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Abstract 
A number of new tactical planning and operations tools 
were deployed on the highly successful Mars Exploration 
Rover (MER) mission.  Based on successes and lessons 
from the MER experience, a number of groups at NASA 
Ames and JPL have developed a platform for developing 
integrated operations tools, called Ensemble. Ensemble is a 
multi-mission toolkit for building activity planning and 
sequencing systems that is being deployed on extended 
operations for the MER mission, the 2007 Phoenix Mars 
Lander and the 2009 Mars Science Laboratory rover 
mission.  Experience designing, building and operating the 
MER tools with our colleagues, studying the use of the 
MER tools from a Human/Computer Interaction 
perspective, and feedback from these three missions has 
lead us to take a somewhat different approach to designing 
and deploying applications with planning technology this 
time around.  We believe these changes will make future 
applications even more efficient to use and easier to 
implement. This experience may be of use and interest to 
people working on similar kinds of applications, space 
related or not. 

Introduction  
The Mars Exploration Rover (MER) mission is a highly 
successful rover mission to Mars run by NASA’s Jet 
Propulsion Laboratory (JPL). Each day scientists and 
engineers must analyze what situation the two MER rovers 
are in and plan what activities the rovers will perform the 
following day.  To support this process, a number of 
planning tools were developed by teams at JPL and the 
NASA Ames Research Center. These include a tool 
scientists use to define the activities they would like the 
rover to perform (e.g., grind the surface of a specific rock 
for 30 minutes) (Norris J. S., et al, 2005b), a tool used to 
create constraints between activities (e.g., the rock grinding 
must take place before the picture taking activity that 
documents it), and a mixed-initiative planning tool used to 
assemble the activities into a plan that is consistent with 
the constraints, safe operations rules for the rovers, and 

limits on power and other resources (Bresina, Jónsson, 
Morris  and Rajan, 2005a).  These tools have been used for 
over two years on the two MER rovers, resulting in the 
successful production of nearly two thousand plans as of 
this writing. 
 
The MER mission used planning technology in tactical 
operations in a way that had not been done before. At the 
end of the ninety day primary MER mission, a colleague 
quipped that the best way to develop software for a mission 
was to fly the mission first, then write the software, 
because at least then the requirements would be known.   
In some sense, the authors have that luxury as part of a 
team responsible for deploying activity planning and 
scheduling tools for the 2007 Phoenix Mars Lander and the 
2009 Mars Science Laboratory (MSL) rover mission.   The 
Phoenix and MSL missions are very different from MER 
in terms of scientific objectives, instrument packages and 
spacecraft capabilities.  But we have a model of how 
planning technology was used in MER operations, and 
lessons learned from developing it, integrating it, and 
participating in real mission operations.  Moreover, during 
MER primary operations, a Human/Computer Interaction 
(HCI) team studied the MER tactical process to better 
understand what task the combined human/software 
process was attempting to achieve each day, how people 
were actually using the planning technology that was 
deployed, and how they would have liked to have use it.   
 
These lessons have led us to build on the success of these 
tools with a somewhat different approach to designing and 
deploying applications with planning technology which we 
believe will make future applications even more efficient 
to use and easier to implement. This experience may be of 
interest to people working on similar kinds of applications, 
space related or not. 
 
This paper begins with an overview of typical surface 
mission operations.  We note some characteristics of 
planning in this context that differ from how planning has 



been framed in the computer science community. We 
suspect these differences may be relevant to a number of 
similar types of operations processes.  We then discuss 
some of the changes in approach we have taken, from how 
we decide what functionality to include in a planning 
application, to how we design and implement it, to how we 
develop the planning models.  We briefly discuss the 
ongoing deployment of a planning application across the 
MER, Phoenix, and MSL missions.  Based on this 
experience, we introduce some of the advantages we feel 
this approach has allowed us, and the risks it introduces. 

Operation of a Surface Mission 
When scientists and engineers operate a lander or rover 

on a planetary surface such as Mars or a moon, they 
typically have a strategic plan that lays out what kinds of 
activities they would like the rover to perform over the 
next few days or weeks. With today’s highly capable 
spacecraft, many of these activities will involve complex 
interactions with the environment, such as driving through 
rough terrain, digging, heating core samples, or in the near 
future, ablating rocks with a laser.   The precise outcome of 
these activities, from how much energy will be consumed 
driving to a destination, to what scientific opportunities 
will be revealed by digging and photographing a trench, is 
difficult to predict in advance.   Thus mission operations 
will typically consist of a longer term strategic planning 
process, and a tactical planning cycle that takes into 
account the problems and opportunities encountered on the 
surface each day, referred to as a sol on other planets. 

 
The tactical commanding cycle might proceed as 

follows.  The engineering and science data gathered the 
previous sol is analyzed to determine the status of the rover 
and its surroundings. This might include images taken by 
the rover, non-image science data such as spectra, readings 
from engineering sensors on the rover, and reports on the 
state of batteries or data storage devices. 

 
Based on this, and guided by the strategic plan, the 

scientists determine a set of desirable scientific objectives 
for the next sol. To do this, they might browse downlinked 
images and data to determine what objects are within the 
range of the rover’s sensors and actuators.  They might 
decide for example that a specific point on a local rock is 
of interest for drilling or that features in the distance should 
be imaged. For each activity, there will be a number of 
science-driven parameters, such as which filter should be 
used when taking an image, and science-driven constraints, 
for example to ensure that an image is taken at a time of 
day when the lighting is adequate.  In addition to setting 
parameters and constraints, scientists must take care that 
their desired objectives are not consuming an inordinate 
amount of the rover’s shared power and data storage 
resources.  Since a detailed picture of the resource usage of 

all scientists’ desired activities is not yet available, the 
scientists are encouraged to oversubscribe somewhat to 
ensure that the rover’s resources will be fully utilized. 

 
In the next step in the tactical process, the observation 

requests from all of the scientists must be merged with 
each other and with engineering requirements (e.g., the 
rover may have to remain stationary at a fixed time of day 
to relay its data to a satellite passing overhead).  This 
merging process may require deletion or modification of 
some activities, with accompanying negotiation between 
scientists, trading for more access to the rover on 
subsequent sols, and so on.  From the merged set of 
requests, a detailed plan of activities is constructed for the 
upcoming sol.  The plan must obey all applicable flight 
rules that specify how to safely operate the rover and its 
instrument suite, must remain within specified resource 
limitations, and should obey the science constraints placed 
upon each activity. Moving from the requested set of 
observations to a valid plan may again involve removing or 
modifying activities or deleting or adjusting science 
constraints, with the requisite negotiations.  The resulting 
activity plan is then reviewed and approved by the 
scientists and engineers. 

 
Once approved, the activity plan is used as the basis to 
create sequences of spacecraft commands, which drive 
onboard execution.  This sequence structure is then 
validated, packaged, and communicated to the rover.  The 
rover executes the sequences, downlinks the resulting data, 
and the tactical cycle begins again.  Depending upon the 
nature of the mission, the tactical cycle may repeat on the 
order of hours or days. 
 
There are many points in the strategic and tactical planning 
processes where planning software is helping the MER 
mission, and will help the Phoenix and MSL missions.   
It’s interesting to note however that there are many 
important aspects of these mission deployments that 
wouldn’t necessarily come to mind when thinking about 
planning technology: 
 

• Human negotiation is used to determine which 
goals should be in or out of a plan  

• Users must be able to work with inconsistent 
plans, efficiently implement negotiated changes to 
the plan or constraints, and explain the resulting 
plan to their  colleagues 

• The desired plan may not be consistent with all 
aspects of the planning model, given that 
exceptions to operational rules may be authorized 
during negotiations 

• The planning software itself is more correctly 
described as a system of specialized, 
interconnected tools that each perform a subset of 
operations, e.g. we must rely on other tools for 



creating the activities we plan upon, estimating 
aspects of their resource usage, etc 

• This software ecosystem is created by many 
specialized teams and is typically different across 
missions (for example Phoenix and MSL) that are 
in development simultaneously 

 
In the remaining sections of the paper, we discuss how the 
approach to design and development of planning tools 
differs from that used on MER, including heavy use of 
Human/Computer Interaction expertise and the integration 
of the planner engine within a multi-mission, component-
based software tool set.   We briefly described the missions 
where we are currently employing this approach, the 
advantages we have seen and the accompanying risks that 
must be managed. 

Approach 
Based on observation of MER operations, experience of 
team members developing tools for that mission, and 
feedback from MER users, we take an approach that differs 
somewhat from MER planning tool development.  These 
differences can be found at all stages, from how we decide 
what it is we are building, to how we design and develop it, 
to how we deploy it.   We describe a number of these 
below. 

Use of Human/Computer Interaction Expertise 
An advantage of following the highly successful MER 
mission is that we can study and learn from that 
experience.   Planning experts and software engineers from 
our current team were on the team that developed the 
MAPGEN (Bresina, Jónsson, Morris and Rajan, 2005a).  
and Constraint Editor tools for the MER mission, and 
participated in operation of the primary ninety day mission 
for the two MER rovers. In addition, a team of 
Human/Computer Interaction (HCI) experts from NASA 
Ames studied MER operations for ninety days (Tollinger et 
al, 2004). Their focus was to understand the MER 
operations process and how the entire human and software 
system operated to produce a plan and command load 
every day, independent of the role of any particular 
technology. 
 
When the opportunity came to develop a streamlined 
activity planning system for subsequent Mars surface 
missions, the HCI team developed a prototype of an 
integrated activity planning and scheduling application 
(McCurdy et al, 2006). The focus of the prototype was to  
show how bottlenecks and frustrations encountered during 
MER operations could be reduced or eliminated and to 
gather user feedback before implementing the new 
planning system. This helped to ensure that tools and 
technologies would be adapted to support the best possible 
process, rather than a process being developed to fit an 
amalgam of the available technologies, and made it clear to 

subsequent missions that we could hear and respond to 
their highest priority problems.  To this date, the HCI team 
remains an equal partner in delivering operations tools to 
missions by 

• Working with mission customers, software 
engineers and planning experts on a weekly basis 
to determine what features and technologies will 
best meet customer needs 

• Story-boarding how users would interact with the 
system and developing detailed designs 

• Performing structured user tests to gather early 
feedback and determine best designs and 
processes 

Mixed-Initiative Focus 
One of the primary lessons both of direct MER feedback 
and HCI studies was that the planning system for Phoenix 
and MSL must have a far more mixed-initiative flavor than 
it was possible to deploy on MER. When creating or 
modifying a plan, the user must have almost complete 
control over where activities are placed on a timeline.  It 
can be very disconcerting for activities to jump around for 
an apparently unknown reason, even if it is to correct a 
temporal or flight rule violation.  It is therefore important 
that the user know why a particular action is taken place.  
In addition, users must be able to ignore changes the 
planning system would like to make to the plan based upon 
its model, as during the time critical operational process, 
operating rules may be modified or relaxed for special 
circumstances or model bugs may be found. 
 
In the case of the current design, the user is essentially 
given complete control and uses the planner as an advisor.  
As the user manipulates the plan, the system is 
automatically communicating with the Europa planner 
behind the scenes, determining if there are temporal 
violations.  It is also enabling features like constrained 
move where the interface will move constrained activities 
within their allowed temporal bounds as the user moves a 
target activity.  The system will automatically generate a 
list of violations that exist for various activities and attempt 
to explain what is causing the violation.  The user can 
manually select “Fix Violations” to have the Europa 
planner attempt to fix all the existing violations in the plan.  
In this case, Europa computes new times for activities or 
may unscheduled activities that introduce violations that 
cannot otherwise be repaired.  The changes Europa 
introduces can be undone, and each activity that is moved 
is visually distinguished and displays the change Europa 
has made. 
 
The main point is that the planner is always acting in either 
a passive, informational way or acting act the direct request 
of the user in a way that can be easily undone. It will alert 
the user to a violation without acting upon it unless 
explicitly told to do so by the user.  The planner does not 
create user level activities or constraints on its own.  It will 
suggest such actions to the user in appropriate situations 



but then relies on the client to manipulate the plan 
according to those suggestions at the user’s discretion. 

 
This change in the way that the user leverages the power 
provided by automated planning technology required some 
changes to the way the domain is modeled, to the planning 
algorithms, and to how the planning problem is set up and 
maintained.  Bresina and Morris describe these changes in 
detail in their 2006 SMC-IT paper (Bresina and Morris, 
2006). 

Open Component-based Development 
A key observation from MER operations is that for a 
mission with tight time requirements on the tactical 
planning process, lack of integration between operations 
tools poses significant efficiency problems.  The MER 
operations process, along with that of many other missions, 
was assembled from many existing tools.  Typically, 
experts on each step of the operations process described 
above develop a specialized tool with its own user 
interface, data structures, and way of conceptualizing 
operations.  These are then assembled into the operations 
process by adapting them to each other with translators, 
scripts or other means of integration. 
 
During operations, this means that users must move from 
tool to tool to perform the operations flow.  On MER, these 
tools were not initially designed to be part of same 
conceptual process and contained many duplicated, 
inconsistent interfaces to same subtask.  In addition, the 
plan moved between tools via translations that were most 
often one-way.  Thus once a plan had been moved from 
one tool to the next, modifications that required functions 
in a previous tool could no longer be easily made. 
 
Slightly less obvious is the problems this causes during 
development. Because the tools are not designed to be used 
together, they are typically not integrated until fairly late in 

the development process, and in a somewhat ad-hoc 
manner. Since integration is done via scripts and file 
translations as opposed to some more API-based, type-
checked integration style, it’s not always clear when the 
integration is broken.  In addition, a significant amount of 
time is wasted as each team responsible for a tool develops 
incompatible and redundant data formats, displays etc.  
Ironically, even more time is wasted later integrating them 
all back together. 
 
Ensemble is a software platform for operations, inspired by 
the MER experience, which allows software from different 
teams to be integrated together into a single ops 
application.  Ensemble is based on components, meaning 
different software functions are delivered as re-usable 
components that can be combined together depending upon 
what type of application is needed. We are currently 
delivering overlapping but unique applications to three 
missions and a host of smaller research projects.   Figure 1 
gives a flavor of the number and variety of teams involved 
to date and the names of their contributions to Ensemble.  
A variety of software components or plug-ins for different 
tasks —from manipulating scientific images to validating 
complex sets of spacecraft activities  — have been plugged 
into Ensemble.  The figure also indicates that the Ensemble 
platform is heavily based upon Eclipse, an open-source, 
component-based Java software platform, which we 
discuss briefly in the next section. 
 
The core parts of Ensemble, indicated schematically in the 
box labeled Ensemble, contain functionality that can be 
shared by all Ensemble plugins.  This includes shared data 
structures to represent plans and lower level command 
sequences.  These shared data structures take the place of 
file and script integration between components, and can be 
checked at compile time as each component is being 
implemented or modified.  Ensemble also contains shared 
implementation of routine tasks such as I/O to common 
formats used by external mission tools, shared 
implementations of simple activity viewers or other 
components that have been designed or implemented 
collaboratively, and so on.   On top of this layer of 
functionality, specialized teams integrate their higher-value 
Ensemble plug-ins. 
 
In addition to the Java plug-ins that are directly 
implemented with Eclipse, Ensemble also uses network 
components to gain additional functionality.  Either for 
convenience of integration, architectural elegance, or for 
enhanced security, it sometimes makes sense for certain 
components to reside as back end server processes and 
communicate with the client via some network protocol.  
 
Europa is a constraint-based planning framework 
developed at NASA Ames Research Center (Jónsson, et 
al., 1999; Frank and Jónsson, 2003) which is used in the 
MAPGEN activity planning tool for the Mars Exploration 
Rovers.  Europa 2 is the next generation planning 
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framework also developed at NASA Ames.  We have 
adapted the Europa 2 planner and wrapped it as a network 
service. The Europa 2 server is a multipurpose planning 
platform core with an XML-RPC server layer above it used 
to interface with the Ensemble client. Corresponding 
Eclipse plug-ins in Ensemble connect to this service and 
allow information to be exchanged between the planner 
and other Ensemble plug-ins.  The server API is designed 
to use the underlying planning platform as a mixed 
initiative planning advisor for the client. 
 
Figure 3 is SPIFe, a set of Ensemble plug-ins designed and 
developed by the authors based upon experience with the 
MER operations process.  SPIFe includes many views for 
laying out plans on a timeline, editing constraints, and 
receiving lists of plan flaws and explanations from a 
planning system such as Europa 2.  Since SPIFe itself is 
comprised of a number of plug-ins, various subsets of its 
features may be deployed in different applications. 
 
Not shown but important to the planning process is another 
set of plug-ins collectively referred to as Maestro.  From a 
purely planning-centric perspective, the Maestro plug-ins 
allow scientists to define what activities shall be planned 
and connect them with real-world objects in the rover or 
lander’s reference frame. These plug-ins developed at JPL 
allow scientists to browse science images and other data 
delivered from a spacecraft, create targets in a 3-
dimensional reference frame based on stereo images, 
define activities on those targets, and make initial estimates 

of their resource usage before final planning.  The Maestro 
plug-ins and services currently provide this initial activity 
creation process to MER scientists distributed around the 
globe and will continue do so for the Phoenix and MSL 
missions. Unfortunately the details are largely outside the 
scope of this paper, but can be found in (Norris, et. al, 
2005b) and (Fox et al. 2006).  

Use of Eclipse  
The open-source Eclipse platform is an essential tool for 
development within Ensemble. Eclipse provides the basic 
structure for plug-in based development and management 
of multiple products based on selections of plug-ins.   It 
allows us to assemble applications from chunks of 
functionality developed by different teams in a surprisingly 
fluid fashion because cooperation is no longer dependent 
upon external interfaces (file IO, network communications, 
etc), but can instead implement application programming 
interfaces (APIs) that are flexible, robust, and checked by 
compilation any time code is modified. 
 
Additional benefits are gained through the use of the 
extension point model in Eclipse. The extension point 
mechanism allows for loose coupling of software 
components to each other. They behave as the contracts 
between one component that defines an extension point 
(such as a file menu that allows for additional menu item 
by requesting information regarding the name, icon and 
action to be executed) and a component that implements it. 



This simple concept can be extended to provide a great 
deal of information that may be optionally included in the 
product or left out. This leads to Eclipse's plug-in 
architecture that provides Ensemble with the flexibility 
necessary to mix and match features for particular 
missions. 
 
One visually dramatic example of this mechanism is the 
perspective extension points. Perspectives in Eclipse are 
visual containers that encapsulate views, editors, menus 
and fundamentally the operation of the entire application. 
Using a perspective a user can rapidly switch back and 
forth from the data browsing perspective defined by 
Maestro to the planning and scheduling perspective 
defined by SPIFe with the click of a button. This 
functionality essentially melds the functionality of two 
entirely different applications into a single desktop 
executable.  

Simple, agnostic interfaces   
In the Remote Agent architecture flown as experiment on 
the Deep Space 1 spacecraft (Muscettola et al 1998), the 
planning system had hooks which would call out to 
services supplied by the spacecraft flight software.  These 
services would perform specialized calculations used 
within the planning process, such as determining how long 
an engine burn should last given some parameters.  In 
some sense, in integrating Europa 2 with Ensemble, we 
have turned this model inside out.  Europa 2 can be seen as 
a set of services that can be called by mission applications 
through a simple API.  This API provides answers to 
queries about activities, constraints between them, how to 
modify them, and so on. 
 
We believe simply turning how we think about the planner 
inside out has provided a significant amount of traction.  
One way to lower the barrier to adoption is to decrease the 
complexity of implementation.  The fact that the planner is 
a self-contained service that a mission application simply 
calls, rather the place where specialized mission services 
are integrated as it was in the Remote Agent, means it is 
much easier to add the planner or remove it later if 
necessary.  Ironically, this means it is much easier to get 
the planner approved in the first place. 
 
As it is unknown what platform, language, or architecture 
will be used by any particular mission system, it is 
necessary to devise a method by which most any system 
can interface with our planning system. The method 
chosen which implements such agnostic interfaces is a 
network component architecture, specifically known as 
web services in this context.   
 
XML-RPC, a relatively simple to use and widely 
implemented protocol was chosen as the basis for the 
interface between core Ensemble applications written in 
Java and external services such as Europa 2.  This 
lightweight remote procedure call protocol uses XML to 

encode requests and responses and uses HTML as the 
transport mechanism.  XML-RPC libraries are available for 
a wide variety of languages which makes it ideal for easy 
adoption by a prospective mission.  The simple function 
based API requires a minimal amount of time to 
understand before implementation can proceed. 
 
The API developed consists mainly of operations related to 
adding, modifying and deleting activities and constraints 
and modifying activity parameters.  For our customers, we 
distinguish between temporal constraints between activities 
that are added via the API, and constraints inherent to the 
Europa 2 model, which we refer to as flight rules. Once the 
activities and constraints are registered, the client can call 
the various functions to determine the state of the network 
or the activities, such as network consistency, getting a list 
of temporal and flight rule violations, or fixing those 
violations.  The interface also allows for activating or 
deactivating flight rules and the ability to switch between 
active or passive enforcement of flight rules. 
 
An interesting side effect of this style of interaction 
between the application being deployed in Ensemble and 
the planning services provided by Europa 2 is that 
applications that have nothing to do with Ensemble can 
easily be adapted to connect to Europa 2 via its API. In 
addition, Ensemble plug-ins that interact with the planner, 
for example to display flight rule violations or highlight 
activities that are in violation, could be connected to any 
planner that can support this API.  As a result, we’ve 
started a project to connect Europa 2 to an existing web 
application based on this API, and developers of another 
planner are investigating use of Ensemble with their 
planner.  In addition, APGEN (Maldague et. al, 1998), 
which with Europa comprised the MAPGEN tool deployed 
on MER, is delivered with a similar XML-RPC connection 
to Ensemble for use on the Phoenix mission. 

Models generated from existing mission artifacts 
Europa 2 has a sophisticated and general language for 
describing planning domains and planning instances called 
NDDL.  Our intent for mission deployments is not to use 
it.  In the case of MER, the planning tool MAPGEN used 
Europa and a planner language called PDDL.   MER 
mission personnel created an XML document called the 
Activity Dictionary (AD) which described the activities the 
MER rover could perform, and a planning expert created a 
PDDL domain that captured these activities and their 
interactions.  This resulted in a domain encoding that was 
as efficient as possible, but was often out of synch with the 
AD or the myriad other tools whose authors created 
domain models in a similar fashion. 
 
For the use of Europa 2 in Ensemble, we have two 
strategies for avoiding the inevitable disconnects between a 
mission’s AD and our domain description in NDDL.  The 
first strategy is not to have a domain description.  If every 
activity by a user has only a name, start and end types, and 



temporal constraints with other activities, it is still possible 
for Europa 2 to find temporal constraint violations, provide 
bounds for constrained move, and suggest strategies for 
resolving conflicts.   These are very useful services for 
many applications, and given the existence of the Europa 2 
server and plug-ins to use it from Ensemble, can be 
deployed almost for free.   This is the strategy deployed on 
the Phoenix mission. 
 
The second strategy is to automatically generate a NDDL 
description of the planning domain from a mission’s AD.  
NDDL is a very general planning language, but an analysis 
of the MER model used with Europa revealed that very 
few idioms were being used to represent the operating 
restrictions on the rovers.  These typically involved 
specifying which resources (e.g. sole control of the rover’s 
arm) each activity required, what state condition an activity 
required or  set (e.g. the deploy operation leaves the rover’s 
arm out).    On MER these couldn’t be generated from the 
AD because of course no one thought of including the 
needed information in the AD a priori, and they would 
result in domain model that was less efficient than the hand 
written model in terms of the number of objects and 
predicates used to describe the rover.    We approached the 
first problem by designing a very limited language of 
activities and resources that could be used to generate the 
NDDL model.  We tested it by generating a MER NDDL 
model from a simple specification and running Europa 2 
with it on archived plans from MER operations.  
Emboldened by that success, we then worked with MSL to 
incorporate the necessary information for NDDL 
generation into the schema for the AD that will describe 
their mission. We anticipate generating domains 
description for MSL from their AD, keeping Europa 2 and 
other mission tools in synch and enabling us to 
continuously deliver prototypes as the set of activities in 
the AD is expanded and modified during the development 
of the mission. 
 
As far as the difference in efficiency between a hand 
written domain model and the generated model, the naively 
generated model to be sure has redundancies that are 
causing the planner to do more work than is necessary.   
However, between changes to the way we are invoking the 

Europa 2 through its narrow interface and efficiency 
improvements between Europa and Europa 2, the Europa 2 
response on the generated model is significantly faster than 
Europa on the hand-made model.  We had considered 
performing a second pass through the generate model to 
remove the most obvious redundancies, but it has not yet 
seemed to be a high priority use of development resources. 

The Missions 
Before discussing the advantages we feel this approach 
may offer, we provide a little more detail on the three Mars 
missions where we are currently deploying Ensemble-
based applications, in addition to various research uses of 
the system.  Figure 3 illustrates the spacecraft for these 
missions, but does not faithfully represent their relative 
sizes. 

MER 
Operation of the two MER rovers, Spirit and Opportunity, 
has continued far past their designed ninety day primary 
missions. Our Ensemble partners at JPL have delivered an 
application consisting of their Maestro plug-ins to MER 
extended operations, where it is used daily to browse 
images downlinked from the rovers, create targets, define 
activities, and make initial estimates of their resource 
usage.  Currently the output of the new Maestro tool feeds 
into the same activity planning process used in the MER 
primary mission for final planning.   It’s worth noting that 
the overall process design for how users would interact 
with Maestro was developed with the HCI experts at 
NASA Ames, both to improve the user experience for 
MER and to ensure that Maestro plug-ins be consistent 
with other Ensemble plug-ins when deployed in larger 
applications. 

Phoenix 
The Phoenix Mars lander launches in August 2007, and is 
scheduled to begin operations in the north polar region of 
Mars in early 2008.   The goal of the Phoenix mission is to 
understand the chemistry and water cycles in the Martian 

Figure 1: MER rover, Phoenix lander, and MSL rover Figure 3: MER rover, Phoenix lander, and MSL rover (not to scale) 



northern latitudes. Among other activities, Phoenix will 
scoop samples of the Martian soil and frost into an onboard 
chemistry lab for analysis. 
 
The Ensemble tool that has been delivered to the Phoenix 
mission is called the Phoenix Science Interface, or PSI.   
The PSI application consists of the components delivered 
to MER for Maestro, plus the SPIFe components for 
developing activity plans, the Europa 2 server, and 
APCore, a JPL system for validating plans, the 
functionality of which overlaps with Europa 2.    
 
Interestingly, Europa 2 was not originally baselined for 
inclusion in PSI due to the tight budget and schedule of the 
Phoenix, perceived risk in using automated planning, and 
the overlap with APCore.   As we developed the Europa 2 
server and associated Ensemble plugins for MSL, it 
became natural to demonstrate it and eventually deploy it 
for Phoenix.  Since APCore handles many plan validation 
tasks for Phoenix, Europa 2 is used largely for temporal 
constraint validation and repair, which unlike flight rule 
validation can be done without developing a Europa 2 
model of the spacecraft.  Given the existence of the generic 
Europa 2 server, this was very low cost and low risk to the 
mission.  

MSL 
The Mars Science Lander is a large rover scheduled for 
launch in late 2009.  Its landing site has not yet been 
selected as scientists digest the large amounts of 
information being returned by the MER rovers and orbiters 
such as the Mars Reconnaissance Orbiter. MSL builds 
upon lessons learned from previous rover missions and a 
number of new technologies ranging from how the vehicle 
lands on Mars to a laser to remotely interact with rock 
samples. MSL will deliver a significantly larger array of 
scientific instruments to Mars, will be able to traverse more 
difficult terrain, and give scientists far greater latitude 
about choosing where on the planet land. 
 
Because of the larger number and greater complexity of 
scientific instruments on MSL as compared to MER and 
Phoenix, we anticipate MSL will have the greatest need for 
appropriately-focused planning technology to help 
scientists and engineers develop valid, high-throughput 
activity plans and command sequences before they must be 
uploaded to the spacecraft.   Fortunately, MSL also has the 
longest lead time, with Mars surface operations beginning 
in 2010.  Due to our use of re-usable but extensible 
components and a planning service driven by the mission’s 
own language for describing activity types, we have been 
able to easily generate a prototype MSL activity planning 
system which we delivered in 2006. The MSL system 
contains most of the functionality of the PSI system 
delivered to Phoenix, plus significantly more use of Europa 
2 for detection and repair of flight rule violations, 
computation of when the spacecraft should be active versus 
shut down to save power, and so on.  As this prototype 

evolves into the MSL activity planning and sequencing 
system, we anticipate it will absorb the lessons learned 
from developing and operating the Phoenix mission, as 
well as requiring and revealing new ways for planning 
technology to speed up the tactical operations process. 

Advantages of the Approach 
A great advantage of turning our planner into a planning 
service with a narrow API is the flexibility it gives us as to 
how we fit into an operations process.  An often-heard 
issue with the MER activity planning and scheduling 
system was that it is set up as a string of pearls – each 
distinct tool takes the input from another tool, translates it, 
processes it, and writes a file that is to be read by the next 
tool in the process.  Thus the order and method by which 
each tool is used is cemented into the set of file transfers 
and translations that glue the tools together.  In contrast, all 
Ensemble plug-ins in an application such as PSI are 
operating on the same data structures, and can be used in 
any order.  External services, such as Europa 2, are 
accessed through a narrow API that can be called by an 
application as soon as and whenever the information 
needed to make the server call is available.  What this 
means is that information that Europa 2 can provide, such 
as the earliest possible time an activity can start given its 
constraints, or what flight rules are violated, ends up being 
used in ways we never initially imagined.   For example, in 
PSI there a “to do list” where scientists can collect sets of 
activities they’d like to propose for the lander. After 
implementing it, it became obvious a helpful but 
unanticipated addition would be for Europa 2 to compute 
the earliest possible start time for each activity on the to do 
list given the other activities and constraints. 
 
This touches on the advantage of incremental deployment.  
Having planning applications that are assembled from 
components and a planner that provides several sets of 
services via simple APIs makes it significantly easier to 
add planning technology to existing applications.   
Applications based on Ensemble can be deployed with or 
without the plug-ins that drive the connection to the 
Europa 2 server.  Since adding them is relatively light 
weight, that decision need not be made irrevocably before 
beginning an application.  This makes it significantly 
easier to prototype the inclusion of planning technology 
into an application when the opportunity naturally arises, 
test it with users, and demonstrate it to mission 
stakeholders.  This lowers risk and increases customer 
confidence and opportunity for feedback, as was the case 
with PSI. In addition, the API we developed to enable 
Ensemble plug-ins to drive Europa 2 can be called by 
software that has nothing to do with Ensemble.  Thus 
we’ve been approached by developers of web-based and 
other applications to provide low-cost access to planning 
capabilities. 
 



Another major advantage that missions like to see is the 
ability to use a particular piece of software across missions.  
Multi-mission software reduces the long term cost and risk, 
and once people are familiar with it there is a major 
advantage to additional missions using it both in terms of 
training and trust.  Low cost incremental improvements 
can be applied to software to benefit from lessons learned 
on each mission while still leaving the core software.  As 
mentioned, the majority of the Ensemble code delivered to 
the MER mission as Maestro has also been delivered to the 
Phoenix mission as a part of PSI, with the addition of 
mission specific plug-ins to account for the different 
instrument packages.  To these Maestro plug-ins we’ll add 
components for SPIFe, for connection to Europa and 
APCore, and so on to form the complete PSI. Similarly, 
most of PSI will be delivered to MSL, with additional 
plug-ins to specialize it for the MSL rover and to increase 
its capabilities.   Ironically, some early MSL development 
work, such as that related to Europa 2, has been delivered 
to Phoenix, and when MSL flies it will be “Phoenix 
heritage” components.  In addition to building re-usable 
plug-ins and services, we participate directly in the system 
engineering of the activity planning systems for the 
missions we are delivering to.  In doing so, we serve as one 
more conduit for mission best practices and lessons learned 
to flow between missions and into our products. 
 
Finally, in addition to having an HCI team as partners in 
driving development of these planning applications, the 
HCI team performs structured user testing of the 
applications with the scientists and engineers who will be 
the users of the system.  They also help to define at least 
quarterly demonstrations and deliveries to the customers.   
We believe this greatly reduces the likelihood that we will 
be focused on the wrong capabilities or the wrong problem 
for very long. 

Risks That Must Be Managed 
We are enjoying a great savings by deploying the same 
planner service and largely the same planning application 
across missions, and by sharing the implementation of 
routine functions across teams.  However, there are risks 
that come with this style of development. 
 
Since we are serving multiple missions, we could find 
ourselves in a position where conflicting mission 
requirements make it difficult to define what the 
functionality of our application should be, or force us to 
implement a least common denominator solution.  Thus 
far, we’ve found that the combination of building 
applications from plug-ins and making use of Eclipse’s 
extension point mechanism to customize functionality of 
plug-ins for each mission where necessary have allowed us 
to avoid this problem.    
 
Since our planning server and Eclipse plug-ins are used in 
multiple products, each devoted to a particular mission or 

research task, there’s a real risk that changes made to a 
plug-in to satisfy one customer will inadvertently break the 
application being delivered to another customer.  Our most 
direct line of defense against this risk is automated testing.  
Whenever a change is made to a plug-in, all products that 
use the plug-in are automatically rebuilt and run through a 
series of unit tests.  A second line of defense is our practice 
of keeping the core planning server and our Eclipse plug-
ins mission independent.  The planning server is extended 
with different spacecraft models or specialized code for 
computing mission specific items such as heating profiles, 
outside of the main server code.  The Eclipse plug-ins are 
refactored into a mission-independent portion and a 
mission-specific extension point when it’s found that a 
mission-specific solution is needed.  In this manner, code 
that will only work for one mission is explicitly tracked as 
part of the deployment for that mission only.   Finally, by 
constraining our planning server to focus on a narrow API 
that captures what we believe it is best at and leaving 
everything else to be computed within a client program, we 
believe we’ve reduced the risk that some feature we 
develop or computation we provide will be inadvertently 
adjusted in a way that’s appropriate to one mission and not 
another. 

Concluding Remarks 
Missions understandably set relatively high bars when it 
comes to stability, control, efficiency and transparency in 
their operations processes.  This may be especially true in 
missions with tight tactical planning loops. Here plans 
must be assembled quickly, and it must be widely 
understood why a plan has been assembled the way it has 
before a commitment is made to sequence it and execute it. 
The user- and operations-centric viewpoint provided by 
employing an HCI team helps to ensure the basic process 
the tool supports is an efficient and understandable match 
to the tasks mission operators must perform.   The addition 
of automated planning technology then further accelerates 
the planning process.  The focus on mixed initiative 
planning, where plan flaws are noted and repair assistance 
is provided, greatly contributes to transparency and 
control, without which rapid planning in a tactical 
operations context is far less useful. The ability to work 
with plans that are invalid from the perspective of the 
planning model allows users to incrementally build and 
repair a plan they understand and can explain.   In addition, 
experience suggests there will always be nuances, 
exceptions or changes to how a mission chooses to operate 
a spacecraft, and there isn’t time during the tactical cycle 
to bring the existing planner model into agreement with the 
ground truth about the rover as understood by the 
operators.  Having close control over the modifications the 
planning technology suggests for the plan is crucial in 
these situations. 
 
We also try to remember that this is as much of a social 
endeavor as a technical one.  It can be more compelling to 



customers to provide a solution based on analysis of their 
existing process and problems than based on demonstrating 
an ad hoc integration of technological components.  By 
presenting a simple baseline system that can be easily 
extended, missions under development can evaluate and 
adopt capabilities at their own pace. As trust develops  
components that have higher degrees of capability can be 
suggested and easily evaluated.  A “come one, come all” 
approach and being willing to interface to any component 
brought to the system can help foster a shared sense of 
ownership of the planning technology with the mission, 
and we hope greatly increase the likelihood of acceptance 
and deployment of planning technologies. 
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