
Planning Applications for Three Mars Missions with Ensemble

Arash Aghevli+, Andrew Bachmann+, John Bresina*, Kevin Greene+, Bob Kanefsky#, James
Kurien*, Michael McCurdy*, Paul Morris*, Guy Pyrzak^, Christian Ratterman^, Alonso Vera*,

Steven Wragg+

*NASA Ames Research Center
+QSS Group, Inc.

^San Jose State University
#University of California

MS 269-2, NASA Ames Research Center, Moffett Field, CA 94035
aaghevli@mail.arc.nasa.gov, bachmann@email.arc.nasa.gov, John.L.Bresina@nasa.gov, keving@mail.arc.nasa.gov,
kanef@email.arc.nasa.gov, James.A.Kurien@nasa.gov, Michael.P.McCurdy@nasa.gov, Paul.H.Morris@nasa.gov,

gpyrzak@mail.arc.nasa.gov, cratterman@arc.nasa.gov, Alonso.H.Vera@nasa.gov, stephen@email.arc.nasa.gov

Abstract
A number of new tactical planning and operations tools
were deployed on the highly successful Mars Exploration
Rover (MER) mission. Based on successes and lessons
from the MER experience, a number of groups at NASA
Ames and JPL have developed a platform for developing
integrated operations tools, called Ensemble. Ensemble is a
multi-mission toolkit for building activity planning and
sequencing systems that is being deployed on extended
operations for the MER mission, the 2007 Phoenix Mars
Lander and the 2009 Mars Science Laboratory rover
mission. Experience designing, building and operating the
MER tools with our colleagues, studying the use of the
MER tools from a Human/Computer Interaction
perspective, and feedback from these three missions has
lead us to take a somewhat different approach to designing
and deploying applications with planning technology this
time around. We believe these changes will make future
applications even more efficient to use and easier to
implement. This experience may be of use and interest to
people working on similar kinds of applications, space
related or not.

Introduction
The Mars Exploration Rover (MER) mission is a highly
successful rover mission to Mars run by NASA’s Jet
Propulsion Laboratory (JPL). Each day scientists and
engineers must analyze what situation the two MER rovers
are in and plan what activities the rovers will perform the
following day. To support this process, a number of
planning tools were developed by teams at JPL and the
NASA Ames Research Center. These include a tool
scientists use to define the activities they would like the
rover to perform (e.g., grind the surface of a specific rock
for 30 minutes) (Norris J. S., et al, 2005b), a tool used to
create constraints between activities (e.g., the rock grinding
must take place before the picture taking activity that
documents it), and a mixed-initiative planning tool used to
assemble the activities into a plan that is consistent with
the constraints, safe operations rules for the rovers, and

limits on power and other resources (Bresina, Jónsson,
Morris and Rajan, 2005a). These tools have been used for
over two years on the two MER rovers, resulting in the
successful production of nearly two thousand plans as of
this writing.

The MER mission used planning technology in tactical
operations in a way that had not been done before. At the
end of the ninety day primary MER mission, a colleague
quipped that the best way to develop software for a mission
was to fly the mission first, then write the software,
because at least then the requirements would be known.
In some sense, the authors have that luxury as part of a
team responsible for deploying activity planning and
scheduling tools for the 2007 Phoenix Mars Lander and the
2009 Mars Science Laboratory (MSL) rover mission. The
Phoenix and MSL missions are very different from MER
in terms of scientific objectives, instrument packages and
spacecraft capabilities. But we have a model of how
planning technology was used in MER operations, and
lessons learned from developing it, integrating it, and
participating in real mission operations. Moreover, during
MER primary operations, a Human/Computer Interaction
(HCI) team studied the MER tactical process to better
understand what task the combined human/software
process was attempting to achieve each day, how people
were actually using the planning technology that was
deployed, and how they would have liked to have use it.

These lessons have led us to build on the success of these
tools with a somewhat different approach to designing and
deploying applications with planning technology which we
believe will make future applications even more efficient
to use and easier to implement. This experience may be of
interest to people working on similar kinds of applications,
space related or not.

This paper begins with an overview of typical surface
mission operations. We note some characteristics of
planning in this context that differ from how planning has

been framed in the computer science community. We
suspect these differences may be relevant to a number of
similar types of operations processes. We then discuss
some of the changes in approach we have taken, from how
we decide what functionality to include in a planning
application, to how we design and implement it, to how we
develop the planning models. We briefly discuss the
ongoing deployment of a planning application across the
MER, Phoenix, and MSL missions. Based on this
experience, we introduce some of the advantages we feel
this approach has allowed us, and the risks it introduces.

Operation of a Surface Mission
When scientists and engineers operate a lander or rover

on a planetary surface such as Mars or a moon, they
typically have a strategic plan that lays out what kinds of
activities they would like the rover to perform over the
next few days or weeks. With today’s highly capable
spacecraft, many of these activities will involve complex
interactions with the environment, such as driving through
rough terrain, digging, heating core samples, or in the near
future, ablating rocks with a laser. The precise outcome of
these activities, from how much energy will be consumed
driving to a destination, to what scientific opportunities
will be revealed by digging and photographing a trench, is
difficult to predict in advance. Thus mission operations
will typically consist of a longer term strategic planning
process, and a tactical planning cycle that takes into
account the problems and opportunities encountered on the
surface each day, referred to as a sol on other planets.

The tactical commanding cycle might proceed as

follows. The engineering and science data gathered the
previous sol is analyzed to determine the status of the rover
and its surroundings. This might include images taken by
the rover, non-image science data such as spectra, readings
from engineering sensors on the rover, and reports on the
state of batteries or data storage devices.

Based on this, and guided by the strategic plan, the

scientists determine a set of desirable scientific objectives
for the next sol. To do this, they might browse downlinked
images and data to determine what objects are within the
range of the rover’s sensors and actuators. They might
decide for example that a specific point on a local rock is
of interest for drilling or that features in the distance should
be imaged. For each activity, there will be a number of
science-driven parameters, such as which filter should be
used when taking an image, and science-driven constraints,
for example to ensure that an image is taken at a time of
day when the lighting is adequate. In addition to setting
parameters and constraints, scientists must take care that
their desired objectives are not consuming an inordinate
amount of the rover’s shared power and data storage
resources. Since a detailed picture of the resource usage of

all scientists’ desired activities is not yet available, the
scientists are encouraged to oversubscribe somewhat to
ensure that the rover’s resources will be fully utilized.

In the next step in the tactical process, the observation

requests from all of the scientists must be merged with
each other and with engineering requirements (e.g., the
rover may have to remain stationary at a fixed time of day
to relay its data to a satellite passing overhead). This
merging process may require deletion or modification of
some activities, with accompanying negotiation between
scientists, trading for more access to the rover on
subsequent sols, and so on. From the merged set of
requests, a detailed plan of activities is constructed for the
upcoming sol. The plan must obey all applicable flight
rules that specify how to safely operate the rover and its
instrument suite, must remain within specified resource
limitations, and should obey the science constraints placed
upon each activity. Moving from the requested set of
observations to a valid plan may again involve removing or
modifying activities or deleting or adjusting science
constraints, with the requisite negotiations. The resulting
activity plan is then reviewed and approved by the
scientists and engineers.

Once approved, the activity plan is used as the basis to
create sequences of spacecraft commands, which drive
onboard execution. This sequence structure is then
validated, packaged, and communicated to the rover. The
rover executes the sequences, downlinks the resulting data,
and the tactical cycle begins again. Depending upon the
nature of the mission, the tactical cycle may repeat on the
order of hours or days.

There are many points in the strategic and tactical planning
processes where planning software is helping the MER
mission, and will help the Phoenix and MSL missions.
It’s interesting to note however that there are many
important aspects of these mission deployments that
wouldn’t necessarily come to mind when thinking about
planning technology:

• Human negotiation is used to determine which
goals should be in or out of a plan

• Users must be able to work with inconsistent
plans, efficiently implement negotiated changes to
the plan or constraints, and explain the resulting
plan to their colleagues

• The desired plan may not be consistent with all
aspects of the planning model, given that
exceptions to operational rules may be authorized
during negotiations

• The planning software itself is more correctly
described as a system of specialized,
interconnected tools that each perform a subset of
operations, e.g. we must rely on other tools for

creating the activities we plan upon, estimating
aspects of their resource usage, etc

• This software ecosystem is created by many
specialized teams and is typically different across
missions (for example Phoenix and MSL) that are
in development simultaneously

In the remaining sections of the paper, we discuss how the
approach to design and development of planning tools
differs from that used on MER, including heavy use of
Human/Computer Interaction expertise and the integration
of the planner engine within a multi-mission, component-
based software tool set. We briefly described the missions
where we are currently employing this approach, the
advantages we have seen and the accompanying risks that
must be managed.

Approach
Based on observation of MER operations, experience of
team members developing tools for that mission, and
feedback from MER users, we take an approach that differs
somewhat from MER planning tool development. These
differences can be found at all stages, from how we decide
what it is we are building, to how we design and develop it,
to how we deploy it. We describe a number of these
below.

Use of Human/Computer Interaction Expertise
An advantage of following the highly successful MER
mission is that we can study and learn from that
experience. Planning experts and software engineers from
our current team were on the team that developed the
MAPGEN (Bresina, Jónsson, Morris and Rajan, 2005a).
and Constraint Editor tools for the MER mission, and
participated in operation of the primary ninety day mission
for the two MER rovers. In addition, a team of
Human/Computer Interaction (HCI) experts from NASA
Ames studied MER operations for ninety days (Tollinger et
al, 2004). Their focus was to understand the MER
operations process and how the entire human and software
system operated to produce a plan and command load
every day, independent of the role of any particular
technology.

When the opportunity came to develop a streamlined
activity planning system for subsequent Mars surface
missions, the HCI team developed a prototype of an
integrated activity planning and scheduling application
(McCurdy et al, 2006). The focus of the prototype was to
show how bottlenecks and frustrations encountered during
MER operations could be reduced or eliminated and to
gather user feedback before implementing the new
planning system. This helped to ensure that tools and
technologies would be adapted to support the best possible
process, rather than a process being developed to fit an
amalgam of the available technologies, and made it clear to

subsequent missions that we could hear and respond to
their highest priority problems. To this date, the HCI team
remains an equal partner in delivering operations tools to
missions by

• Working with mission customers, software
engineers and planning experts on a weekly basis
to determine what features and technologies will
best meet customer needs

• Story-boarding how users would interact with the
system and developing detailed designs

• Performing structured user tests to gather early
feedback and determine best designs and
processes

Mixed-Initiative Focus
One of the primary lessons both of direct MER feedback
and HCI studies was that the planning system for Phoenix
and MSL must have a far more mixed-initiative flavor than
it was possible to deploy on MER. When creating or
modifying a plan, the user must have almost complete
control over where activities are placed on a timeline. It
can be very disconcerting for activities to jump around for
an apparently unknown reason, even if it is to correct a
temporal or flight rule violation. It is therefore important
that the user know why a particular action is taken place.
In addition, users must be able to ignore changes the
planning system would like to make to the plan based upon
its model, as during the time critical operational process,
operating rules may be modified or relaxed for special
circumstances or model bugs may be found.

In the case of the current design, the user is essentially
given complete control and uses the planner as an advisor.
As the user manipulates the plan, the system is
automatically communicating with the Europa planner
behind the scenes, determining if there are temporal
violations. It is also enabling features like constrained
move where the interface will move constrained activities
within their allowed temporal bounds as the user moves a
target activity. The system will automatically generate a
list of violations that exist for various activities and attempt
to explain what is causing the violation. The user can
manually select “Fix Violations” to have the Europa
planner attempt to fix all the existing violations in the plan.
In this case, Europa computes new times for activities or
may unscheduled activities that introduce violations that
cannot otherwise be repaired. The changes Europa
introduces can be undone, and each activity that is moved
is visually distinguished and displays the change Europa
has made.

The main point is that the planner is always acting in either
a passive, informational way or acting act the direct request
of the user in a way that can be easily undone. It will alert
the user to a violation without acting upon it unless
explicitly told to do so by the user. The planner does not
create user level activities or constraints on its own. It will
suggest such actions to the user in appropriate situations

but then relies on the client to manipulate the plan
according to those suggestions at the user’s discretion.

This change in the way that the user leverages the power
provided by automated planning technology required some
changes to the way the domain is modeled, to the planning
algorithms, and to how the planning problem is set up and
maintained. Bresina and Morris describe these changes in
detail in their 2006 SMC-IT paper (Bresina and Morris,
2006).

Open Component-based Development
A key observation from MER operations is that for a
mission with tight time requirements on the tactical
planning process, lack of integration between operations
tools poses significant efficiency problems. The MER
operations process, along with that of many other missions,
was assembled from many existing tools. Typically,
experts on each step of the operations process described
above develop a specialized tool with its own user
interface, data structures, and way of conceptualizing
operations. These are then assembled into the operations
process by adapting them to each other with translators,
scripts or other means of integration.

During operations, this means that users must move from
tool to tool to perform the operations flow. On MER, these
tools were not initially designed to be part of same
conceptual process and contained many duplicated,
inconsistent interfaces to same subtask. In addition, the
plan moved between tools via translations that were most
often one-way. Thus once a plan had been moved from
one tool to the next, modifications that required functions
in a previous tool could no longer be easily made.

Slightly less obvious is the problems this causes during
development. Because the tools are not designed to be used
together, they are typically not integrated until fairly late in

the development process, and in a somewhat ad-hoc
manner. Since integration is done via scripts and file
translations as opposed to some more API-based, type-
checked integration style, it’s not always clear when the
integration is broken. In addition, a significant amount of
time is wasted as each team responsible for a tool develops
incompatible and redundant data formats, displays etc.
Ironically, even more time is wasted later integrating them
all back together.

Ensemble is a software platform for operations, inspired by
the MER experience, which allows software from different
teams to be integrated together into a single ops
application. Ensemble is based on components, meaning
different software functions are delivered as re-usable
components that can be combined together depending upon
what type of application is needed. We are currently
delivering overlapping but unique applications to three
missions and a host of smaller research projects. Figure 1
gives a flavor of the number and variety of teams involved
to date and the names of their contributions to Ensemble.
A variety of software components or plug-ins for different
tasks —from manipulating scientific images to validating
complex sets of spacecraft activities — have been plugged
into Ensemble. The figure also indicates that the Ensemble
platform is heavily based upon Eclipse, an open-source,
component-based Java software platform, which we
discuss briefly in the next section.

The core parts of Ensemble, indicated schematically in the
box labeled Ensemble, contain functionality that can be
shared by all Ensemble plugins. This includes shared data
structures to represent plans and lower level command
sequences. These shared data structures take the place of
file and script integration between components, and can be
checked at compile time as each component is being
implemented or modified. Ensemble also contains shared
implementation of routine tasks such as I/O to common
formats used by external mission tools, shared
implementations of simple activity viewers or other
components that have been designed or implemented
collaboratively, and so on. On top of this layer of
functionality, specialized teams integrate their higher-value
Ensemble plug-ins.

In addition to the Java plug-ins that are directly
implemented with Eclipse, Ensemble also uses network
components to gain additional functionality. Either for
convenience of integration, architectural elegance, or for
enhanced security, it sometimes makes sense for certain
components to reside as back end server processes and
communicate with the client via some network protocol.

Europa is a constraint-based planning framework
developed at NASA Ames Research Center (Jónsson, et
al., 1999; Frank and Jónsson, 2003) which is used in the
MAPGEN activity planning tool for the Mars Exploration
Rovers. Europa 2 is the next generation planning

Europa 2
Planner

Maestro

Non-Eclipse Tool

 SEQGEN

SPIFe

Viz
3-D visualization

APCORE

Eclipse

RoverWare
Plugins

Robonaut
Related

Ensemble

ROSE
ROver Sequence Editor

Athlete
Related Resource

Flight rule
violations,

Command Sequence
Validation

SAVH
Related

Projects from ARC, JPL and JSC shown

Europa 2
Planner

Maestro

Non-Eclipse Tool

 SEQGEN

SPIFe

Viz
3-D visualization

APCORE

Eclipse

RoverWare
Plugins

Robonaut
Related

Ensemble

ROSE
ROver Sequence Editor

Athlete
Related Resource

Flight rule
violations,

Command Sequence
Validation

SAVH
Related

Projects from ARC, JPL and JSC shown

Figure 1: Plug-ins and services developed for
Ensemble

framework also developed at NASA Ames. We have
adapted the Europa 2 planner and wrapped it as a network
service. The Europa 2 server is a multipurpose planning
platform core with an XML-RPC server layer above it used
to interface with the Ensemble client. Corresponding
Eclipse plug-ins in Ensemble connect to this service and
allow information to be exchanged between the planner
and other Ensemble plug-ins. The server API is designed
to use the underlying planning platform as a mixed
initiative planning advisor for the client.

Figure 3 is SPIFe, a set of Ensemble plug-ins designed and
developed by the authors based upon experience with the
MER operations process. SPIFe includes many views for
laying out plans on a timeline, editing constraints, and
receiving lists of plan flaws and explanations from a
planning system such as Europa 2. Since SPIFe itself is
comprised of a number of plug-ins, various subsets of its
features may be deployed in different applications.

Not shown but important to the planning process is another
set of plug-ins collectively referred to as Maestro. From a
purely planning-centric perspective, the Maestro plug-ins
allow scientists to define what activities shall be planned
and connect them with real-world objects in the rover or
lander’s reference frame. These plug-ins developed at JPL
allow scientists to browse science images and other data
delivered from a spacecraft, create targets in a 3-
dimensional reference frame based on stereo images,
define activities on those targets, and make initial estimates

of their resource usage before final planning. The Maestro
plug-ins and services currently provide this initial activity
creation process to MER scientists distributed around the
globe and will continue do so for the Phoenix and MSL
missions. Unfortunately the details are largely outside the
scope of this paper, but can be found in (Norris, et. al,
2005b) and (Fox et al. 2006).

Use of Eclipse
The open-source Eclipse platform is an essential tool for
development within Ensemble. Eclipse provides the basic
structure for plug-in based development and management
of multiple products based on selections of plug-ins. It
allows us to assemble applications from chunks of
functionality developed by different teams in a surprisingly
fluid fashion because cooperation is no longer dependent
upon external interfaces (file IO, network communications,
etc), but can instead implement application programming
interfaces (APIs) that are flexible, robust, and checked by
compilation any time code is modified.

Additional benefits are gained through the use of the
extension point model in Eclipse. The extension point
mechanism allows for loose coupling of software
components to each other. They behave as the contracts
between one component that defines an extension point
(such as a file menu that allows for additional menu item
by requesting information regarding the name, icon and
action to be executed) and a component that implements it.

This simple concept can be extended to provide a great
deal of information that may be optionally included in the
product or left out. This leads to Eclipse's plug-in
architecture that provides Ensemble with the flexibility
necessary to mix and match features for particular
missions.

One visually dramatic example of this mechanism is the
perspective extension points. Perspectives in Eclipse are
visual containers that encapsulate views, editors, menus
and fundamentally the operation of the entire application.
Using a perspective a user can rapidly switch back and
forth from the data browsing perspective defined by
Maestro to the planning and scheduling perspective
defined by SPIFe with the click of a button. This
functionality essentially melds the functionality of two
entirely different applications into a single desktop
executable.

Simple, agnostic interfaces
In the Remote Agent architecture flown as experiment on
the Deep Space 1 spacecraft (Muscettola et al 1998), the
planning system had hooks which would call out to
services supplied by the spacecraft flight software. These
services would perform specialized calculations used
within the planning process, such as determining how long
an engine burn should last given some parameters. In
some sense, in integrating Europa 2 with Ensemble, we
have turned this model inside out. Europa 2 can be seen as
a set of services that can be called by mission applications
through a simple API. This API provides answers to
queries about activities, constraints between them, how to
modify them, and so on.

We believe simply turning how we think about the planner
inside out has provided a significant amount of traction.
One way to lower the barrier to adoption is to decrease the
complexity of implementation. The fact that the planner is
a self-contained service that a mission application simply
calls, rather the place where specialized mission services
are integrated as it was in the Remote Agent, means it is
much easier to add the planner or remove it later if
necessary. Ironically, this means it is much easier to get
the planner approved in the first place.

As it is unknown what platform, language, or architecture
will be used by any particular mission system, it is
necessary to devise a method by which most any system
can interface with our planning system. The method
chosen which implements such agnostic interfaces is a
network component architecture, specifically known as
web services in this context.

XML-RPC, a relatively simple to use and widely
implemented protocol was chosen as the basis for the
interface between core Ensemble applications written in
Java and external services such as Europa 2. This
lightweight remote procedure call protocol uses XML to

encode requests and responses and uses HTML as the
transport mechanism. XML-RPC libraries are available for
a wide variety of languages which makes it ideal for easy
adoption by a prospective mission. The simple function
based API requires a minimal amount of time to
understand before implementation can proceed.

The API developed consists mainly of operations related to
adding, modifying and deleting activities and constraints
and modifying activity parameters. For our customers, we
distinguish between temporal constraints between activities
that are added via the API, and constraints inherent to the
Europa 2 model, which we refer to as flight rules. Once the
activities and constraints are registered, the client can call
the various functions to determine the state of the network
or the activities, such as network consistency, getting a list
of temporal and flight rule violations, or fixing those
violations. The interface also allows for activating or
deactivating flight rules and the ability to switch between
active or passive enforcement of flight rules.

An interesting side effect of this style of interaction
between the application being deployed in Ensemble and
the planning services provided by Europa 2 is that
applications that have nothing to do with Ensemble can
easily be adapted to connect to Europa 2 via its API. In
addition, Ensemble plug-ins that interact with the planner,
for example to display flight rule violations or highlight
activities that are in violation, could be connected to any
planner that can support this API. As a result, we’ve
started a project to connect Europa 2 to an existing web
application based on this API, and developers of another
planner are investigating use of Ensemble with their
planner. In addition, APGEN (Maldague et. al, 1998),
which with Europa comprised the MAPGEN tool deployed
on MER, is delivered with a similar XML-RPC connection
to Ensemble for use on the Phoenix mission.

Models generated from existing mission artifacts
Europa 2 has a sophisticated and general language for
describing planning domains and planning instances called
NDDL. Our intent for mission deployments is not to use
it. In the case of MER, the planning tool MAPGEN used
Europa and a planner language called PDDL. MER
mission personnel created an XML document called the
Activity Dictionary (AD) which described the activities the
MER rover could perform, and a planning expert created a
PDDL domain that captured these activities and their
interactions. This resulted in a domain encoding that was
as efficient as possible, but was often out of synch with the
AD or the myriad other tools whose authors created
domain models in a similar fashion.

For the use of Europa 2 in Ensemble, we have two
strategies for avoiding the inevitable disconnects between a
mission’s AD and our domain description in NDDL. The
first strategy is not to have a domain description. If every
activity by a user has only a name, start and end types, and

temporal constraints with other activities, it is still possible
for Europa 2 to find temporal constraint violations, provide
bounds for constrained move, and suggest strategies for
resolving conflicts. These are very useful services for
many applications, and given the existence of the Europa 2
server and plug-ins to use it from Ensemble, can be
deployed almost for free. This is the strategy deployed on
the Phoenix mission.

The second strategy is to automatically generate a NDDL
description of the planning domain from a mission’s AD.
NDDL is a very general planning language, but an analysis
of the MER model used with Europa revealed that very
few idioms were being used to represent the operating
restrictions on the rovers. These typically involved
specifying which resources (e.g. sole control of the rover’s
arm) each activity required, what state condition an activity
required or set (e.g. the deploy operation leaves the rover’s
arm out). On MER these couldn’t be generated from the
AD because of course no one thought of including the
needed information in the AD a priori, and they would
result in domain model that was less efficient than the hand
written model in terms of the number of objects and
predicates used to describe the rover. We approached the
first problem by designing a very limited language of
activities and resources that could be used to generate the
NDDL model. We tested it by generating a MER NDDL
model from a simple specification and running Europa 2
with it on archived plans from MER operations.
Emboldened by that success, we then worked with MSL to
incorporate the necessary information for NDDL
generation into the schema for the AD that will describe
their mission. We anticipate generating domains
description for MSL from their AD, keeping Europa 2 and
other mission tools in synch and enabling us to
continuously deliver prototypes as the set of activities in
the AD is expanded and modified during the development
of the mission.

As far as the difference in efficiency between a hand
written domain model and the generated model, the naively
generated model to be sure has redundancies that are
causing the planner to do more work than is necessary.
However, between changes to the way we are invoking the

Europa 2 through its narrow interface and efficiency
improvements between Europa and Europa 2, the Europa 2
response on the generated model is significantly faster than
Europa on the hand-made model. We had considered
performing a second pass through the generate model to
remove the most obvious redundancies, but it has not yet
seemed to be a high priority use of development resources.

The Missions
Before discussing the advantages we feel this approach
may offer, we provide a little more detail on the three Mars
missions where we are currently deploying Ensemble-
based applications, in addition to various research uses of
the system. Figure 3 illustrates the spacecraft for these
missions, but does not faithfully represent their relative
sizes.

MER
Operation of the two MER rovers, Spirit and Opportunity,
has continued far past their designed ninety day primary
missions. Our Ensemble partners at JPL have delivered an
application consisting of their Maestro plug-ins to MER
extended operations, where it is used daily to browse
images downlinked from the rovers, create targets, define
activities, and make initial estimates of their resource
usage. Currently the output of the new Maestro tool feeds
into the same activity planning process used in the MER
primary mission for final planning. It’s worth noting that
the overall process design for how users would interact
with Maestro was developed with the HCI experts at
NASA Ames, both to improve the user experience for
MER and to ensure that Maestro plug-ins be consistent
with other Ensemble plug-ins when deployed in larger
applications.

Phoenix
The Phoenix Mars lander launches in August 2007, and is
scheduled to begin operations in the north polar region of
Mars in early 2008. The goal of the Phoenix mission is to
understand the chemistry and water cycles in the Martian

Figure 1: MER rover, Phoenix lander, and MSL rover Figure 3: MER rover, Phoenix lander, and MSL rover (not to scale)

northern latitudes. Among other activities, Phoenix will
scoop samples of the Martian soil and frost into an onboard
chemistry lab for analysis.

The Ensemble tool that has been delivered to the Phoenix
mission is called the Phoenix Science Interface, or PSI.
The PSI application consists of the components delivered
to MER for Maestro, plus the SPIFe components for
developing activity plans, the Europa 2 server, and
APCore, a JPL system for validating plans, the
functionality of which overlaps with Europa 2.

Interestingly, Europa 2 was not originally baselined for
inclusion in PSI due to the tight budget and schedule of the
Phoenix, perceived risk in using automated planning, and
the overlap with APCore. As we developed the Europa 2
server and associated Ensemble plugins for MSL, it
became natural to demonstrate it and eventually deploy it
for Phoenix. Since APCore handles many plan validation
tasks for Phoenix, Europa 2 is used largely for temporal
constraint validation and repair, which unlike flight rule
validation can be done without developing a Europa 2
model of the spacecraft. Given the existence of the generic
Europa 2 server, this was very low cost and low risk to the
mission.

MSL
The Mars Science Lander is a large rover scheduled for
launch in late 2009. Its landing site has not yet been
selected as scientists digest the large amounts of
information being returned by the MER rovers and orbiters
such as the Mars Reconnaissance Orbiter. MSL builds
upon lessons learned from previous rover missions and a
number of new technologies ranging from how the vehicle
lands on Mars to a laser to remotely interact with rock
samples. MSL will deliver a significantly larger array of
scientific instruments to Mars, will be able to traverse more
difficult terrain, and give scientists far greater latitude
about choosing where on the planet land.

Because of the larger number and greater complexity of
scientific instruments on MSL as compared to MER and
Phoenix, we anticipate MSL will have the greatest need for
appropriately-focused planning technology to help
scientists and engineers develop valid, high-throughput
activity plans and command sequences before they must be
uploaded to the spacecraft. Fortunately, MSL also has the
longest lead time, with Mars surface operations beginning
in 2010. Due to our use of re-usable but extensible
components and a planning service driven by the mission’s
own language for describing activity types, we have been
able to easily generate a prototype MSL activity planning
system which we delivered in 2006. The MSL system
contains most of the functionality of the PSI system
delivered to Phoenix, plus significantly more use of Europa
2 for detection and repair of flight rule violations,
computation of when the spacecraft should be active versus
shut down to save power, and so on. As this prototype

evolves into the MSL activity planning and sequencing
system, we anticipate it will absorb the lessons learned
from developing and operating the Phoenix mission, as
well as requiring and revealing new ways for planning
technology to speed up the tactical operations process.

Advantages of the Approach
A great advantage of turning our planner into a planning
service with a narrow API is the flexibility it gives us as to
how we fit into an operations process. An often-heard
issue with the MER activity planning and scheduling
system was that it is set up as a string of pearls – each
distinct tool takes the input from another tool, translates it,
processes it, and writes a file that is to be read by the next
tool in the process. Thus the order and method by which
each tool is used is cemented into the set of file transfers
and translations that glue the tools together. In contrast, all
Ensemble plug-ins in an application such as PSI are
operating on the same data structures, and can be used in
any order. External services, such as Europa 2, are
accessed through a narrow API that can be called by an
application as soon as and whenever the information
needed to make the server call is available. What this
means is that information that Europa 2 can provide, such
as the earliest possible time an activity can start given its
constraints, or what flight rules are violated, ends up being
used in ways we never initially imagined. For example, in
PSI there a “to do list” where scientists can collect sets of
activities they’d like to propose for the lander. After
implementing it, it became obvious a helpful but
unanticipated addition would be for Europa 2 to compute
the earliest possible start time for each activity on the to do
list given the other activities and constraints.

This touches on the advantage of incremental deployment.
Having planning applications that are assembled from
components and a planner that provides several sets of
services via simple APIs makes it significantly easier to
add planning technology to existing applications.
Applications based on Ensemble can be deployed with or
without the plug-ins that drive the connection to the
Europa 2 server. Since adding them is relatively light
weight, that decision need not be made irrevocably before
beginning an application. This makes it significantly
easier to prototype the inclusion of planning technology
into an application when the opportunity naturally arises,
test it with users, and demonstrate it to mission
stakeholders. This lowers risk and increases customer
confidence and opportunity for feedback, as was the case
with PSI. In addition, the API we developed to enable
Ensemble plug-ins to drive Europa 2 can be called by
software that has nothing to do with Ensemble. Thus
we’ve been approached by developers of web-based and
other applications to provide low-cost access to planning
capabilities.

Another major advantage that missions like to see is the
ability to use a particular piece of software across missions.
Multi-mission software reduces the long term cost and risk,
and once people are familiar with it there is a major
advantage to additional missions using it both in terms of
training and trust. Low cost incremental improvements
can be applied to software to benefit from lessons learned
on each mission while still leaving the core software. As
mentioned, the majority of the Ensemble code delivered to
the MER mission as Maestro has also been delivered to the
Phoenix mission as a part of PSI, with the addition of
mission specific plug-ins to account for the different
instrument packages. To these Maestro plug-ins we’ll add
components for SPIFe, for connection to Europa and
APCore, and so on to form the complete PSI. Similarly,
most of PSI will be delivered to MSL, with additional
plug-ins to specialize it for the MSL rover and to increase
its capabilities. Ironically, some early MSL development
work, such as that related to Europa 2, has been delivered
to Phoenix, and when MSL flies it will be “Phoenix
heritage” components. In addition to building re-usable
plug-ins and services, we participate directly in the system
engineering of the activity planning systems for the
missions we are delivering to. In doing so, we serve as one
more conduit for mission best practices and lessons learned
to flow between missions and into our products.

Finally, in addition to having an HCI team as partners in
driving development of these planning applications, the
HCI team performs structured user testing of the
applications with the scientists and engineers who will be
the users of the system. They also help to define at least
quarterly demonstrations and deliveries to the customers.
We believe this greatly reduces the likelihood that we will
be focused on the wrong capabilities or the wrong problem
for very long.

Risks That Must Be Managed
We are enjoying a great savings by deploying the same
planner service and largely the same planning application
across missions, and by sharing the implementation of
routine functions across teams. However, there are risks
that come with this style of development.

Since we are serving multiple missions, we could find
ourselves in a position where conflicting mission
requirements make it difficult to define what the
functionality of our application should be, or force us to
implement a least common denominator solution. Thus
far, we’ve found that the combination of building
applications from plug-ins and making use of Eclipse’s
extension point mechanism to customize functionality of
plug-ins for each mission where necessary have allowed us
to avoid this problem.

Since our planning server and Eclipse plug-ins are used in
multiple products, each devoted to a particular mission or

research task, there’s a real risk that changes made to a
plug-in to satisfy one customer will inadvertently break the
application being delivered to another customer. Our most
direct line of defense against this risk is automated testing.
Whenever a change is made to a plug-in, all products that
use the plug-in are automatically rebuilt and run through a
series of unit tests. A second line of defense is our practice
of keeping the core planning server and our Eclipse plug-
ins mission independent. The planning server is extended
with different spacecraft models or specialized code for
computing mission specific items such as heating profiles,
outside of the main server code. The Eclipse plug-ins are
refactored into a mission-independent portion and a
mission-specific extension point when it’s found that a
mission-specific solution is needed. In this manner, code
that will only work for one mission is explicitly tracked as
part of the deployment for that mission only. Finally, by
constraining our planning server to focus on a narrow API
that captures what we believe it is best at and leaving
everything else to be computed within a client program, we
believe we’ve reduced the risk that some feature we
develop or computation we provide will be inadvertently
adjusted in a way that’s appropriate to one mission and not
another.

Concluding Remarks
Missions understandably set relatively high bars when it
comes to stability, control, efficiency and transparency in
their operations processes. This may be especially true in
missions with tight tactical planning loops. Here plans
must be assembled quickly, and it must be widely
understood why a plan has been assembled the way it has
before a commitment is made to sequence it and execute it.
The user- and operations-centric viewpoint provided by
employing an HCI team helps to ensure the basic process
the tool supports is an efficient and understandable match
to the tasks mission operators must perform. The addition
of automated planning technology then further accelerates
the planning process. The focus on mixed initiative
planning, where plan flaws are noted and repair assistance
is provided, greatly contributes to transparency and
control, without which rapid planning in a tactical
operations context is far less useful. The ability to work
with plans that are invalid from the perspective of the
planning model allows users to incrementally build and
repair a plan they understand and can explain. In addition,
experience suggests there will always be nuances,
exceptions or changes to how a mission chooses to operate
a spacecraft, and there isn’t time during the tactical cycle
to bring the existing planner model into agreement with the
ground truth about the rover as understood by the
operators. Having close control over the modifications the
planning technology suggests for the plan is crucial in
these situations.

We also try to remember that this is as much of a social
endeavor as a technical one. It can be more compelling to

customers to provide a solution based on analysis of their
existing process and problems than based on demonstrating
an ad hoc integration of technological components. By
presenting a simple baseline system that can be easily
extended, missions under development can evaluate and
adopt capabilities at their own pace. As trust develops
components that have higher degrees of capability can be
suggested and easily evaluated. A “come one, come all”
approach and being willing to interface to any component
brought to the system can help foster a shared sense of
ownership of the planning technology with the mission,
and we hope greatly increase the likelihood of acceptance
and deployment of planning technologies.

Acknowledgements
The authors would like to acknowledge the developers of
the Science Activity Planner, Constraint Editor and
MAPGEN tools delivered to MER, without which the
Ensemble collaboration would not have begun. They
would also like to thank all of the Ensemble development
teams, especially the Maestro team led by Jeff Norris at
JPL. In addition we are grateful to the MER, Phoenix and
MSL missions for the opportunity to participate in this
adventure.

References
Bresina J., Jónsson A., Morris P., and Rajan K. 2005a. “Activity
Planning for the Mars Exploration Rovers”, Fourteenth
International Conference on Automated Planning and
Scheduling, Monterey, 2005, pp. 40-49.

Bresina J., Jónsson A., Morris P., Rajan K. 2005b. “Mixed-
Initiative Planning in MAPGEN: Capabilities and Shortcomings.”
Workshop on Mixed-Initiative Planning and Scheduling,
ICAPS05, 2005.

Bresina J., Morris P. 2006. “Mission Operations Planning:
Beyond MAPGEN”, Second IEEE International Conference On
Space Mission Challenges for Information Technology (SMC-IT),
Pasadena, 2006.

Fox J. M., Norris J. S., Powell M. W., Rabe K. J., Shams, K. S.
2006. "Advances in Distributed Operations and Mission Activity
Planning for Mars Surface Exploration", AIAA SpaceOps 2006,
Rome, June 19-23, 2006.

Frank J., Jónsson A., 2003. “Constraint-Based Interval and
Attribute Planning.” Journal of Constraints Special Issue on
Constraints and Planning.

Jónsson A. K., Morris P. H., Muscettola N., and Rajan K., 1999.
“Next generation Remote Agent planner”, Proceedings of the
Fifth International Symposium on Artificial Intelligence, Robotics
and Automation in Space.

Maldague P., Ko A., Page D., and Starbird T., 1998. “APGEN: A
multi-mission semi-automated planning tool.” First International
NASA Workshop on Planning and Scheduling, Oxnard, CA, 1998.

McCurdy, M., Connors, C., Pyrzak, G., Kanefsky, B., and Vera,
A. 2006. Breaking the fidelity barrier: an examination of our
current characterization of prototypes and an example of a mixed-
fidelity success. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Montréal, Québec,
Canada, April 22 - 27, 2006). R. Grinter, T. Rodden, P. Aoki, E.
Cutrell, R. Jeffries, and G. Olson, Eds. CHI '06. ACM Press, New
York, NY, 1233-1242. DOI=
http://doi.acm.org/10.1145/1124772.1124959

Muscettola N., Nayak P. P., Pell B., Williams B.C. 1998. Remote
agent: to boldly go where no AI system has gone before. Artificial
Intelligence, 103(1-2):5–48, August 1998

Norris J. S., Powell M. W., Fox J. M., Rabe K. J., Shu I. 2005a.
"Science Operations Interfaces for Mars Surface Exploration,"
2005 IEEE Conference on Systems, Man, and Cybernetics, Big
Island, HI., October 15, 2005.

Norris J. S., Powell M. W., Vona M. A., Backes, P. G., Wick, J.
V. 2005b. "Mars Exploration Rover Operations with the Science
Activity Planner," IEEE International Conference on Robotics
and Automation, April 2005.

Tollinger, I., McCurdy, M., Vera, A. H., and Tollinger, P. 2004.
Collaborative knowledge management supporting mars mission
scientists. In Proceedings of the 2004 ACM Conference on
Computer Supported Cooperative Work (Chicago, Illinois, USA,
November 06 - 10, 2004). CSCW '04. ACM Press, New York,
NY, 29-38. DOI= http://doi.acm.org/10.1145/1031607.1031614

