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A Survey of Data-Driven Prognostics
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Integrated Systems Health Management includes fault detection, fault diagnosis (or fault
isolation), and fault prognosis. We define prognosis to be detecting the precursors of a
failure, and predicting how much time remains before a likely failure. Algorithms that use
the data-driven approach to prognosis learn models directly from the data, rather than using
a hand-built model based on human expertise. This paper surveys past work in the data-
driven approach to prognosis. It also includes related work in data-driven fault detection
and diagnosis, and in model-based diagnosis and prognosis, particularly as applied to space
systems.

I. Introduction
NASA is currently planning long-duration human space exploration missions to the Moon and Mars. Reliability of
the spacecraft will be extremely important for these missions, since they will be away from the Earth for months or
years at a time. An important contributor to that reliability will be an on-board Integrated Systems Health
Management (ISHM) system. ISHM can provide two advantages. First, it can increase safety, by detecting problems
and quickly diagnosing them before they become serious, so that controllers can respond rapidly and prevent major
failures. Second, it can reduce costs by avoiding unnecessary maintenance and enabling maintenance to be
scheduled more efficiently. Maintenance scheduling is most important for reusable systems, such as aircraft or the
Space Shuttle, but even expendable piloted spacecraft, such as Apollo or Soyuz, have some maintenance actions that
can be performed by the astronauts during a mission.

An ISHM system takes as input sensor values and the command stream, and ideally performs fault detection
(detecting that something is wrong), fault diagnosis (determining what is wrong; also known as fault isolation), and
fault prognosis. We define prognosis to be detecting the precursors of a failure, and predicting how much time
remains before a likely failure. We believe that prognosis is the most difficult of the three tasks. One must be able to
detect faults before one can diagnose them. Similarly, we believe that one must be able to diagnose faults before one
can perform prognosis. In addition to fault detection, diagnosis, and prognosis, ISHM also includes support for
deciding what actions to take in response to a failure or a failure precursor. These actions can include
reconfiguration of redundant hardware, maintenance actions performed by the crew, maintenance actions performed
on the ground (for reusable vehicles), and mission replanning to accommodate degraded systems. The field of ISHM
is often considered to include sensor development and optimization of sensor placement, but this survey focuses
only on the algorithms used for fault detection, diagnosis, and (especially) prognosis.

A simple form of prognostics, known as a life usage model, is widely in use. This method is applicable to
components that have been mass produced. It gathers statistical information about the amount of time that a
component lasts before failure, and uses these statistics collected from a large sample of components to make
remaining life predictions for individual components. These predictions are based solely on the passage of time
and/or measures of usage of the system or component. For example, for a timing belt on an automobile, the
manufacturer may recommend that the belt be replaced after five years or 60,000 miles. These prognostic
recommendations are not based on any measured characteristics of the individual component. This survey is
primarily concerned with prognostic methods that take advantage of measured characteristics of individual systems
or components in order to make predictions, and not on life usage models.

One approach to prognosis is to use a hand-coded, physics-based model of the system. Another approach is the
expert system approach, which uses a hand-coded, rule-based model of the system.1 A third approach is the data-
driven approach, also known as the data mining approach or the machine learning approach, which uses historical
data to automatically learn a model of system behavior. Hybrids of these three approaches are also possible. This
paper surveys past work in data-driven prognosis of complex engineered systems. The survey includes hybrid
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methods that combine the data-driven approach with one or more of the other approaches. In addition to surveying
data-driven approaches to prognosis, we also briefly survey data-driven approaches to fault detection and diagnosis,
and model-based approaches to diagnosis and prognosis, especially as they have been applied to space systems.

The sections that follow are each devoted to one of the approaches described above. Since many systems use a
combination of these approaches, they could fit into more than one of these sections. We have chosen, however, to
include each system in the one section in which we feel it best fits.

II. Data-driven prognosis
Many of the existing approaches to data-driven prognosis have used artificial neural networks to model the

system.2,3,4,5 Artificial neural networks are a type of model based loosely on the neural structure of the brain, in
which the weights of the connections among neurons are automatically adjusted to maximize the fit of the model to
the data.6

Much of the work in prognostics has been for structural prognostics. Many such systems use vibration sensors to
monitor the health of rotating machinery such as helicopter gearboxes7 or jet engines.4 Doebling et al. provide an
overview of vibration-based damage assessment.8 Lebold et al. provide an overview of various preprocessing
algorithms that can be applied to vibration data before it us used for diagnosis or prognosis.9 Some systems monitor
the exhaust gases or the oil stream from an engine for contamination that could indicate a fault.10

Wang and Vachtsevanos propose an architecture for prognosis that uses dynamic wavelet neural networks
(DWNN), reinforcement learning, and genetic algorithms. Their target application is industrial chillers. They test
their proposed architecture using vibration data from an intentionally cracked bearing. They define five prognostic
performance measures, and show that the DWNN method outperforms an autoregressive method on these measures
for the bearing data. For a second data set, they use vibration data from a mixer – a motor connected to a long rod
connected to a fan – in which the fixture connecting the motor to a wall had been intentionally loosened. The
DWNN appears to work well for this data set too.2

Brotherton et al. combined neural nets with rule extractors and applied it to gas turbine engine prognostics. Their
system first fits a Dynamically Linked Ellipsoidal Basis Function (DL-EBF) neural network to the vibration data, and
then fits a decision tree to the neural net, which can be used to help understand the model. They applied their system to
vibration data from seeded-fault test stand operation of a jet engine.4,11

Parker et al. used polynomial neural networks, and trained them using vibration data from seeded faults in
helicopter gearboxes.5

Wegerich et al. used a similarity-based method for data-driven prognostics.12 Their method makes predictions
using an average of the training data, weighted based on a similarity measure. They assert that their system is
applicable to any multivariate data stream in which a consistent relationship between individual streams exists, but
the paper focuses on vibration data from rotating machinery. They use data obtained from a laboratory mechanical
test system with induced faults. They demonstrate that their methods can help to detect certain induced faults, but
leave estimation of useful life remaining as future work.

Prognostics for batteries appears to be at a more advanced stage than prognostics for structures. One could say
that the battery gauge software in a typical laptop computer does prognostics, since it estimates the amount of time
remaining before the battery runs out of charge. Shimanek presents a system for battery prognostics that estimates
state of health and state of life of a rechargeable battery, in addition to state of charge, using a combination of
autoregressive moving average, neural net, and fuzzy logic algorithms. After testing showed a high level of
accuracy, the prognostic system began testing in simulated military field conditions.3

Byington, et al. describe an approach that uses a Bayesian Belief Network for diagnosis of aircraft avionics.
They have built a prototype system for diagnosing faults in an aircraft autopilot. They also describe their plans to
extend the approach to prognostics.13

Atlas et al. present an architecture that combines the model-based and data-driven approaches to fault detection,
diagnosis, and prognostics for aircraft.14 It includes a prognostic reasoner that takes as input the outputs from a
variety of specialized prognostic algorithms for different systems within the aircraft, and then prioritizes the most
probable failure modes. The system uses an integrated model to predict how a probable failure will affect systems
throughout the aircraft. It also compares the outputs of the anomaly detector, the diagnostic system, and the
prognostic system to see whether the three types of algorithms corroborate each other. The paper focuses primarily
on the architecture. It includes a brief description of some fault detection and diagnostic algorithms that the authors
have used with the architecture, but no description of prognostic algorithms.

The Joint Strike Fighter (JSF) aircraft is currently under development.15 It will be used by the U.S. Air Force,
Navy, and Marines, and by certain U.S. allies. The current plan is for it to have a Prognostics and Health
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Management (PHM) system that provides fault detection and isolation for every major system and subsystem on the
aircraft, and prognostics for selected components. PHM is intended to both improve safety and reduce maintenance
costs. It will use model-based, rule-based, and data-driven approaches. The proposed architecture includes an off-
board PHM system (OBPHM), which will use data mining techniques.10,16,17

III. Data-driven fault detection
Park, et al. applied the BEAM (Beacon-based Exception Analysis for Multi-Missions) system to anomaly

detection in Space Shuttle Main Engine data18. BEAM has nine components that use nine different approaches to
anomaly detection. The work described in Ref. 18 only used one of the nine components: the Dynamical Invariant
Anomaly Detector (DIAD). DIAD is an unsupervised anomaly detection algorithm, which looks for anomalies in
one variable at a time. Park, et al. trained DIAD using data from 16 nominal tests, and tested it using data from
seven tests that contained known failures. It detected all of the major failures in these seven tests, although it missed
some minor failures and had some false alarms.

Schwabacher used two unsupervised anomaly detection algorithms, Orca and GritBot, to look for anomalies in
data from two rocket propulsion systems, the Space Shuttle Main Engine and rocket engine test stand E-1 at NASA
Stennis Space Center.19 These algorithms support both discrete and continuous variables, and look for anomalies in
the relationships among the variables, in addition to looking for anomalies in the individual variables. The
algorithms detected some anomalies that were already known to the experts, and some others that were not known to
the experts but were not considered to be significant.

Iverson’s Inductive Monitoring System (IMS)20 is another unsupervised learning system for fault detection. It
uses a clustering algorithm to cluster the nominal training data into clusters representing different modes of the
system. When new data fails to fit into any of the clusters, it signals an anomaly, using the distance from the nearest
cluster as a measure of the strength of the anomaly. After the STS-107 Space Shuttle Columbia disaster, Iverson
applied IMS to some relevant data. He trained it using data from five previous Space Shuttle flights, and then tested
it using STS-107 data. It detected an anomaly in data from temperature sensors on the Shuttle’s left wing shortly
after the foam impact, suggesting in retrospect that with the aid of IMS, flight controllers might have been able to
detect the damage to the wing much sooner than they did.

Oza et al. used neural nets and ensembles of neural nets for helicopter fault detection.21 Their method of
detecting a fault is to assume that a fault has occurred when an actual maneuver fails to match a predicted maneuver.
The data they used included vibration data from the gearbox, angular velocity and torque of the planetary gear, and
altitude, velocity, and orientation of the helicopter, from a set of experimental flights in which the pilot always
performed a predetermined maneuver. They obtained very high accuracy rates at predicting the maneuver, especially
when using ensemble methods. It remains to be seen whether failure of their method to predict a maneuver will be
highly correlated with faults, as they have hypothesized.

Srivastava presents algorithms based on envelope detection and dynamic hidden Markov models for detecting
anomalies in time series data with large numbers of discrete and continuous variables.22 He tests the algorithms
using synthetic data motivated by a fleet of aircraft.

IV. Data-driven diagnosis
He and Shi found that support vector machines (SVM) produced better accuracy than artificial neural networks

when applied to the diagnosis of faults in valves in reciprocating pumps, using vibration data.23 They used a wavelet
packet transform (WPT) to preprocess the vibration data, extracting the time and frequency information, and then
used the SVM to classify the faults. Further research is needed to determine whether approaches such as SVMs
would produce accurate results for prognosis problems.

Much work has been done with the intention of diagnosing problems in helicopter gearboxes based on vibration
data.7,24 This work has focused on the preprocessing algorithms (such as the WPT used in Ref. 23) that extract
statistical features from the data that can be used for diagnosis. The feature extraction algorithms are used to extract
features from new data, which can then be compared with features extracted from known nominal data and features
extracted from data with various known failures in order to form a diagnosis. The choice of features to extract is
motivated by knowledge of the underlying physics, so these methods are not purely data-driven. However, the
knowledge used is not explicitly encoded in a model, so we have chosen to classify the methods as data-driven
rather than model-based.
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V. Model-based diagnosis
Livingstone is a model-based diagnosis engine developed at NASA Ames Research Center that reasons about

system-wide interactions to detect and isolate failures.25,26,27 Livingstone uses a hierarchical model of components and
modules. Each component is modeled using a finite state machine. Livingstone has been successfully demonstrated on
various space systems including the Deep Space One spacecraft,28 the X-34 spaceplane,29 the X-37 spacecraft,30 and the
EO-1 satellite.31

TEAMS is a commercial product from Qualtech Systems Inc. which primarily uses a model-based approach to
fault detection and diagnosis, but also includes a data-driven component within its TEAMS-KB module.32 Aaseng et
al. used TEAMS to build a prototype ground-based diagnosis system for a portion of the power distribution system
on the International Space Station (ISS).33 The prototype they built is model-based and does fault detection and
diagnosis. They have plans to extend it to prognostics and to include the data-driven approach.

VI. Model-based prognosis
Ray and Tangirala present a physics-based method for detecting cracks in metallic materials and predicting their

remaining life. 34 Their models use extended Kalman filters and stochastic differential equations. They validate their
models using induced faults from a laboratory setting.

VII. Conclusion
As stated in the introduction, fully implementing prognostics is very difficult. For realistic systems, fault

detection is difficult, and prognostics – predicting the remaining time until failure – is much more difficult. Several
authors have stated their intention to do prognostics, and have described the progress they have made in fault
detection, but have left estimation of useful life remaining to future work. Much research has been done in the area
of structural prognostics using data from vibration sensors, but we are not aware of any fielded systems in that area.
There has been much more progress made in fault detection and diagnosis than in prognosis.

Most of the research reviewed here has not been fielded. Some are proposed architectures that have not yet been
built (such as Refs. 14 and 16), some are systems that have been tested using synthetic data (such as Ref. 22), some
are systems that have been tested using test stand data (such as Refs. 2, 4, 5, and 12), some are systems that have
been tested using historical operational data (such as Ref. 19), and some are systems that have been tested using data
from experimental flights (such as Ref. 21). Simulations and test stands offer the opportunity to simulate or induce
faults that have never occurred in flight. Using real flight data, however, forces researchers to address all of the
nuances that occur in real flight, such as noise and unexpected signals from unrelated subsystems.
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