
model) inputs and outputs, structure declarations for block block parameters and the
model data structure, and extern declarations for the global data structures and
model functions model initialize, model step, and model terminate.
It is #included in model.c and model data.c. There are small differences
between V6.1 and V6.4, but the overall structure and content remain the same.

model private.h This file contains some configuration constants and declarations for
imported external block signals, if the model contains these. It is #included in
model.c and model data.c.

4Template files are just configuration files that contain command line parameter settings.

23

gl
ob

al
va

ria
bl

es

Si
m

ul
in

k
Co

de
 W

ra
pp

er

_init()

_step() Si
m
ul
in
k

Figure 10: RTW Code Interaction

model types.h This file contains the (forward) type declaration for rtModel and (if
specified in the model) additional type definitions. It is #included in model.c.

model.c This file contains the implementations of the model functions model initialize,
model step, and model terminate. The body of model step contains the
code generated for all blocks in the model.

model data.c This file contains initial values for block parameters and constants used
by the model. It is #included in model.c.

ert main.c This file contains wrapper code, including a main function, which then
calls the top-level functions of the generated code (i.e., model initialize and
model step). This is boiler-plate code with only a few system-specific details
(i.e., calls to the generated functions). In most cases, this file is not actually used;
instead, its functionality would be provided by the control module (process), which
calls the generated code. This file will mostly be ignored for the analysis.

In the simplest case, the client code has a structure similar to the as following (also shown
in Figure 10):

model_initialize(1);
...
while(!(done)){

// get "input" data and store it in the model
get_input_data(...);

24

model_U = ...;

// update the model
model_step();

// get "output" data from the model and process it
... = model_Y;
use_output_data(...);

};

Instead of using this simple “polling” architecture, the model update model step could
also be called within a separate process that is activated whenever an update must be per-
formed (e.g., at a scheduled time, or on receiving data).

5.1.2 C Pre-Processor Directives

Macro Definitions

Real-Time Workshop uses #define to introduce compilation and configuration con-
trol tokens, named integer constants, and boiler-plate (i.e., model-independent) parameter-
ized access routines for the underlying model data structures. #define can occur in all
files, with the model data structure access macros defined in model.h.
#include

The files model.c and model data.c include the model.h and model private.h
files. model.h includes model types.h, some RTW runtime files (rtwtypes.h
and, in V6.1, rtlibsrc.h), and a number of C standard files; the latter change between
V6.1 (float.h,string.h,math.h) and V6.4 (stdlib.h,stddef.h,string.h,
math.h). Finally, model private.h includes rtwtypes.h and, in V6.4, rtlibsrc.h).
Conditional Compilation

RTW uses #ifndef to control the definition of tokens, to prevent repeated macro
definitions, and to implement conditional #includes but not for (proper) conditional
compilation on the statement level. It is used in all header files.

25

5.1.3 Types

Type Usage

The RTW files use the standard types char and void; numeric types are used only in
derived versions (i.e., boolean T, int T, int32 T, uint8 T, uint32 T, real T,
and real32 T; other bit-lengths might occur, depending on the the types used in the
model). In addition, the defined struct types as well as array- (i.e., T[]) and pointer
types (i.e., T*) are also used in declarations. Other types might get included, depending
on the model structure.
Type Definitions

The files model.h and model types.h contain several struct type definitions,
which can be nested (i.e., can contain another struct as field). The field names of
the different structs appear to be disjoint in the given test corpus. The definitions use
both the typedefmechanism (i.e., typedef struct {...} name;) and the basic
struct mechanism (i.e., struct name {...};); however, in the latter case, addi-
tional typedefs are used to introduce aliases for the struct types.

5.1.4 Expressions

Arithmetic

RTW uses the normal arithmetic operators, including division, and the if-then-else op-
erator (i.e., ? :). Some—but not all—numeric literals use trailing U and F as markers to
denote their type (e.g., 1U, 2.0F). Expressions contain explicit type casts where necessary.
Hexadecimal Arithmetic

RTW does not use hexadecimal arithmetic but uses negation for booleans.
Strings

RTW does not use strings.
Side-effects

The code for rate monotonic scheduler uses a pre-increment operation (i.e.,
--x); the remaining code is free of side-effects in expressions.

26

5.1.5 Statements

RTW uses both simple and operator assignments (i.e., += and *=), for loops, if-then,
if-then-else, switch, and increment statements. All for loops are simple, i.e., of
the form for(i=0; i<N;i++) {...}. The switch statements all have a default
branch and use a break at the end of each branch.

5.1.6 Memory Management and Pointers

RTWdoes not explicitly allocate / deallocate memory, but the function model initialize
uses both memset and explicit pointer aliases to initialize several data structures. The
pointer aliases are used in the idiomatic form

void *p = (void *)(&field);
for(i=0; i < N; i++) {p[i] = 0.0;};

where field is the first of N consecutive fields in a structure. (If N is small, the loop
is also unrolled.) The file model.c also uses the address-of operator to create a pointer
to the model data structure. This is accessed using the ->-operator by the rate-monotonic
scheduler.

5.1.7 Variable Declarations and Scoping

Globally visible variables are defined as extern in model.h, and declared (without
static) on the top-level of model.c. The model step function introduces local
block I/O variables. Local blocks are used to introduce auxiliary variables, e.g., loop vari-
ables. These are not necessarily renamed apart, i.e., their names can be reused in different
blocks, but declarations are never overwritten.

5.1.8 Functions and Procedures

Function and Procedure Calls

Except for the rate-monotonic scheduler, all calls are to library functions (i.e., with
non-void return types), not to procedures. All calls are with value-arguments only. The
functions called fall into the following two categories:

C library functions: this includes the standard mathematical functions sqrt, exp, fabs,
and floor.

Real-Time library functions: this includes RTW-functions corresponding to “mathemati-
cal” blocks (e.g., rt ABS or rt FSGN), or to other functionalities (e.g., rt lookup32
or rt SATURATE).

27

The actually occurring function calls depend on the specific blocks used in the model. The
function calls are free of aliasing (i.e., no global variables passed as arguments and no
repeated arguments).
Function and Procedure Declarations

RTWgenerates only proper procedures, i.e., functions with void as return type. There
are no nested procedure declarations. It generates only non-recursive procedures with
call-by-value parameters. The generated procedures read from and write to global (scalar
and array) variables. The only formal parameter (in model initialize) is of type
boolean T.

5.2 Intermediate Code Extensions

5.2.1 System Structure

The generated code should only be pre-processed moderately; running the top-level file
through the pre-processor (i.e., cpp or gcc -E) leads to the inclusion of too many details.
In particular:

• the relevant files (model.h,model private.h,model types.h,model data.c,
and model.c) should be combined into a single file; and

• macros should be expanded.

This can probably be achieved by forcing the pre-processor to use (empty or reduced)
“dummy” files instead of the included C standard and RTW runtime files. Corresponding
declarations can than be provided in the form of a “hyperscope” (i.e., standard environ-
ment) built into the certification engine.
The declarations can be mapped onto the current system-structure of the intermediate

language:

• static directives can be ignored because they only appear on the top-level; and

• forward-declarations of functions (i.e., function prototypes) can be ignored because
all files are merged.

5.2.2 Type Structure

The type structure of the generated programs can be simplified:

• the two different definition styles for structs (i.e., directly using the typedef
mechanism, and using the basic structmechanism with additional typedefs to
introduce aliases) can be unified, preferably by mapping the latter onto the former;

28

• the derived numeric datatypes (e.g., uint32 T) can be mapped back to their “ide-
alized” counterparts already provided by the intermediate language (e.g., int); and

• type casts can be ignored because they are only used to map between different ver-
sions of the same numeric base datatypes (e.g., from int8 T to int t).

The last two simplifications assume that the generated programs are “essentially” type
correct and that no type-based safety properties are shown.
The intermediate language needs to be extended by

• typedecl statements,

• struct types, and

• struct field selection expressions.

Variant records (unions) are not required to handle the given code base. Pointer types are
required to handle RTW’s initialization code and its aliasing of the model data structure.
However, their introduction should be delayed until the required extensions of the logical
framework (Luckham/Suzuki’s pointer representation or separation logic) are evaluated.

5.2.3 Statement Structure

Loops can be mapped onto the current for loops in the intermediate code; the front-end
or the VCG should double-check that the loop index variable is not modified by the loop
body (although that does not happen in the analyzed code base).
The switch statements could be mapped onto deeply nested if-then-else state-

ments, since all branches end on a break. However, this would complicate tracing, and
it might be easier to extend the intermediate language and the VCG by a dedicated case
statement. The VCG would be significantly simpler if the case statement were based on
Pascal’s semantics (i.e., implicit breaks at the end of each branch, to prevent fall-through
from one branch into the next).

5.2.4 Expression Structure

The current expression structure of the intermediate language need only be extended by
struct field access (see above) and explicit function calls (see below).
The domain theory for the theorem provers must be extended by the hexadecimal oper-

ators only. struct field can be considered as atomic names for the provers, and function
calls will be eliminated by the VCG.
However, depending on the representation of pointer types, it may become necessary

to add further operators for dereferencing (*) and address-of (&).

29

5.2.5 Function and Procedure Representation

Function and procedure calls should be represented by a dedicated fcall operator and
pcall statement, respectively. These only need to represent the function/procedure name
and the actual parameters. Actual parameters on var-parameter positions can be repre-
sented without the explicit use of the address-of operator (&).
Function and procedure declarations must contain the list of parameters (marked as

input, output, and inout, respectively), and the read- and write-frames (i.e., set of global
variables that are accessed and modified by the function/procedure); the read-frames are
only required to check that the non-aliasing assumptions built into the verification rules
are satisfied. The frames can be approximated safely and easily by the set of all globally
declared variables.
The declarations must allow pre- and postconditions; if no preconditions is given, the

VCG can either assume true as precondition, or an approximate precondition can be de-
rived by computing the WSPC for the body wrt. postcondition true.

5.3 Code Patterns

We used initialization safety as a driving example of safety property for the case study.
Real-Time Workshop generates code that uses the following idiomatic code structures to
initialize array variables:

1. a non-empty sequence of assignments to the individual array elements where the
indexes are the integer literals running from the array’s lower to upper bounds;

2. a for loop running from the array’s lower to upper bounds, where the body contains
an assignment to an array element indexed with the loop variable;

3. a combination of the above two patterns, i.e., a for loop followed by additional
assignments to individual elements;

4. a sequence of for loops, where the bodies each contain an assignment to an array
element, indexed with the loop variable but with different offsets.

The first two patterns are already support by the existing prototype, while the last two
patterns are new. The following code fragment shows an example for the last case:

for(i=0; i < 20; i++) { a[i] = b[i]; };
for(i=0; i < 20; i++) { a[i+20] = c[i]; };
for(i=0; i < 20; i++) { a[i+40] = d[i]; };

30

6 Conclusions

We conclude that a safety certification plug-in for Real-Time Workshop is feasible, using
the technology we have developed as a basis. We have three principle conclusions:

1. The use of a tightly-coupled generation/analysis tool can allow system engineers
to concentrate on the modeling and design, rather than worrying about low-level
software details. The developers of the VMS software have expressed their belief
that tools such as we propose can help achieve this goal.

2. The Matlab environment, in general, and Real-Time Workshop, in particular, are
amenable to integration with our tool. Moreover, we have had encouraging and
fruitful discussions with individuals from the MathWorks.

3. The underlying logical basis for our analysis tool can be extended to deal with the
output from Real-Time Workshop, and a three-phase analysis process consisting of
annotation inference, verification condition generation, and verification condition
discharge is suitable for proving safety properties automatically. In particular, the
core idea of pattern-based annotation inference is feasible.

Our recommended design consists of:

• a core analysis engine, adapting from the existing Prolog engine (although restruc-
turing and reimplementation will likely prove necessary at some point),

• a JavaScript backend, to convert verification and tracing artifacts from the internal
Prolog representation into a form suitable for rendering in the Matlab environment,
and

• an XSL-based transformation script, to insert function calls and modify the existing
RTW-generated C.html file (rather than regenerate it).

Work has begun of the adaptation to the inference engine, and parts of the backend have
already been implemented.
There have been two publications so far, based on work carried out within the project,

both at leading software engineering conferences [DF06a, DF06b]. As the tool matures
and we carry out further case studies, we will present the work at aerospace conferences.
We also intend to submit a NASA technology disclosure form.
In addition to implementing the preliminary design (including any necessary exten-

sions to the pattern library and the domain theory), future development of the tool in Phase
2 will be in several areas. First, we will extend our analysis to the Embedded Coder, to
see which patterns occur in the optimized code it produces. Second, we will incorporate
a safety explanation mechanism. This capability will be based on an existing prototype

31

which turns VCs into natural language explanations. Third, we will extend coverage of
the tool to a wider range of models (that is, more blocks), though this depends on getting
access to appropriate models. We also plan to look at other RTW targets, insofar as this
is appropriate for our target studies, and will encode more high-level properties as safety
policies. Finally, we will investigate other ways in which the analysis can provide insight
into generated code. One possibility is that by computing the WPC of (the code generated
by) a block/submodel, the tool can automatically determine its interface requirements. The
user could also request that a submodel be certified (i.e., the code corresponding to that
submodel). Integration with the Matlab Report Generator might also be useful, especially
after we have integrated the safety explanation capability. We anticipate working closely
with the MathWorks developers.
We are currently investigating the application of the technology to the the GReAT code

generator from Vanderbilt University, in a government funded collaboration with NASA
Ames. We are looking into other NASA projects which we could target for case studies.
Possibilities include projects with teams at NASA Dryden and Johnston.

A Logical Framework

The analysis proceeds by first translating the parsed C code into a simple intermediate
language. The logical inference is carried out on this language. Here we give examples of
the rules which are used to verify initialization safety of annotated code.
(assign)

Q[e/x, INIT/xinit] ∧ safe init(e) {x := e} Q

(update)
Q[upd(x, e1, e2)/x,upd (xinit, e1, INIT)/xinit] ∧ safe init(e1) ∧ safe init(e2) {x[e1] := e2} Q

(if) P1 {c1} Q P2 {c2} Q

(b ⇒ P1) ∧ (¬b ⇒ P2) ∧ safe init(b) {if b then c1 else c2} Q

(while) P {c} I I ∧ b ⇒ P I ∧ ¬b ⇒ Q

I ∧ safe init(b) {while b inv I do c} Q

(for) P {c} I[i + 1/i] I[INIT/iinit] ∧ e1 ≤ i ≤ e2 ⇒ P I[e2 + 1/i] ⇒ Q

I[e1/i] ∧ e1 ≤ e2 ∧ safe init(e1) ∧ safe init(e2) {for i := e1 to e2 inv I do c} Q

(comp) P {c1} R R {c2} Q

P {c1 ; c2} Q
(skip)

Q {skip} Q
(assert) P ′ ⇒ P P {c} Q′ Q′ ⇒ Q

P ′ {pre P ′ c postQ′} Q

Formally, a safety property is an exact characterization of these conditions based on
the operational semantics of the language. A safety policy is a set of Hoare rules designed
to show that safe programs satisfy the safety property of interest. Appendix A shows the

32

rules of the initialization safety policy as an example. The rules are formalized using
the usual Hoare triples P {c} Q, i.e., if the condition P holds before and the command
c terminates, then Q holds afterwards. For example, the assert rule says that given an
arbitrary incoming postcondition Q, we must first prove that the asserted postcondition Q ′

implies this. We then compute the weakest precondition (WPC) of Q′ for c and show that
the asserted precondition P ′ implies this. The asserted precondition is then passed on as
the WPC of the annotated statement. See [Mit96] for more information about Hoare-style
program proofs.
The safety environment consists of shadow variables xinit that contain the value INIT

after the variable x has been assigned a value. Arrays are represented by shadow arrays
to capture the status of the individual elements. The rules can be read backwards to com-
pute the WSPCs. For example, the for-rule says that for an arbitrary postcondition, Q, if
c has WSPC P for the postcondition I[i + 1/i], and if the two intermediate VCs are true,
then the WSPC of the loop is as shown. Only statements assigning a value to a location
affect the value of a shadow variable (i.e., the assign-, update-, and for-rules). However,
all rules also produce the appropriate safety conditions safe init(e) for all immediate subex-
pressions e of the statements. Since the safety property defines an expression to be safe if
all corresponding shadow variables have the value INIT, safe init(x[i]) for example simply
translates to iinit = INIT ∧ (xinit[i]) = INIT.

B Acronyms

ACG Automated Code Generator
ATP Automated Theorem Prover
CEV Crew Exploration Vehicle
MCU Mode Control Unit
RTW Real-Time Workshop
RTW/EC Real-Time Workshop with Embedded Coder
VC Verification Condition
VCG Verification Condition Generator
VME Versamodule Eurocard Bus
VMS Vertical Motion Simulator
WPC Weakest Precondition
WSPC Weakest Safety Precondition
XSL Extensible Stylesheet Language

33

References

[DF03] Ewen Denney and Bernd Fischer. Correctness of source-level safety policies.
In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, Proc. FM 2003:
Formal Methods, volume 2805 of LNCS, pages 894–913, Pisa, Italy, September
2003. Springer.

[DF06a] Ewen Denney and Bernd Fischer. Annotation inference for the safety certifi-
cation of automatically generated code. In Proceedings of the 21st IEEE In-
ternational Conference on Automated Software Engineering (ASE ’06), pages
265–268, Tokyo, Japan, September 2006. IEEE.

[DF06b] Ewen Denney and Bernd Fischer. A generic annotation inference algorithm for
the safety certification of automatically generated code. In Proceedings of the
Conference on Generative Programming and Component Engineering, Portland,
Oregon, October 2006. ACM Press.

[DFS06] Ewen Denney, Bernd Fischer, and Johann Schumann. An empirical evaluation
of automated theorem provers in software certification. International Journal of
AI Tools, 15(1):81–107, February 2006.

[Erk04] Tom Erkkinen. Production code generation for safety-critical systems. Technical
report, MathWorks, 2004.

[FS03] Bernd Fischer and Johann Schumann. AutoBayes: A system for generating
data analysis programs from statistical models. J. Functional Programming,
13(3):483–508, May 2003.

[Mit96] John C. Mitchell. Foundations for Programming Languages. The MIT Press,
1996.

[Nec97] Georce C. Necula. Proof-carrying code. In Proc. 24th POPL, pages 106–19,
Paris, France, January 15–17 1997. ACM Press.

[NS04] Stacey Nelson and Johann Schumann. What makes a code review trustworthy?
In Proceedings of the Thirty-Seventh Annual Hawaii International Conference
on System Sciences (HICSS-37). IEEE, 2004.

[RTC92] RTCA Special Committee 167. Software considerations in airborne systems and
equipment certification. Technical report, RTCA, Inc., December 1992.

[SC03] Ingo Stürmer and Mirko Conrad. Test suite design for code generation tools.
In Proceedings of 18th IEEE International Conference on Automated Software
Engineering, pages 286–290. IEEE, October 2003.

34

[SD06] Johann Schumann and Ewen Denney. Customer survey on code generators
in safety-critical applications. Technical report, Robust Software Engineering
Group, NASAAmes, 2006. 6G Project, Exploration Systems Architecture Stud-
ies (ESAS) Report D0306.

[SWC05] Ingo Stürmer, Daniela Weinberg, and Mirko Conrad. Overview of existing safe-
guarding techniques for automatically generated code. SIGSOFT Software En-
gineering Notes, 30(4):1–6, July 2005.

[WS04] Jon Whittle and Johann Schumann. Automating the implementation of Kalman
filter algorithms. ACM Transactions on Mathematical Software, 30(4):434–453,
December 2004.

35

