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Abstract. Biologically inspired soft computing paradigms such as neu-
ral networks are popular learning models adopted in adaptive control
systems for their ability to cope with a changing environment. However,
continual changes induce uncertainty that limits the applicability of con-
ventional validation techniques to assure a reliable system performance.
In this paper, we present a dynamic approach to estimate the perfor-
mance of two types of neural networks employed in an adaptive flight
controller: the validity index for the outputs of a Dynamic Cell Struc-
ture (DCS) network and confidence levels for the outputs of a Sigma-Pi
(or MLP) network. Both tools provide statistical inference of the neural
network predictions and an estimate of the current performance of the
network. We further evaluate how the quality of each parameter of the
network (e.g., weight) influences the output of the network by defining a
metric for parameter sensitivity and parameter confidence for DCS and
Sigma-Pi networks. Experimental results on the NASA F-15 flight control
system demonstrate that our techniques effectively evaluate the network
performance and provide validation inferences in a real-time manner.

1 Introduction

Adaptive Flight Control is considered as one of the most challenging real-time
automation and control tasks as the system’s functions are not static but evolve
over time in a non-probabilistic manner. While these evolving functions, through
judicious online learning, aid the adaptive controller to recuperate the system
(aircraft) from an operational damage (sensor/actuator failure, changed aircraft
dynamics: broken aileron or stabilator, etc.), they add an additional degree of
complexity and system uncertainty. Since it is impossible to estimate and analyze
all possible concerns relative to system safety beforehand, online adaptive sys-
tems require a non-conventional approach to verification and validation (V&V).

Neural networks are widely employed for function approximation, prediction
and pattern recognition. The requirements on such models are usually described
as satisfying certain criteria of precision and/or accuracy. Typical metrics used
for performance evaluation of neural networks are Mean Square Error (MSE),
Squared Error, etc. They are used to measure the learning performance of a
neural network model. For prediction performance evaluation, the most popu-
lar metrics are prediction/confidence intervals defined to measure the reliability



of network output. In the context of an online neural network based adaptive
control system, the online neural network is expected to promptly respond to,
adapt to and accommodate environmental changes. Therefore, within an online
adaptive system, assuring the performance of the online neural network requires
online evaluation of its adaptation performance.

In this paper, we present statistical approaches to estimate the performance
of a neural network: the validity index (VI) for Dynamic Cell Structures (DCS)
and confidence levels for the outputs of a Sigma-Pi (or MLP) network. Both
tools provide error bars of the neural network outputs, given the current inputs
and thus provide an estimate of the current performance of the network.

For safety-critical systems, a “black box” approach to network assessment
is not sufficient. We therefore estimate how the quality of each parameter of
the network (e.g., weight) influences the output of the network by calculating
parameter sensitivity and parameters confidence for DCS and Sigma Pi networks.

There is only little related work on verification and validation of neural
network-based controllers. [7, 18] discuss an approach toward V&V of such sys-
tems; NASA has developed a software verification process guide [12] addressing
these issues. The use of Bayesian techniques to estimate neural network quality
is presented in detail in [2]; another metric (validity index) for RBF has been
introduced in [9]. Monitoring approaches for neuro-adaptive controllers, based
on Lyapunov stability are discussed in [6].

2 Neural Network based Flight Control

We illustrate our approach with the NASA F-15 Intelligent Flight Control Sys-
tem (IFCS) project. Its aim is to develop and test-fly a neuro-adaptive intelligent
flight control system for a manned F-15 aircraft. Two principal architectures have
been developed: the Gen-I architecture uses a DCS neural network as its online
adaptive component, the Gen-II architecture a Sigma Pi network.
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Fig. 1. IFCS Generic Adaptive Control Architecture

Figure 1 shows the basic architecture of the Gen-I and Gen-II controllers:
pilot stick commands Θcmd are mixed with the current sensor readings Θ (e.g.,
airspeed, angle of attack, altitude) to form the desired behavior of the aircraft.
From these data, the PID controller calculates the necessary movements of the
control surfaces (e.g., rudder, ailerons) and commands the actuators. The con-
troller incorporates a model of the aircraft dynamics. If the aerodynamics of the



aircraft changes (e.g., due to a damaged wing or a stuck rudder), there is a de-
viation between desired and actual state. The neural network is trained during
operation to minimize this deviation. Whereas in the Gen-I architecture, the
appropriate control derivatives are modified with a neural network, Gen-II uses
a dynamic inverse controller with control augmentation, i.e., the neural network
produces a control correction signal. For details on the control architecture see
[16, 4, 17].

2.1 The Neural Networks

Dynamic Cell Structure Network The Dynamic Cell Structures network is
derived as a dynamically growing structure in order to achieve better adaptabil-
ity. DCS can be seen as a special case of Self-Organizing Map (SOM) structures
as introduced by Kohonen [8] and further improved to offer topology-preserving
adaptive learning capabilities that can respond and learn to abstract from a much
wider variety of complex data manifolds [13, 3]. In the IFCS Gen-I controller,
the DCS provides derivative corrections during system operation.

The DCS network adopts the self-organizing structure and dynamically evol-
ves with respect to the learning data. It approximates the function that maps
the input to the output space. At last, the input space is divided into different
regions, referred to as the Voronoi regions [13, 3, 5]. Each Voronoi region is rep-
resented by its centroid, a neuron associated with its reference vector known as
the “best matching unit” (bmu). Further, a “second best matching unit” (sbu) is
defined as the neuron whose reference vector is the second closest to a particular
input. An Euclidean distance metric is adopted for finding both units.

The training algorithm of the DCS network combines the competitive Heb-
bian learning rule and the Kohonen learning rule. The Hebbian learning rule is
used to adjust the connection strength Cij between two neurons. The Kohonen
learning rule is used to adjust the weight representations of the neurons (wi),
which are activated based on the best-matching methods during the learning. If
needed, new neurons are inserted. After learning, when DCS is used for predic-
tion (the recall mode), it will recall parameter values at any chosen dimension. It
should be noted that the computation of an output is different from that during
training. When DCS is in recall mode, the output is computed based on two
neurons for a particular input. One is the bmu of the input; the other is the
closest neighbor of the bmu other than the sbu of the input. In the absence of
neighboring neurons of the bmu, the output value is calculated using the bmu
only. Since our performance estimation does not depend on the specific learning
algorithm, it will not be discussed in this paper. For details on DCS and the
learning algorithm see [13, 3, 5, 10].

Sigma Pi Neural Network The IFCS Gen-II controller uses a Sigma-Pi (ΣΠ)
neural network [15], where the inputs are x subjected to arbitrary basis functions
(e.g., square, scaling, logistic function). Then Cartesian products (Π) of these
function values are calculated. The final output of the network o is a weighted



sum (Σ) of these products (Figure 2):

o =
∑

i

wipi where pi =
∏

j

β(xj)

with weights wi and β(xj) the basis functions. During the training, the weights
wi are modified as to minimize the tracking error of the controller. As our ap-
proach to confidence and sensitivity analysis does not depend on the specific
training algorithm for the network, it will not be discussed here. For details
see again [16]. Figure 2 (right) shows how the network weights wi develop over
time during an operational scenario. At t = 1.5s, a failure occurs, triggering
adaptation of the neural network.
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Fig. 2. Architecture of ΣΠ network (left). Development of the NN weights over time
during adaptation (right). The failure occurred at t = 1.5s.

3 Estimating Network Performance

3.1 Data Confidence

Validity Index Following the definition of Validity Index (VI) in RBF networks
by Leonard et.al.[9], we define the validity index in DCS networks as an estimated
confidence measure of a DCS output, given the current input. The VI can be used
to measure the accuracy of the DCS network fitting and thus provide inferences
for future validation activities. Based on the primary rules of DCS learning and
properties of the network structure, we employ confidence intervals and variances
to calculate the validity index in DCS. The computation of a validity index for
a given input consists of two steps: (1) compute the local error associated with
each neuron, and (2) estimate the standard error of the DCS output for the
given input using information from step (1). Details can be found in [11, 10].

We have modified the DCS training algorithm to calculate the validity index.
Because all needed information is present at the final step of each training cycle,
we can simply calculate s

′
2

i for each neuron after the learning stops. When the
DCS is in recall mode, the validity index is computed based on the local errors
and then associated with every DCS output. We have simulated the online learn-
ing of the DCS network under a failure mode condition. Running at 20 Hz, the
DCS network updates its learning data buffer (of size 200) at every second and
learns on the up-to-date data set of size 200. We first start the DCS network



under nominal flight conditions with 200 data points. After that, every second,
we set the DCS network in recall mode and calculate the derivative corrections
for the freshly generated 20 data points, as well as their validity index. Then we
set the DCS network back to the learning mode and update the data buffer to
contain the new data points.
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Fig. 3. Online operation of DCS VI on failure mode simulation data. Left: The final
form of DCS network structures. Right: VI shown as error bars for each DCS output.

Figure 3 shows the experimental results of our simulation on the failure mode
condition. The left plot shows the final form of the DCS network structure at
the end of the simulation. The 200 data points in the data buffer at the end of
the simulation are shown as crosses in the 3-D space. The network structure is
represented by circles (as neurons) connected by lines as a topological mapping
to the learning data. The right plot presents the validity index, shown as error
bars. The x-axis here represents the time frames. The failure occurs at t = 5.0s.
We compute the validity index for the data points that are generated five seconds
before and five seconds after the failure occurs.

A trend revealed by the validity index in our simulations is the increasingly
larger error bars after the failure occurs. At t = 6.0s, the network has learned
these 20 failure data points generated from ∆t = 5.0 ∼ 6.0s. The network per-
formance became less stable. After that, the error bars start shrinking while the
DCS network adapts to the new domain and accommodates the failure. After
the failure occurs, the change (increase/decrease) of the validity index varies
depending on the characteristics of the failure as well as the accommodation
performance of the DCS network. Nevertheless, the validity index explicitly in-
dicates how well and how fast the DCS network accommodates the failure.

Bayesian Confidence Tool For the Gen-II architecture, the Confidence Tool
(CT) [7] produces a quality measure of the neural network output. Our per-
formance measure is the probability density p(o|x,D) of the network output
o given inputs x, when the network has been trained with training data D.
Assuming a Gaussian distribution, we use the standard deviation σ2 as our per-
formance measure. A small σ2 (a narrow bell-shaped curve) means that, with a



high probability, the actual value is close to the returned value. This indicates a
good performance of the network. A large σ2 corresponds to a shallow and wide
curve. Here, a large deviation is probable, indicating poor performance.

Our confidence tool uses an algorithm, following the derivation in [2]. The CT
has been implemented for Sigma-Pi and multi-layer perceptron (MLP) networks
in Matlab (for a Simulink environment) and in C. For details see [7, 18]. The CT
tool is currently implemented on the flight computer on a NASA F-15 aircraft
and is scheduled for manned test-flights in the near future.
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Fig. 4. Confidence value σ
2 over time (top) and pilot commands for roll axis (bottom).

A failure has occurred at t = 1.5s.

Figure 4 shows the results of a (Simulink) simulation experiment. In the top
panel, σ2 is shown over time. At time t = 1.0s, the pilot issues a doublet com-
mand (fast stick movement from neutral into positive, then negative and back to
neutral position; Fig. 4(lower panel)). Shortly afterwards (t = 1.5s), one control
surface of the aircraft (stabilizer) gets stuck at a fixed angle (“the failure”). Be-
cause the system dynamics and the model behavior do not match any more, the
neural network has to produce an augmentation control signal to compensate for
this deviation. The σ2 of the network output increases substantially, indicating
a large uncertainty in the network output. Due to the online training of the
network, this uncertainty decreases very quickly.

A second and third pilot command (identical to the first one) is executed at
t = 11s, and t = 17s, respectively. During that time, the network’s confidence
is still reduced, but much less than before. This is a clear indication that the
network has successfully adapted to handle this failure situation.

3.2 Sensitivity and Confidence

For the analysis of any controller’s behavior, it is important to estimate its sen-
sitivity with respect to input perturbations. A badly designed controller might



amplify the perturbations, which could lead to oscillations and instability. The
higher the robustness of the controller, the less influence arises from input per-
turbations. It is obvious that such a metric (i.e., ∂o

∂x
for outputs o and inputs

x) is also applicable to an adaptive control system. For an adaptive component,
like a neural network, the estimation of the sensitivity is a “black box” method,
i.e., no knowledge about the internal structure or parameters is necessary.

In this paper, however, we focus on parameter sensitivity. This means, we
calculate ∂o

∂p
for each of the adjustable parameters p ∈ P. For a neural network,

P is comprised of the network weights wi, for the DCS network, it is the reference
vectors of the neurons wi. During training of the network, these parameters are
adjusted to minimize the error. Depending on the architecture of the adaptive
controller, the network can be pre-trained, i.e., the parameters are determined
during the design phase (“system identification”), or the parameters are changing
while the system is in operation (“online adaptation”). In both cases, one needs
to know, which influence the actual values of the parameters have on the output
of the neural network: if the influence of a parameter or neuron is negligible, then
this neuron might be removed from the network. On the other hand, extremely
high sensitivity might cause numerical problems.

Even more information can be obtained if we consider each parameter of the
neural network not as a scalar value, but as a probability distribution. Then,
we can formulate the sensitivity problem in a statistical way. The probability
of the output of the neural network is p(o|P,x) given parameters P and inputs
x. If we again assume a Gaussian probability distribution, we can define our
parameter confidence as the variance σ2

P
. In contrast to calculating the network

output confidence value, we do not marginalize over the weights, but over the
inputs.

A Sensitivity Metric for DCS Networks Within the IFCS Gen-I, the DCS
networks are employed for online adaptation/learning. Their parameters (con-
nection strength Cij and reference vectors wi) are updated during system op-
eration. It should be noted that the connection strength C does not contribute
to the network predictions while it is in recall mode. This implies that the sen-
sitivity of the connection strength is merely a structure related parameter that
influences the reference vectors instead of the network output. We therefore only
measure the sensitivity of the reference vector of the DCS network. Using the
simulation data obtained from the IFCS Gen-I simulator, we calculate the pa-
rameter sensitivity s and its confidence σ2 after each learning epoch during a
flight scenario. The sensitivity analysis has been conducted on a N -dimension
space, where N is the number of dimensions of the input space.

Figure 5 shows two sensitivity snapshots at different times of the simula-
tion where the network has been trained with 2-dimensional data. Each neuron
is associated with a 2-dimensional sensitivity ellipse. At the beginning of the
simulation, the network is initialized with two neurons whose reference vectors
represent two randomly selected training data points. The network continues
learning and adjusts its own structure to adapt to the data. Figure 5 (left) shows
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Fig. 5. Sensitivity analysis for DCS networks

the situation at t = 5.0s. Figure 5 (right) shows the situation at t = 10.0s. At
t = 5.0s, most neurons exhibit relatively large sensitivity, while only a few (31%)
neurons have small sensitivity values. However, at t = 10.0s, when the network
has well adapted to the data, Figure 5 (right) clearly indicates that now most
(78%) neurons have small sensitivity values.

A Sensitivity Metric for Sigma-Pi Networks We have implemented the
sensitivity analysis for the online adaptive Sigma-Pi network of the IFCS Gen-
II controller. We calculate the parameter sensitivity s and its confidence σ2

for the network parameters wi at each point in time during a flight scenario.
Figure 6 shows two sensitivity snapshots at various stages of the scenario. At
the beginning of the scenario, all parameters of the network are set to zero,
giving (trivially) in the same sensitivity. At t = 1.5, a failure is induced into
the system. In order to compensate for the failure, the network weights adapt
(see Fig. 2(right)). Figure 6(left) shows the situation at t = 5.0s. A considerable
amount of adaptation and weight changes has taken place already. However,
the confidence for each of the 60 neurons is still relatively small, as indicated
by the large error bars. After approximately 20 seconds, the neural network is
fully trained. Figure 6(right) now shows quite different values for the sensitivity.
Whereas the sensitivity for most of the neurons is really small now, a few (here
7) neurons exhibit high sensitivity. Although their σ2 is somewhat larger than
that for the other neurons, a clear distinction between the different groups can
be made.

Independently from this analysis, the network architecture had been modified
several times during the design of the Gen-II controller. So, the number of weights
in the network (for roll axis) was reduced from 60 (as shown) to 6. The results
obtained with our Parameter Confidence tool (Figure 6) clearly demonstrate
(after the fact) that this substantial reduction of the network size is justified.

4 Conclusions

We have presented tools for the estimation of the performance of a neural net-
work used in an adaptive controller. For two, highly disjoint architectures, Dy-
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Fig. 6. Parameter sensitivity and confidence at t = 5s (left) and t = 20s (right).

namic Cell Structures (DCS), and Sigma Pi networks, we have shown how the
network prediction performance in form of statistical error bars (validity index
for DCS, network confidence for Sigma Pi) can be calculated. The online estima-
tion is import in control applications, where the neural network is being trained
during operation. The availability of this information plays an important role
for verification and validation of such a system in a safety-critical application.

Further insight on the actual performance of the neural network can be gained
by looking at the parameter sensitivity and parameter confidence. In this paper,
we have presented tools to calculate the sensitivity of individual parameters (ref-
erence vectors of neurons in DCS; weights in Sigma Pi networks) and the param-
eters confidence (again an error-bar). Our approaches are based upon Bayesian
statistics and thus provide a solid statistical background for the performance
estimation.

Our tools are primarily designed to provide dynamic data on the performance
of the networks, but can also be used during the early design phase of an adap-
tive controller, when the architecture and size of the network is determined. Our
Bayesian approach allows different models (e.g. networks with different num-
bers of hidden units, or different network types such as multi-layer perceptrons,
Sigma-Pi, RBF, or DCS) to be compared using only the training data. More gen-
erally, the Bayesian approach provides an objective and principled framework for
dealing with the issues of model complexity.

Our tools are capable of calculating a performance index for the neural net-
work. The actual performance of the entire system (in our case, the aircraft)
also depends on a multitude of other parameters (e.g., robustness of controller,
performance metric, type of failure). In aeronautics, the performance of an air-
craft is defined in terms of its handling quality (e.g., the Cooper-Harper rating).
Current research aims to relate our performance metric with the aircraft han-
dling quality. With the real-time availability of handling quality estimates, our
tools can be used to alert the pilot and provide assistance/support to decision
making.
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