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ConclusionsConclusions
The mcERP estimation algorithm represents a significant step
toward obtaining physiologically relevant component estimates
from single-trial data.  Key to this endeavor is the variability of
the ERP, which in itself is of great interest as it reveals more
about the dynamical interactions among brain regions than does
averaged data.  In addition, mcERP is robust to noise.

Please see posters 506.4 to see how mcERP outperforms ICA,
and 506.5 for application to real data sets!

Robustness to NoiseRobustness to Noise
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The amplitude-scaled and latency-shifted components are
projected onto the 15 channels and are summed to produce
the synthetic response.

We have found that distinct generators of the ERP exhibit
differential variability.  Not only is this variability of interest to
researchers, but we demonstrate that it can also be used to
separate the signals produced by these generators.

We define an ERP component as being a stereotypical
waveform that on any given trial may vary with respect to
amplitude and/or onset latency.  As we often have multiple
channel recordings, we introduce a matrix describing the
coupling between the components and the recording channels.
In the field of source separation, this is known as a mixing
matrix.  We call it a coupling matrix.

To estimate these model parameters from the data a Maximum
A Posteriori (MAP) algorithm is derived, which allows a
solution to the entire set of model parameters to be found
iteratively using a fixed point algorithm.

For each synthetic experimental trial, each component is
independently amplitude-scaled by a, which is randomly drawn
from a log-normal distribution and latency-shifted by t, which
is randomly drawn from a normal distribution.  The scaling and
shifting for component 1 is shown below for trial r.
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Independent Gaussian noise is then added to each channel.
We constructed sets of 50 trials of synthetic data.

Below are three sample trials from an experiment where there
was trial-to-trial variability such that:

anr from log-normal with
sample                  and
tnr from normal dist with
sample              and

SNRs of 7.2 dB, -6.7 dB, 4.5 dB
for the three components
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For visual comparison, we show the three original source
signal components below:

McERP relies on trial-to-trial variability in the data to identify
the componentry.  This can be seen below…

Set 1:
No Trial-to-Trial Variability
(samp= 0, slat= 0 ms
  SNRs = 4.3 dB, -9.6 dB, 1.5 dB)

Set 2:
Trial-to-Trial Variability
(samp= 1.0, slat= 10.0 ms
  SNRs = 7.2 dB, -6.7 dB, 4.5 dB)

With no trial-to-trial variability, mcERP does as well as the best
results using Factor Analysis and ICA.  However, mcERP can
take advantage of trial-to-trial variability to accurately identify
and separate the sources as demonstrated with its success in
variability case.  This is further quantified on the next panel.
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Blue –   Component 1    (Layer IV Initial Response)

Green – Component 2   (Supragranular Response)

Red –    Component 3    (Far-Field Evoked Activity)
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Single-trial event-related responses collected during the course
of an experiment are typically averaged before analysis
resulting in a rather crude picture of event-related brain
dynamics.  It has been quite clear for some time that these
responses exhibit trial-to-trial variability; however, the
computational techniques necessary to deal with such responses
in noisy conditions have not been available.  To this end we
have developed the multiple-component event-related potential
model (mcERP), which assumes that the each event-related
response consists of a sum of multiple evoked components each
described by a stereotypical waveshape.  These waveshapes are
allowed to vary in amplitude and onset latency from trial to
trial, which allows us to capture, to first-order, the trial-
dependent variations in event-related brain dynamics.

We have constructed many sets of synthetic data designed to
simulate intracortical recordings from a 15-channel linear-array
multielectrode implanted acutely in V1 of an awake-behaving
macaque undergoing visual stimulation with a red light flash.
This synthetic data was used to characterize the performance of
the mcERP fixed-point algorithm.  First we quantified the
degree to which such trial-to-trial variability aids in the
identification of multiple components, and we demonstrate that
amplitude variability is a more important factor in component
separation than latency variability.  Second, we quantified the
behavior of the algorithm under two distinct signal-to-noise
ratio (SNR) conditions: Gaussian noise independently present in
each channel, and highly correlated (1/f distributed), far-field
noise presented identically in each channel of the array.  The
algorithm was found to be robust to noise accurately identifying
all component waveshapes and their associated single-trial
characteristics down to SNR levels of -20dB for Gaussian noise
and -7dB for 1/f far-field noise.

Comparisons of the performance of this algorithm with factor
analysis (FA) and independent component analysis (ICA) will
be described by Knuth et al. (SFN abstracts, 2002).  In addition,
the advantages of application of mcERP to real data will be
described by Shah et al. (these abstracts, 2002; SFN abstracts,
2002).

Physiological ModelPhysiological Model
We have designed a host of artificial data sets approximating
componentry expected in a visual experiment.  Below is a
diagram showing the main responses in Macaque V1 during the
presentation of a red flash. Artificial data were generated to
simulate 15 channels of recordings from a linear-array
multielectrode.
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Component 1 - thalamic input to lamina 4 spiny stellate cell
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VariabilityVariability
To examine the effect of trial-to-trial variability on mcERP
performance, we constructed 11 sets of synthetic data with
amplitude variability ranging from samp = 0 to 1.  The SNRs of
the three components were 4.3 dB, -9.6 dB, and 1.5 dB,
respectively.

Amari error measures the degree of separation of the source
signals.  Without variability the Amari error is 0.219, which is
rather high indicating inability to identify the sources.  However
a variability of samp > 0.25 is sufficient to render the problem
solvable as the Amari error drops below 0.05.

This degree of variability has been observed in real data.

NoiseNoise

Below we look more closely at the quality of mcERP estimates
in the face of additive independent white Gaussian noise.  We
see that the fractional RMS errors of the waveshapes degrade
dramatically as the SNR decreases to where the source can no
longer be resolved ( -23 dB for localized components and -28 dB
for the far-field component).

Amplitude Variability (samp)
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To examine the effect of latency variability on algorithm
performance, we constructed 8 sets of synthetic data with latency
variability ranging from slat = 0 to 10.0 ms.  The SNRs were the
same as previously mentioned.  A variability of slat > 7.5 ms was
necessary to reduce the Amari error to reasonable levels.

Effect of Amplitude Variability on mcERP Performance

Effect of Latency Variability on mcERP Performance

The transition is not as dramatic as for amplitude variability.
Furthermore, 7.0 ms is a unreasonable degree of variability for
early responses, but is reasonable for late responses.  If mcERP
depended on latency variability alone, we would expect it to fail
in a larger proportion of cases.  Fortunately, both amplitude and
latency variability work together to aid component identification.
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Latency Variability (slat in ms)
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Below we demonstrate the algorithm’s ability to handle large
amounts of noise in the single-trial data.  Twelve different noise
levels were tested by independently contaminating each
electrode with white Gaussian noise.  Amplitude and latency
variability was held constant at samp = 1 and slat = 10.0 ms.

The plot below is with respect to the SNR of component 1.
McERP can separate well down to SNRs of about –20 dB.  The
performance of ICA is shown for comparison.

Jumps in the mcERP
Amari error indicate
where each component
becomes difficult to
resolve (see colored
arrows).

Effect of Noise on Waveshape Errors

Component 1 SNR (SNR1)
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or SNR3 = SNR1 - 14 dB

SNR2 = SNR1 - 2.7 dB

Latencies are more difficult to
estimate than amplitudes.
95% of amplitude estimates
are within samp down to SNRs
of -20 dB.  Whereas 95% of
the latency estimates are
within slat down to -10 dB,
and 68% within slat  down to
-20 dB.


