
On the Application of

Program Analysis and Transformation

to High Reliability Electronics

Sarah !ompson

St Edmund’s College

A dissertation submitted for the degree of

Doctor of Philosophy
at the

University of Cambridge

Copyright © Sarah �ompson 2006

Dedication

To the memory of Elsie Irene Mahan, 1921–2006,

Great Aunt, first and oldest friend.

Statement of Originality

This dissertation is my own work and contains nothing which is the outcome of work

done in collaboration with others, except as specified in the text and Acknowledge-

ments1.

Signed,

Sarah Thompson,

April 2006.

1Only Chapters 4, 5 and 6 involved collaboration with anyone other than my supervisor, Alan Mycroft,
though all cases the work was predominantly my own. More detail is given in notes at the head of each
chapter.

Author Publications

Parts of this research have been published in the following papers (in chronological or-

der):

S. THOMPSON AND A. MYCROFT, Abstract Interpretation of Combinational Asyn-

chronous Circuits, In Proc. 11th International Symposium on Static Analysis

(SAS 2004), R. Giacobazzi, ed., LNCS 3148, Springer Verlag, August, 2004

S. THOMPSON AND A. MYCROFT, Abstract Interpretation of Combinational Asyn-

chronous Circuits (Extended Version), Science of Computer Programming,

Elsevier Science, To Appear

S. THOMPSON AND A. MYCROFT, Statically Analysing the Dynamic Behaviour of

Asynchronous Circuits by Abstract Interpretation, In Proc. PREP 2004, Hat-

field, UK, 2004

S. THOMPSON AND A. MYCROFT, Sliding Window Logic Simulation, In Proc. 15th

UK Asynchronous Forum, Cambridge, January, 2004

S. THOMPSON AND A. MYCROFT, Abstract Interpretation in Space: SET Immunity

of Majority Voting Logic, In Proc. APPSEM II Workshop, Frauenchiemsee,

Germany, September 2005

S. THOMPSON AND A. MYCROFT, G. BRAT AND A. VENET, Automatic In-Flight Re-

pair of FPGA Cosmic Ray Damage, In Proc. 1st Disruption in Space Sympo-

sium, Marseille, July, 2005

S. THOMPSON AND A. MYCROFT, Bit-Level Partial Evaluation of Synchronous Cir-

cuits, In Proc. ACM SIGPLAN 2006 Workshop on Partial Evaluation and

Program Manipulation (PEPM ’06) Charleston, South Carolina, January

9-10, 2006

V

S. THOMPSON AND A. MYCROFT, Self-Healing Reconfigurable Manifolds, In Proc.

Designing Correct Circuits (DCC’06), Vienna, March 2006

Abstract

Safety- and mission-critical systems must be both correct and reliable. Electronic systems

must behave as intended and, where possible, do so at the first attempt – the fabrication

costs of modern VLSI devices are such that the iterative design/code/test methodology

endemic to the software world is not financially feasible. In aerospace applications it is

also essential to establish that systems will, with known probability, remain operational

for extended periods, despite being exposed to very low or very high temperatures, high

radiation, large G-forces, hard vacuum and severe vibration.

Hardware designers have long understood the advantages of formal mathematical

techniques. Notably, model checking and automated theorem proving both gained ac-

ceptance within the electronic design community at an early stage, though more recently

the research focus in validation and verification has drifted toward software. As a conse-

quence, the newest and most powerful techniques have not been significantly applied to

hardware; this work seeks to make a modest contribution toward redressing the imbal-

ance.

An abstract interpretation-based formalism is introduced, transitional logic, that sup-

ports formal reasoning about dynamic behaviour of combinational asynchronous circuits.

The behaviour of majority voting circuits with respect to single-event transients is anal-

ysed, demonstrating that such circuits are not SET-immune. This result is generalised to

show that SET immunity is impossible for all delay-insensitive circuits.

An experimental hardware partial evaluator, HarPE, is used to demonstrate the 1st

Futamura projection in hardware – a small CPU is specialised with respect to a ROM im-

age, yielding results that are equivalent to compiling the program into hardware. HarPE

is then used alongside an experimental non-clausal SAT solver to implement an auto-

mated transformation system that is capable of repairing FPGAs that have suffered cos-

mic ray damage. This approach is extended to support automated configuration, dynamic

testing and dynamic error recovery of reconfigurable spacecraft wiring harnesses.

Acknowledgements

Thanks are due to: NASA Ames/Mission Critical Technologies Inc for accommodating

me during the Summer of 2004, Guillaume Brat, Arnaud Venet, Jason Lohn, Gregory

Larchev and Rick Alena for many useful discussions at Ames, Patrick and Radhia Cousot,

Charles Hymans and others from the Abstract Interpretation group at École Normale

Supérieure/École Polytechnique for their hospitality during my visits in Spring 2004 and

Autumn 2005, Jim Lyke and others of the US Air Force Office of Scientific Research at

Kirtland AFB, Mary Sheeran for her useful comments about shuffle networks at DCC’06,

and of course my colleagues in the CPRG group at the Computer Laboratory. Thanks are

also due to Ganesh Sittampalam and Mark Snellgrove for their comments on late drafts

of my thesis, and of course to my supervisor, Professor Alan Mycroft, for believing in me

in the first place and for all his help and encouragement over the last three years.

My work was financially supported by Big Hand Ltd., EPSRC, Intel, NASA/MCT Inc.,

by a St Edmund’s College Charter Studentship and by the US Air Force Office of Scientific

Research (European Office of Aerospace Research & Development).

Oh, doseybat made me do it, so it’s all her fault, really.

Contents

I Introduction 1

1 Introduction 2

1.1 Motivation . 2

1.1.1 Applying Program Analysis to Hardware 3

1.2 Thesis Structure and Contributions . 3

1.3 Assumptions . 5

2 Background 6

2.1 Space: The ultimate extreme environment 7

2.1.1 Vacuum . 7

2.1.2 Radiation . 9

2.1.3 Temperature . 12

2.1.4 G-forces and Vibration . 12

2.2 Program Analysis and Transformation . 13

2.2.1 Abstract Interpretation . 13

2.2.2 Partial Evaluation . 19

2.3 Boolean SAT . 23

2.3.1 SAT solvers . 24

2.3.2 Clausal SAT . 26

2.3.3 Non-Clausal SAT . 27

2.3.4 Discussion . 27

2.4 Digital Electronics . 27

2.4.1 Logic Gates . 28

2.4.2 Combinational Circuits . 30

2.4.3 Memory . 31

2.4.4 Synchronous Circuits . 33

2.4.5 Asynchronous Circuits . 33

2.4.6 Radiation Effects . 35

2.4.7 Discussion . 36

CONTENTS IX

II Foundations 37

3 Transitional Logics 38

3.1 Introduction . 38

3.1.1 Achronous Analysis . 40

3.1.2 Hardware Components . 40

3.1.3 Abstract Interpretation Basis . 42

3.2 Concrete Domain . 43

3.3 Abstract Domain . 44

3.3.1 Deterministic Traces . 44

3.3.2 Nondeterministic Traces . 44

3.3.3 Galois Connection . 47

3.4 Circuits . 48

3.4.1 Correctness and Completeness . 50

3.5 Finite Versions of the Abstract Domain . 53

3.5.1 Collapsing Non-Zero Subscripts: the 256-value Transitional Logic

T256 . 53

3.6 Further Simplification of the Abstract Domain 54

3.6.1 Static-Clean Logics . 55

3.7 Refinement and Equivalence in Transitional Logics 56

3.7.1 Equivalence of Nondeterministic Traces. 57

3.7.2 Finite Abstract Domains . 57

3.8 Algebraic Properties of ℘(T) . 58

3.9 Related Work . 58

3.9.1 Achronous Analyses . 59

3.9.2 Non-Achronous Analyses . 60

3.9.3 Synchronous Analyses . 60

3.10 Discussion . 60

4 Bit-Level Partial Evaluation of Synchronous Circuits 62

4.1 Introduction . 62

4.2 PE of Combinational Circuits . 63

4.3 PE of Synchronous Circuits . 64

4.3.1 Multiple Unrollings . 66

4.3.2 Reset Logic . 67

4.3.3 Full Unrolling . 67

4.4 The HarPE Language . 68

4.4.1 Semantics . 68

CONTENTS X

4.4.2 Types . 69

4.4.3 External Inputs . 71

4.4.4 Outputs . 71

4.4.5 Compilation of Control Flow Constructs 71

4.5 HarPE Internals . 74

4.5.1 Syntactic Sugar . 75

4.5.2 The hwGate Class . 75

4.5.3 Assignment and If() . . . EndIf() 77

4.5.4 Loop Unrolling with While() . . . EndWhile() 78

4.5.5 Handling D-type Flip-Flops . 79

4.5.6 Bit Vectors and Integers . 79

4.5.7 Generating Gate-Level Verilog . 80

4.5.8 SAT solver interface . 81

4.6 Experimental Results . 82

4.6.1 Test Environment and Experimental Procedures 82

4.6.2 Combinational PE . 83

4.6.3 Synchronous PE . 84

4.6.4 Computational Cost . 87

4.7 Related Work . 87

4.7.1 Dynamic Synthesis of Correct Hardware 87

4.7.2 SystemC . 88

4.7.3 Cynthesizer . 89

4.7.4 Synopsys Behavioural Compiler . 89

4.7.5 Synopsys Design Compiler . 90

4.7.6 Synopsys System Studio . 90

4.7.7 Bluespec . 91

4.8 Discussion . 91

III Applications 93

5 Repairing Cosmic Ray Damage in FPGAs with Non-Clausal SAT Solvers 94

5.1 Introduction . 94

5.1.1 FPGAs in Space . 95

5.1.2 Radiation Damage . 96

5.1.3 Modular Redundancy . 97

5.1.4 Exploiting Redundancy within FPGAs 98

5.1.5 Availability . 99

CONTENTS XI

5.1.6 Local resynthesis as a SAT problem 101

5.2 Defining the SAT problem . 101

5.2.1 Quantifier Elimination . 102

5.2.2 Slicing . 103

5.2.3 Handling flip flops . 104

5.2.4 Detection and Localisation of Faults 104

5.3 Experimental Results . 105

5.4 Related Work . 106

6 Reconfigurable Manifolds 107

6.1 Introduction . 107

6.1.1 Physical satellite wiring architectures 109

6.1.2 Logical satellite wiring architectures 110

6.2 Reconfigurable manifolds . 111

6.2.1 Signal types . 112

6.2.2 Constructing practical reconfigurable manifolds 113

6.2.3 Switching technologies . 114

6.2.4 Routing architectures . 117

6.2.5 Make-before-break switching . 123

6.2.6 Grounding . 124

6.3 Self-organisation . 125

6.3.1 ‘Space Velcro’ . 125

6.3.2 Local routing . 127

6.3.3 System level routing . 127

6.3.4 Dynamic discovery . 127

6.4 Dynamic testing and fault recovery . 133

6.4.1 Fault recovery protocol . 134

6.4.2 Graceful degradation . 134

6.5 Discussion . 135

7 SET Immunity in Delay-Insensitive Circuits 137

7.1 Introduction . 137

7.1.1 Majority Voting Circuits . 138

7.1.2 Analysis by the Karnaugh Map Technique 142

7.1.3 Analysis by Transitional Logic . 143

7.1.4 A Possible Solution? . 146

7.1.5 Duality of V3 and V
′
3 . 147

7.2 Generalising the Result . 148

CONTENTS XII

7.3 Related Work . 151

7.4 Discussion . 152

IV Conclusions 153

8 Conclusions 154

8.1 Contributions . 154

8.2 Conclusion . 156

9 Future Work and Open Questions 157

9.1 Transitional Logics . 157

9.2 Partial Evaluation of Synchronous Circuits 158

9.3 Repairing Cosmic Ray Damage in FPGAs with Non-clausal SAT solvers . . 159

9.4 Reconfigurable Manifolds . 160

9.5 SET Immunity in Delay-Insensitive Circuits 161

V Appendices 162

A Extended Logics 163

A.1 Transitional Logics . 163

A.2 Static/Clean Logics . 164

A.3 Logics from Related Work . 165

B Non-Clausal SAT Solvers for Hardware Analysis 167

B.1 NNF-based Non-Clausal SAT Solvers . 167

Bibliography 172

Glossary of Terms and Symbols 184

Index 196

List of Figures

2.1 The Shuttle Discovery, seen from the ISS during Return to Flight 7

2.2 LEO, MEO, GEO and HEO . 8

2.3 Starfish Prime, as seen from Honolulu, Hawaii 10

2.4 Hasse diagram for Z♯ with respect to subset inclusion ⊆ 14

2.5 Construction of n- and p-channel FETs . 28

2.6 CMOS inverter circuit . 28

2.7 CMOS NAND gate circuit . 29

2.8 Circuit symbols for standard gates . 30

2.9 CMOS SRAM cell . 31

2.10 S-R flip flop . 32

2.11 D-type flip flop circuit symbol . 32

3.1 Comparison of dynamic behaviour . 39

3.2 Delay models of the circuit a ∧ ¬a . 41

3.3 Circuit symbols . 42

3.4 Shorthand notation: deterministic traces 45

3.5 Boolean functions on traces . 49

3.6 Transmission line delay . 51

3.7 Inertial delay . 51

3.8 Operators on Tc . 54

3.9 Hierarchy of domains . 55

3.10 Identities of Boolean logic and the transitional logic ℘(T) 58

4.1 General form of synchronous circuits . 64

4.2 Synchronous circuit after one unrolling . 65

4.3 Synchronous circuit after n unrollings . 66

4.4 Synchronous circuit after full unrolling . 68

4.5 A 1-bit ‘counter’ . 70

4.6 Altera EPXA1 development board . 82

LIST OF FIGURES XIV

5.1 SEE triggered by a cosmic ray impact . 97

5.2 Modular redundancy . 97

5.3 Typical majority voting logic implementations: i. Analogue, ii. Digital . . . 98

5.4 Using available FPGA resources to work around permanent latch-up damage100

5.5 FPGA repair as a SAT problem . 102

5.6 Example test circuit model . 105

5.7 Test results . 106

6.1 A typical near-earth small satellite configuration 108

6.2 Card frame with backplane . 109

6.3 Motherboard with attached daughter boards 110

6.4 Typical non-reconfigurable satellite wiring architecture 111

6.5 Reconfigurable manifold architecture . 112

6.6 Separate routing networks for power, analogue, digital and microwave . . 114

6.7 Reconfigurable manifold as a motherboard or backplane 115

6.8 Reconfigurable manifold distributed across subsystems 116

6.9 Crossbar switch . 118

6.10 Non-redundant switch . 119

6.11 Partially redundant switch configuration 119

6.12 Fully-redundant switch configuration . 119

6.13 6-way permutation network . 120

6.14 Swap node circuit . 120

6.15 Work-around for make-before-break using permutation networks 123

6.16 Microcilia cell . 126

6.17 Active Velcro . 126

6.18 Power scavenging circuit . 128

6.19 Typical watchdog circuit . 130

6.20 A possible discovery probe circuit . 131

6.21 Typical packet format . 131

7.1 Comparison of non-redundant and 3-way redundant subsystems 139

7.2 Analogue majority voting circuit . 140

7.3 Analogue majority voting noise margins 141

7.4 Digital majority voting circuit . 141

7.5 Karnaugh map for (a ∧ c) ∨ (a ∧ b) ∨ (b ∧ c) 142

7.6 Karnaugh map for (a ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (b ∧ c) 143

List of Tables

4.1 Rewrite rules for combinational PE . 64

4.2 Loop unrolling a 7-bit up counter . 84

4.3 Loop unrolling a Fibonacci counter . 84

4.4 Experimental results for partial evaluation of a small processor 85

4.5 Instruction set . 86

6.1 Compatibility between switch technologies and signal types 117

7.1 Truth table for 3-way voting logic . 138

7.2 Behaviour of correctly functioning circuit 144

7.3 Behaviour of circuit with one stuck-at fault 145

7.4 Behaviour of circuit with one SET . 145

7.5 SET behaviour of 5-value voting logic . 146

7.6 SET behaviour 3-value voting logic with sequencing 146

7.7 SET behaviour of 5-value voting logic with sequencing 147

Part I

Introduction

Chapter 1

Introduction

“Historians a thousand years hence will say that with Apollo we enabled

man to extend his arena of activity beyond his own planet and to make

himself at home wherever he pleases. If I were 10 or 15 years old today I

would very definitely commit myself and my life to the space programme.

There are tremendous opportunities, tremendous challenges out there, and

it’s a very interesting world ahead. I just envy the kids who have a chance

of going on where we leave off.”

– Dr. Wernher von Braun, interview with

Reginald Turnill, 1975 [138] pp. 379.

1.1 Motivation

Space is an extreme environment, by almost any practical measure. Hard vacuum poses

significant challenges – for example, many familiar engineering materials are unusable,

metal parts tend to weld themselves to each other spontaneously, lubricants freeze or

evaporate, and convective cooling becomes impossible. Radiation in the form of charged

particles, neutrons and high energy photons arrive from interstellar space and from the

Sun – some cosmic rays (atomic nuclei moving at close to the speed of light) possess vast

kinetic energy, approaching that of a solidly hit golf ball, and can easily penetrate two

metres of lead shielding. Any spacecraft surfaces facing the Sun may reach temperatures

that would melt many materials commonly used on Earth, yet surfaces facing in the

opposite direction must simultaneously withstand temperatures approaching absolute

zero. Furthermore, despite a need to withstand high G-forces and large amounts of

vibration during launch, spacecraft must nevertheless be as light as possible. Spacecraft

CHAPTER 1. INTRODUCTION 3

design, as a direct consequence, is certainly one of the most challenging areas of modern

engineering.

This thesis explores a number of areas relevant to the design of electronic systems

within spacecraft. Though this has been our primary motivation, most of our contri-

butions are also applicable to the the design of high reliability electronics for general

applications.

1.1.1 Applying Program Analysis to Hardware

Though much is already known about the practicalities of electronic design for space ap-

plications, much of this is in the form of best practice [77] – engineer’s ‘folk knowledge,’

effectively. Formalising the design and analysis of space electronics, ideally to the extent

that behavioural constraints can be mathematically verified, is clearly highly desirable.

Many techniques that are currently under active research in the program analysis

world have a long history of application to the analysis of electronic circuits. In par-

ticular, theorem proving and model checking were (and arguably still are) more widely

used for electronic design validation and verification than for software analysis. How-

ever, the research focus in recent years has been almost exclusively on software, so the

most powerful and advanced techniques currently available have seldom been applied to

hardware. The theoretical work described in Part II of this thesis is aimed to be a small

step toward redressing this imbalance.

1.2 Thesis Structure and Contributions

This thesis is logically grouped into five parts: I. Introduction, of which this chapter

forms part, II. Foundations, which addresses theoretical concerns that underpin the later

chapters, III. Applications, which reports results from applying this theoretical work to

practical problems in space science, IV. Conclusions, which summarises our results and

finally V. Appendices.

Individual chapters are summarised as follows:

1. Introduction.

2. Background. In this chapter, concepts that underpin the later chapters are de-

scribed, including abstract interpretation, partial evaluation, synchronous and asyn-

chronous digital circuits. A brief overview of relevant space science issues is also

included, with particular reference to environmental effects on electronic systems.

CHAPTER 1. INTRODUCTION 4

3. Transitional Logics. We introduce a family of many-valued logics that are capable

of supporting formal reasoning about a wide class of asynchronous circuits. A

formal semantics based upon an abstract interpretation is given and used for the

purpose of providing soundness and completeness proofs.

Contribution: In this chapter we introduce the first abstract interpretation-based

analysis of asynchronous circuits. We also coin the term achronous analysis to de-

scribe a wide class of analyses, all of which adopt an independent attribute model

and abstract away details of absolute time. A number of pre-existing analysis tech-

niques are discussed, and are shown to be subsumed by our approach.

4. Bit-level Partial Evaluation of Synchronous Circuits. This chapter describes a

technique by which offline partial evaluation can be applied to purely synchronous

digital circuits. A loop unrolling strategy is given that is capable of transforming

circuits into versions that maintain equivalent behaviour whilst executing in fewer

cycles. Extending unrolling until a fixed point is reached is shown to be equivalent

to the first Futamura projection. An embedded hardware description language,

HarPE, which was implemented specifically to support experimentation in this area,

is also described.

Contribution: We demonstrate the application of bit-level partial evaluation with

loop unrolling to hardware, and also the first example of a 1st Futamura projection

in hardware.

5. Repairing Cosmic Ray Damage in FPGAs with Non-Clausal SAT solvers. In this

chapter, a technique for generating FPGA bitstreams that work around radiation

induced permanent latch-up damage is given. An adapted version of HarPE is used

to flatten (reduce to purely combinational form) a model of a small FPGA, then a

non-clausal SAT solver is used to work around simulated injected faults.

Contribution: We demonstrate the first application of SAT solvers to the rapid gen-

eration of formally correct work-around bit streams – previous work (e.g., Lohn et

al [86, 85, 83], Stoica et al [120]) was based upon genetic algorithms, which had

limitations in terms of CPU requirements, completeness and correctness.

6. Reconfigurable Manifolds. In this chapter, we extend the concepts of the pre-

vious chapter to encompass reconfigurable spacecraft wiring harnesses. Though

logically similar in concept to a macroscopic FPGA, a practical reconfigurable man-

ifold would be more likely to show resemblance to a circuit-switched telephone

exchange, partly due to the computational cost of computing routing layouts for

CHAPTER 1. INTRODUCTION 5

FPGA architectures, and partly in order to accommodate other important signal

types (e.g., analogue, power and microwave).

Contribution: This chapter reports the results of an early-stage study into the feasi-

bility of constructing reconfigurable manifolds. At the time of writing, no spacecraft

has yet flown with such hardware on board, though small-scale prototypes have

been ground tested by the US Air Force Office of Scientific Research [90]. A num-

ber of issues are examined including manifold architectures, dynamic discovery of

interconnections, self-repair and graceful degradation.

7. SET Immunity in Delay-Insensitive Circuits. In this chapter, transitional logic is

applied to the analysis of the effect of single-event transients on delay insensitive

circuits. 3-way and 5-way voting circuits are analysed in detail and are shown to

be unable to reject single-event transients, though they are shown (as expected) to

be immune to permanent failures. The result is generalised to the entire class of

delay-insensitive circuits constructed from fundamental gates.

Contribution: We present a formal proof that no delay-insensitive circuit, whatever

its architecture, can be immune from the effects of single-event transients.

8. Conclusions.

9. Future Work and Open Questions.

1.3 Assumptions

It is assumed that readers of this thesis will already have some background in both pro-

gram analysis and in the basics of electronic design. Prior knowledge of spacecraft en-

gineering is not generally assumed, though a grounding in the basic science would be

helpful.

Chapter 2

Background

“The flight was extremely normal. . . for the first 36 seconds

then after that got very interesting.”

– Pete Conrad, Apollo 12 commander, regarding the launch during which

two electrical discharges almost ended the mission.

Mankind’s conquest of space began in 1957 with the launch of the 83kg, basketball-sized

Sputnik 1 into an elliptical orbit. Its on-board electronics were limited to a simple radio

transmitter that emitted a periodic bleep, but nevertheless this was a crucial first step

that garnered the necessary political will to take the exploitation of space further. Just

12 years later, Neil Armstrong became the first person in history to set foot on the Moon.

Such progress in such a short period is quite astonishing, and it seems clear that the

success of the Apollo programme was, in no small part, due to the great talent exhibited

by Wernher von Braun, his team and the thousands of contractors who were involved.

Nevertheless, it is quite apparent that corners were cut in America’s haste to beat the

Russians to the Moon – the first landing by Apollo 11’s lunar module occurred despite

numerous computer failures during the descent. The Eagle, in fact, landed with just 20

seconds of remaining fuel reserves [138].

Apollo’s replacement by the Shuttle system (see Fig. 2.1) began with the launch of

Columbia on the STS-1 mission on 20th April, 1981 at 7:00:03 a.m. EST. Despite Shut-

tle’s now-acknowledged limitations, it nevertheless represented a huge advance over

previous technology, particularly with regard to its flight systems electronics. Though

low-powered by modern standards, its 5-way redundant on-board computers were vastly

CHAPTER 2. BACKGROUND 7

Photo: NASA

Figure 2.1: The Shuttle Discovery, seen from the ISS during Return to Flight

superior to Apollo’s primitive hardware, and to date have proven incredibly reliable1.

2.1 Space: The ultimate extreme environment

Space is an utterly unforgiving environment. All spacecraft must be able to endure hard

vacuum, extremes of temperature, high G forces and hard radiation whilst remaining reli-

able and functional. Achieving this in satellites and space probes is challenging; manned

spaceflight increases the difficulty substantially because, ultimately, astronauts’ lives crit-

ically depend upon the reliability of their equipment. In this section, we summarise the

main issues that must be overcome by spacecraft designers.

2.1.1 Vacuum

The vacuum of deep space is near-perfect, though it is not entirely empty – any cubic

metre of space is likely to contain a significant number of charged particles. In low-earth

1NASA are, apparently, considering the possibility of continuing to use the Shuttle computer architec-
ture in the upcoming CEV/CLV programme, because the performance gains of moving to a newer architec-
ture are not regarded as justified given the excellent reliability of the existing systems.

CHAPTER 2. BACKGROUND 8

MEO

(Medium Earth Orbit)

HEO

(High Earth Orbit)
GEO, Alt. 35786km

(Geosynchronous Orbit)

LEO, Alt. 200 - 1200km

(Low Earth Orbit)

Figure 2.2: LEO, MEO, GEO and HEO

orbit (see Fig. 2.2), particle density is sufficient to exhibit significant drag that causes

orbits to gradually decay. A stark example of this effect was Skylab, which burned up in

the atmosphere on 11th July, 1979 after its orbit had deteriorated over a 5 year period.

Engineering materials must be carefully selected before they can be safely incorpo-

rated into spacecraft designs. Outgassing is a frequent problem [142], where chemical

components of a material that would normally be stable at ground level can sublime

due to the low ambient pressure. In some cases, the emitted gases may themselves be

a problem, but more commonly it is the effect on the material itself that is of concern.

If a plasticiser sublimes out of a plastic component, it may become brittle, changing its

mechanical properties and perhaps risking failure.

Astronauts must, of course, be protected from exposure to vacuum at all costs. In

an accident during the ground-based testing of a space suit at NASA Johnson Space

Center in 1965, a test subject was briefly exposed to a near-vacuum (approximately

1psi/0.05bar). The test subject lost consciousness after approximately 14 seconds, then

regained consciousness again when the air pressure was pumped back up to an equiv-

alent of an altitude of 15000 feet/4500 metres. He is not said to have suffered any

long-term damage, but reported that his last conscious memory was of the water on his

tongue beginning to boil.

CHAPTER 2. BACKGROUND 9

2.1.1.1 The Charging Problem

The spacecraft charging problem first came to light in the early 1970s, after investiga-

tion of the anomalous behaviour of several satellites, as well as the total loss of the DSCS

II 9431 military communications satellite. A number of missions have flown that were

specifically intended to study the problem, beginning with a joint NASA/USAF investi-

gation in the late 1970s: in 1979, the SCATHA (Spacecraft Charging AT High Altitudes)

mission [93] collected important data. More recently, in July 1990, CRRES (Combined

Release and Radiation Effects Spacecraft) was launched into a geosynchronous transfer

orbit [64].

In a nutshell, the problem was found to be caused by incident charged particles im-

pacting the surface of the satellite and thereby transferring their charge to the spacecraft

itself. The effect is at its worst during geomagnetic storms (solar flares), where the results

of differential charging between adjacent parts can exceed the breakdown voltage of the

vacuum, causing arcing, sputtering and other unwanted effects. High energy electrons,

mostly an issue for spacecraft within the Van Allen belts, can penetrate deep within a

spacecraft to cause dielectric charging within, for example, PCB substrates.

Current practice is to limit the effect of the problem by carefully grounding all space-

craft components with several, redundant, low resistance ground connections. Some

satellites also incorporate ion guns that can counteract charging directly by emitting pos-

itively charged particles to adjust the spacecraft’s net charge.

2.1.2 Radiation

The most serious environmental challenge that faces the designers of space borne elec-

tronic systems is radiation, mostly in the form of energetic particles from the following

sources:

Heavy ions trapped in the Earth’s magnetosphere The Earth’s magnetic field interacts

with any moving charged particles in the vicinity – Lorentz forces [89] can cause

some particles to become trapped, where they continue to orbit at significant ve-

locities. This radiation source was studied extensively during the SAMPEX (So-

lar Anomalous and Magnetospheric Particle Explorer) mission [15], which con-

cluded that the particles’ energy was insufficient to cause noticeable effects on

satellites [77].

Electrons and protons trapped in the Van Allen belts The Van Allen belts consist of

charged particles from the solar wind that have been trapped by the Earth’s magne-

tosphere. The large outer Van Allen belt sits at an altitude of approximately 10,000

CHAPTER 2. BACKGROUND 10

Photo: nuclearweaponarchive.org

Figure 2.3: Starfish Prime, as seen from Honolulu, Hawaii

to 65,000km, consisting of relatively low energy (< 1MeV) electrons and positively

charged ions. Trapped protons are primarily a feature of the much smaller inner

Van Allen belt, which lies at an altitude of approximately 1000-5000km, and are

sufficiently energetic that they can affect electronics, particularly modern small-

geometry devices.

On 9th July, 1962, in the Starfish Prime test (see Fig 2.3), a Thor rocket carry-

ing a 1.45 megaton W49 thermonuclear warhead2 was detonated at an altitude of

400km above Johnston Atoll in the Pacific ocean. Charged particles from the deto-

nation significantly increased the intensity of the Van Allen belts, which caused the

total failure of 7 satellites, including Telstar, the world’s first communications satel-

lite. The detonation also caused an electromagnetic pulse within the atmosphere

that damaged electrical equipment 1500km away in Hawaii. The resulting charged

particles, mostly electrons, persisted within the belts for several years.

Solar flares A solar flare is a violent explosion in the Sun’s upper atmosphere that emits

very large quantities of charged particles travelling at close to the speed of light, as

well as electromagnetic radiation across the entire spectrum, from radio frequen-

cies to gamma rays. Typical particle energies for protons are of the order of several

hundred MeV, with heavy ion energies ranging from 10 MeV/n to several hundred

GeV/n.

2Approximately 100 times the yield of the bomb that destroyed Hiroshima on 6th August, 1945.

CHAPTER 2. BACKGROUND 11

Charged particles from solar flares are a significant danger, both to space electron-

ics and also to astronauts. The moon landings were timed carefully to coincide with

solar minimum – the missions concerned were lucky not to encounter any flares,

because the radiation shielding within the Apollo spacecraft was likely to have been

inadequate to prevent excessive radiation exposure. Future long-duration manned

deep space missions, particularly any manned Mars exploration programme, must

be designed to provide a solar flare ‘storm shelter,’ capable of protecting the astro-

nauts until the flare has passed.

Cosmic rays Galactic cosmic rays originate from sources outside the solar system, and

include ions of all elements with atomic numbers up to 92 (uranium). Velocities

are extremely high, with energies up to the hundreds of GeV/n, though particle flux

is low. Since shielding against particles of these energies is generally impractical,

cosmic rays are a significant potential cause of damage to electronics.

The intensity of all of these sources is affected by the level of solar activity, which varies

on a cycle with a period of between 9 and 13 years. The typically 11 year solar cycle

may be divided into solar maximum, lasting approximately 7 years, and solar minimum,

lasting approximately 4 years. Solar maximum is characterised by frequent solar flare ac-

tivity, whereas during solar minimum flares are rare. Cosmic ray flux follows an opposite

cycle, and is at its greatest during solar minimum.

Due to the shielding effects of the Earth’s magnetosphere, radiation levels vary dra-

matically with a spacecraft’s orbit. In low earth orbit (LEO), radiation levels are compa-

rable to those experienced to high altitude aircraft, and are generally relatively easy to

deal with. Manned spaceflight has to-date mostly concentrated on LEO missions for this

reason – Shuttle and the International Space Station (ISS) operate exclusively in LEO.

Radiation levels on the ISS are sufficiently low that astronauts are able to use standard

laptop PCs3. Manned spaceflight tends to avoid MEO because of the Van Allen belts –

the trajectories of the manned Apollo lunar missions were specifically designed to avoid

the areas of densest radiation flux, resulting in a (relatively) harmless total dose for the

astronauts.

Unmanned spacecraft do use MEO and GEO extensively, however. The Navstar GPS

(Global Positioning System), operated by the 50th Space Wing’s (US Air Force Space

Command) 2nd Space Operations Squadron, consists of a constellation of typically 24

satellites on circular, 20200km altitude, MEO orbits. Most communications satellites are

on geosynchronous (GEO) or geostationary (GSO) orbits, also known as Clarke orbits

3NASA purchased over 70 laptops from different manufacturers, then tested each one in a radiation
chamber. Apparently, the one that proved most reliable, a relatively low-powered IBM Thinkpad, is now
standard equipment (Source: personal conversation with Rick Alena, NASA Ames, August 2004).

CHAPTER 2. BACKGROUND 12

after their original proposer, Sir Arthur C. Clarke [36]. Satellites on both MEO and

GEO/GSO orbits must be designed with radiation hardening techniques4.

2.1.3 Temperature

It is important to clearly state that the vacuum of space does not possess a temperature

in the conventional sense of the word – in its usual terrestrial context, temperature is

a bulk measure of the vibration of the molecules within a solid, liquid, gas or plasma.

In space, particle density is sufficiently low as to be irrelevant for most purposes when

considering the behaviour of satellites, although more correctly the solar wind should be

regarded as a very low density plasma.

Surfaces that face toward the sun are heated by electromagnetic radiation, primarily

infrared light. A perfect black body in solar orbit, facing the sun, at the same distance

as the Earth would typically stabilise at a temperature of 280K (7◦C). A similar surface

facing away from the sun would fall to approximately 5K (-268◦C) – in deep space, far

from stars or galaxies, the temperature would tend toward the cosmic microwave back-

ground at approximately 2.7K (-270◦C). Most space-qualified electronic devices are char-

acterised only to operate between -55◦C and +125◦C, so effective thermal management

is essential. Since electronic components generate heat, particularly any fast CMOS VLSI

devices, cooling can be a difficult problem, since it can only be achieved by radiation and

not convection5.

2.1.4 G-forces and Vibration

Launch G-forces vary depending upon the launch system. The Saturn V vehicle used in

much of the Apollo programme would typically develop over 4G, whereas Shuttle is a

little gentler at approximately 3.5G. The Pegasus XL launch vehicle, often used for small

satellites, develops approximately 2.5G. Vibration during launch can be considerable –

though a launch may appear sedate from a distance, rocket motors do not burn perfectly

evenly, with fluctuations in thrust causing nontrivial levels of vibration.

All spacecraft must therefore be carefully designed to withstand both the G-forces

and vibration of launch. Large printed circuit boards typically need to be supported

at multiple points across their surface, and individual components need to be strongly

attached so that their soldered joints can not shear off.

4Note that, in the space community, correct English usage is taken to be ‘on orbit,’ rather than the
colloquial ‘in orbit.’ We adopt the former convention.

5Convection is only possible in a fluid – indeed, it is the absence of convection that allows a ThermosTM-
style vacuum flask to maintain its contents’ temperature for long periods.

CHAPTER 2. BACKGROUND 13

2.2 Program Analysis and Transformation

It would be impossible within the scope of this thesis to attempt to thoroughly review

all of program analysis and transformation. We therefore concentrate specifically upon

abstract interpretation and partial evaluation, which underpin the work described in

Chapters 3 and 4 respectively. Readers wishing for a broader reference are better referred

to the standard texts [104, 72].

2.2.1 Abstract Interpretation

Abstract interpretation [42, 43] is a long-established technique, most commonly applied

to software, that allows abstract properties of systems to be determined.

As a simple example6, consider the ‘law of signs’ in integer arithmetic. It is possible,

knowing only the signs of a and b to know with certainty the sign of the result of the

integer expression a × b. The sign of the result of the addition a + b may be determined

in some cases, but not all. This can be thought of as a very simple kind of abstract

interpretation. We might define an abstract multiplication operator ⊗, and an abstract

addition operator ⊕ as follows:

⊗ − 0 + ⋆

− + 0 − ⋆

0 0 0 0 0

+ − 0 + ⋆

⋆ ⋆ 0 ⋆ ⋆

⊕ − 0 + ⋆

− − − ⋆ ⋆

0 − 0 + ⋆

+ ⋆ + + ⋆

⋆ ⋆ ⋆ ⋆ ⋆

where − represents any negative integer, 0 represents zero, + represents any positive

integer and ⋆ represents any integer whatsoever.

The multiplication 1543 × −783 = −1208619 in the concrete world maps to the ab-

stract multiplication + ⊗ − = −. Using this technique, it is possible to determine with

certainty the sign of the result of a multiplication without actually needing to carry out

the multiplication itself. However, the addition −344 + 762 = 418 maps to the abstract

addition − ⊕ + = ⋆, since the abstract values −, 0, + and ⋆ do not carry enough

information for a more accurate result to be determined. Nevertheless, in many cases

this approach is still sufficient to fully predict the sign of an integer expression involving

addition and multiplication, without any requirement to perform the actual arithmetic.

It is traditional in abstract interpretation to define a concrete domain that closely

models the real world, and an abstract domain that in some useful way approximates the

6The material in this section is an extended version of an example that was originally included in the
author’s publication [131]

CHAPTER 2. BACKGROUND 14

- 0 +

Figure 2.4: Hasse diagram for Z♯ with respect to subset inclusion ⊆

concrete domain. Functions are then defined that have counterparts on each domain –

often, the concrete version of the function is difficult to compute efficiently, but the

(usually less accurate) abstract version has comparatively trivial complexity. Abstract

interpretation allows formal proofs to be created that demonstrate the correctness of

the abstraction, as well as proving that related abstract and concrete functions faithfully

model each other’s behaviour.

In this thesis, we consider the original approach to abstract interpretation, pioneered

in the late 1970s by Cousot & Cousot [42, 43], which draws heavily on the theory of

Galois connections. Other approaches that have been introduced more recently that are

based on the Moore-Penrose pseudo-inverse or on Lagrangian relaxation are acknowl-

edged though for brevity they are not described here since they are not required by our

definition of transitional logics in Chapter 3.

2.2.1.1 Concrete and Abstract Domains

Formally, abstract interpretation models both concrete and abstract domains as partially

ordered sets. In the example described in Section 2.2.1, the concrete domain would

initially appear to be the integers Z, partially ordered by ≤, but this is not the case – the

reason for this becomes clear on closer examination of the abstract domain

Z♯ def
= {−, 0, +,⋆}.

Whilst it is possible to relate −, 0 and + by a simple numeric ≤ ordering, this gives no

effective means of handling ⋆ sensibly. The ordering that is actually important in this

case, as in most applications of abstract interpretation to program analysis, is subset

inclusion ⊆. Since ⋆ is defined as representing any integer whatsoever, is clear that

− ⊆ ⋆, 0 ⊆ ⋆ and + ⊆ ⋆, with all other cases being incomparable. This may be

represented pictorially as a Hasse diagram as shown in Fig. 2.4 – in such diagrams, values

that are connected by lines are partially ordered such that the upper value is greater than

or equal to the lower value, and values that are not connected by lines are incomparable.

Whilst it is possible to represent any member of Z by a single (best) member of Z♯,

the converse is not generally feasible, with only 0 having a unique representation. Our

CHAPTER 2. BACKGROUND 15

concrete domain, then, needs to be able to represent sets of possible values, i.e.,

Z
def
= ℘(Z)\{{}}

with values in Z partially ordered on subset inclusion7. It now becomes possible to con-

vert values from Z to values in Z♯ and vice-versa: 0 is represented by the singleton set

{0}, + by the set {1, 2, 3, . . . }, − by {. . . ,−3,−2,−1} and ⋆ by {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
(i.e., by Z itself). If our abstraction is valid, then beginning with any set of possible val-

ues ŝ ∈ Z, converting this to a value in Z♯ and back again is always guaranteed to return

a set of values in Z that contains ŝ.

2.2.1.2 Abstraction and Concretisation Functions

We can now define an abstraction function, α : Z → Z♯ as follows:

α(n̂)
def
=































−, if ∀n ∈ n̂ . n < 0,

0, if n̂ = {0},

+, if ∀n ∈ n̂ . n > 0,

⋆, otherwise.

and a concretisation function γ : Z♯ → Z as follows:

γ(v)
def
=































{n ∈ Z | n < 0}, if v = −,

{0}, if v = 0,

{n ∈ Z | n > 0}, if v = +,

Z, if v = ⋆.

This gives a formal way to take any value n̂ in Z, which of course may itself be a set

of possible values, and then abstract it by applying the abstraction function α to yield a

value in Z♯. If we now concretise this again by applying γ, we get another value m̂ ∈ Z. If

we have defined our domains and our abstraction and concretisation functions correctly

we can guarantee that n̂ ⊆ m̂.

7Note that we exclude the empty set from Z because it has no direct counterpart in Z♯. An alternative
might be to instead add a corresponding bottom element ⊥ to Z♯, such that ⊥ ⊆ −, ⊥ ⊆ 0, ⊥ ⊆ + and
⊥ ⊆ ⋆, though for clarity (as is common practice) we prefer to omit bottom elements from both domains.

CHAPTER 2. BACKGROUND 16

2.2.1.3 Galois Connections and Galois Insertions

Given a pair of partially ordered domains D and D♯, and a pair of functions α : D → D♯

and γ : D♯ → D, if it can be shown that α ◦ γ(x̂) ⊑ x̂ and γ ◦ α(x̂) ⊒ x̂ then a Galois

connection may be said to exist between the domains8. If it is also the case that α◦γ(x̂) =

x̂, this is known as a Galois insertion. Since x̂ = ŷ trivially implies x̂ ⊆ ŷ, all Galois

insertions are also Galois connections.

Returning to our example, we can use this to formally prove that a Galois insertion

exists for its concrete and abstract domains:

Theorem 2.2.1. The functions 〈α, γ〉 form a Galois insertion between Z and Z♯. First we

prove by cases that α ◦ γ(x̂) = x̂:

1. α ◦ γ(−) = α{n ∈ Z | n < 0} = −

2. α ◦ γ(0) = α{0} = 0

3. α ◦ γ(+) = α{n ∈ Z | n > 0} = +

4. α ◦ γ(⋆) = αZ = ⋆

Now we prove that γ ◦ α(x̂) ⊒ x̂. Proof by cases:

1. Assume that α(x̂) = −. We know from this that ∀x ∈ x̂ . x < 0, so γ ◦ α(x̂) = {n ∈
Z | n < 0} ⊇ x̂.

2. Assume that α(x̂) = 0. Therefore, x̂ = {0}, so γ ◦ α{0} = γ(0) = {0} = x̂.

3. Assume that α(x̂) = +. We know from this that ∀x ∈ x̂ . x > 0, so γ ◦ α(x̂) = {n ∈
Z | n > 0} ⊇ x̂.

4. Assume that α(x̂) = ⋆. Since γ⋆ = Z, we can know that γ ◦ α(x̂) = Z ⊇ x̂.

We can therefore be sure that, in our example, Z♯ is a valid abstraction of Z – the

Galois connection guarantees that, given correct operators, any abstract prediction will

be safe, because it must contain any corresponding concrete result. This is known as

over-approximation in the abstract interpretation literature.

8In this thesis, as is common practice in program analysis, we assume that our Galois connections are
monotone, with the concrete and abstract domains ordered in the same direction. This is different from
Galois’ original definition, and also to the definition used outside program analysis, where the domains
are typically ordered in opposite directions. Our approach tends to make our definitions simpler, but does
not otherwise gain or lose any power with respect to the original definition.

CHAPTER 2. BACKGROUND 17

2.2.1.4 Proving the Correctness of Abstract Operators

Knowing that we have a valid abstraction is not generally sufficient – it is normally neces-

sary to also prove the correctness (and possibly completeness) of abstract functions with

respect to their concrete counterparts [42, 43]. Given a Galois connection 〈D,D♯, α, γ〉
and a pair of functions f : D → D and f ♯ : D♯ → D♯, if either of the (equivalent) rela-

tions α ◦ f ⊑ f ♯ ◦ α or f ◦ γ ⊑ γ ◦ f ♯ can be shown to hold, the function f ♯ can be said to

be correct with respect to f .

Though it is feasible to prove the correctness of our example’s ⊕ and ⊗ operators,

this is somewhat long-winded due to the number of cases that need to be handled9. In

the interests of clarity, we will instead define and prove the correctness of concrete and

abstract versions of a unary minus operator ⊖.

We begin by defining unary minus for the concrete domain Z. Note that we can’t

use the standard unary minus (e.g., −n), because we must handle sets of possible values

rather than just singleton integers. Our definition is as follows:

⊖(n̂)
def
= {−n | n ∈ n̂}

The abstract version of unary minus is defined by tabulation:

⊖♯

− +

0 0

+ −
⋆ ⋆

Proving correctness is straightforward in this case:

Theorem 2.2.2. The function ⊖ : Z → Z is correct with respect to ⊖♯ : Z♯ → Z♯. Proof by

cases:

1. ⊖ ◦ γ(−) = ⊖{n ∈ Z | n < 0} = {n ∈ Z | −n < 0} = {n ∈ Z | n > 0} = γ(+) =

γ ◦ ⊖♯(−)

2. ⊖ ◦ γ(0) = ⊖{0} = {0} = γ(0) = γ ◦ ⊖♯(0)

3. ⊖ ◦ γ(+) = ⊖{n ∈ Z | n > 0} = {n ∈ Z | −n > 0} = {n ∈ Z | n < 0} = γ(−) =

γ ◦ ⊖♯(+)

4. ⊖ ◦ γ(⋆) = ⊖ ◦ Z = Z = γ(⋆) = γ ◦ ⊖♯(⋆)

9Since ⊗ and ⊕ both take two arguments, this further complicates matters. See Theorem 3.4.4 in
Section 3.4.1 and its accompanying discussion for an example of such a proof.

CHAPTER 2. BACKGROUND 18

2.2.1.5 Proving Completeness

If an abstraction is said to be complete, it includes all possible behaviours of the concrete

system and no more. Formal completeness [58, 59, 60, 56, 57, 101, 119] proofs tend

to be a little more complex than correctness proofs, though completeness always implies

correctness. To prove completeness for 〈f, f ♯〉 it is first necessary to define an ideal,

most-accurate-possible version of f ♯ as follows:

f ♯
best

def
= α ◦ f ◦ γ

and then to prove that f ♯ = f ♯
best . If we can also prove

f ◦ γ = γ ◦ f ♯

then we have γ-completeness (also called forward-completeness). If we can prove

α ◦ f = f ♯ ◦ α

then we have α-completeness (also called backward-completeness). Note that these two

kinds of completeness are orthogonal – it is possible for 〈f, f ♯〉 to possess either, neither

or both α-completeness and γ-completeness.

Completeness in abstract interpretation was first explored in the early 1990s [101,

119], though distinguishing α- and γ-completeness is due to Giacobazzi et al [57]. Note

that most of the literature concerning completeness in abstract interpretation concen-

trates on α- (backwards) completeness.

Section 3.4.1 contains fully worked completeness proofs for the operators of our tran-

sitional logic.

2.2.1.6 Independent and Relational Attribute Models

In 1980, Jones and Muchnick [73] introduced the concept of independent and relational

attribute models.

In the independent attribute model, values are modeled entirely separately from each

other. A typical example might be an abstract domain that models integer ranges as in-

tervals, where the sum [1, 3]+[5, 8] evaluates to the range [6, 11]. Assuming an underlying

semantics based on sets of integers, this calculation corresponds to

{m + n | m ∈ {1, 2, 3} ∧ n ∈ {5, 6, 7, 8}} = {6, 7, 8, 9, 10, 11}.

CHAPTER 2. BACKGROUND 19

Note that m is independent from n, and both can appear in any combination.

In the relational attribute model, values are assumed to be related to each other such

that they may not necessarily appear in all possible combinations. For example, if the

m and n in the above example were constrained to only appear in certain combinations,

the result is more exact, e.g.,

{m + n | (m,n) ∈ {(1, 6), (3, 5), (2, 8)}} = {7, 8, 10}.

Independent attribute models tend to be inexact, though they are well suited to pro-

gram analysis since they can typically be represented in space that is linear in the number

of values. In contrast, relational attribute models can give exact results, but are rarely

directly implementable due to a tendency toward exponential space blowup. In abstract

interpretation, it is common for a concrete domain with a relational attribute model to be

modeled by an abstract domain with an independent attribute model, thereby enabling

a compact, efficient and provably-correct representation to be used to perform analyses

without state space blowup problems.

2.2.1.7 Discussion

Abstract interpretation is extremely powerful, something that is often not apparent on

first encountering the technique. It makes it possible to prove correct many kinds of anal-

yses, particularly those that depend upon abstraction. In practical terms, these correct

abstractions can drastically reduce the amount of CPU time necessary to perform anal-

yses, and in many cases can make it possible to rapidly generate safe approximations

in situations where exact results would be take unfeasibly long to compute or even be

undecidable.

2.2.2 Partial Evaluation

Partial evaluation was first described by Lombardi in the 1960s [88, 87], though its

underlying principle is acknowledged to rely upon Kleene’s s-m-n theorem [79]. It has

since become well known as an effective and efficient program transformation technique.

Interested readers are referred to the excellent reference work by Jones, Gomard and

Sestoft [72] – for brevity, we shall provide only a brief overview of the technique as

it is generally applied to the partial evaluation of software. Special considerations for

partially evaluating hardware are specifically discussed in Chapter 4.

Given a program p written in some language L, and some input for that program i,

CHAPTER 2. BACKGROUND 20

an interpreter IL can execute the program and determine its result r:

r = IL(p, i)

If the input i is known completely before the program is run, a clever optimisation might

be to run the program p exactly once (assuming of course that it terminates), then de-

fine a new program p′ that simply returns r immediately without performing any other

computation first, i.e.,

r = IL(p′)

which in practice would be likely to provide a very considerable speedup.

Partial evaluation is primarily concerned with cases where i is only partially known

beforehand – though an optimisation as drastic as the above is not generally feasible,

specialising p given what is known about i can nevertheless be used to generate a residual

program that in many cases may be much faster than the original. Normally, code size

increases as a consequence of the transformation, so partial evaluation may therefore

be seen as a tradeoff between code size and performance. In some special cases, the

optimisations that partial evaluation allows may cause the residual program to be smaller

than the original program10.

A partial evaluator is a program PEL that accepts another program written in some

language L, along with input i ∪ j, where i is known and j is unknown, and generates a

specialised program

p′ = PEL(p, i)

such that IL(p(i ∪ j)) = IL(p′(j)) for all j.

Things start to get interesting if the program being partially evaluated is itself an

interpreter:

PEM(IL, p)

In this case, the program is an interpreter for language L that is itself written in language

M . The partially defined input to IL, in this case, is a program p, written in L. The effect

of this transformation is equivalent to compiling p into the language M – one can also

10Code size reduction is not generally explicitly discussed in the software PE literature, though it clearly
occurs. Whilst loop unrolling normally increases code size, it also exposes the internals of loops, making it
possible to apply a wider range of optimisations. If the expansion inherent in unrolling is exceeded by the
code size reduction from optimisation, it is possible for the residual program to be smaller than the original.
A clear example would be specialisation of a function designed to raise a number to a specified power by
iterative multiplication. Specialising the power to 3, for example, would (given a suitably sophisticated
partial evaluator) yield a residual program consisting only of two multiplications if the loop is unrolled to
a fixed point, which would clearly result in far smaller and faster code. An example of this effect in the
context of hardware PE is given in Section 4.6.3.3.

CHAPTER 2. BACKGROUND 21

view this transformation as allowing interpreter IL to perform the function of compiler

CL→M :

CL→M(p) = PEM(IL, p)

In the literature, this transformation is referred to as the first Futamura projection [54].

If a partial evaluator is self-applicable11 (e.g., if we have a partial evaluator PEL that

is itself written in L), some surprising results are possible. If we specialise the partial

evaluator against an interpreter

CL→M = PEM(PEM , IL)

this yields a true stand-alone compiler from L to M that does not require the presence

of a partial evaluator.

If we specialise the partial evaluator against itself

CC M = PEM(PEM ,PEM)

this yields a compiler-compiler CC M that can transform an interpreter into a compiler:

CL→M = CC M(IL).

2.2.2.1 Partial Evaluation of a Toy Imperative Language

In this section, we will examine the partial evaluation of a simple imperative language

that supports expressions, assignment, if/else and while statements.

Expressions and Assignment. The partial evaluation of expressions is straightforward.

Consider the numeric expression

(a × b) + c

where a is to be specialised and b and c are unknown. If a is specialised to take the value

10, the expression can be rewritten as

(10 × b) + c

11This is not generally feasible or desirable in hardware partial evaluation, but is mentioned here for
completeness.

CHAPTER 2. BACKGROUND 22

thereby avoiding the requirement to allocate memory for a or to retrieve its value. If a is

specialised as 1, the multiplication can be eliminated:

b + c

If a is specialised as 0, then the entire expression can be reduced to c.

Most compilers do this by default, though in this context the transformation is usually

called strength reduction in the literature.

Assignment. Partial evaluation of assignment is straightforward: first, partially evalu-

ate the expression. If the result can be completely determined, then the assigned variable

may now be regarded as part of the known input for the program and the assignment

statement eliminated. Otherwise, the assignment is emitted normally.

Conditionals. In a conditional of the form

if c then s1 [else s2] endif

a partial evaluator would first partially evaluate the conditional expression c. If its result

is completely known, then the if can be eliminated – if c is true, then the statement is

replaced with s1. If c is known to be false, the statement is replaced with s2 if it is given,

or otherwise the entire construct can be safely ignored.

Note that our hardware partial evaluator, HarPE takes a substantially different ap-

proach to handling assignment and conditionals than is described here (see Section 4.4.5.1).

While Loops. The main way in which while loops may be partially evaluated is loop

unrolling, whereby loops may be flattened partially or completely.

Loop unrolling typically exploits the following identity:

while (c)

s

endwhile

=

if (c)

s

while (c)

s

endwhile

endif

Applying the rule once unwinds one instance of the loop body, opening it up to special-

isation by the techniques mentioned above. Repeated application allows the loop to be

CHAPTER 2. BACKGROUND 23

unrolled to any desired extent – if this is continued until a fixed point is reached12 (i.e.,

until either the inner conditional can be determined to be false, or if partial evaluation

of s eliminates all code), then the loop can be eliminated entirely.

One of the hardest problems in partial evaluation is deciding whether or not to unroll

a particular loop, and if so, to what extent. Techniques from program analysis, par-

ticularly abstract interpretation, have much to offer here, though further discussion is

beyond the scope of this chapter.

2.2.2.2 Discussion

This section has merely touched the surface of partial evaluation as applied to software;

far more sophisticated techniques exist than those that were described for our toy lan-

guage. It also became apparent whilst studying partial evaluation in hardware that there

are some subtle but important differences in comparison with software PE – in particular,

self-application is not generally feasible or desirable.

Though partial evaluation has been studied for some time, given its obvious power, it

is a little disappointing that it has not found mainstream application beyond its influence

(albeit in restricted form) on compiler optimisation. Nevertheless, the technique is there

to be exploited – given our findings in Chapter 4, it would be tempting to hope that it

might find applications in hardware that may at some point filter back into the software

world, in the way that this has happened with model checking.

2.3 Boolean SAT

In a nutshell, a Boolean SAT problem is a Boolean formula with a (possibly large) number

of unbound variables, which evaluates to true for some variable assignment13. As a trivial

example, the expression

(a ∧ b) ∨ c

has several possible solutions that cause it to evaluate to T:

12Note that repeated unrolling is not guaranteed to reach a fixed point within acceptable time or space
limits, or indeed at all.

13In this thesis, for notational convenience in describing transitional logics (see Chapter 3) we adopt the
convention of representing true by T and false by F, rather than the more common (though potentially
ambiguous) 0 and 1.

CHAPTER 2. BACKGROUND 24

a b c

T T F

F F T

F T T

T F T

T T T

Any of these solutions may be said to satisfy the expression.

In contrast, the expression

(a ∧ ¬a) ∧ (b ∨ c)

has no variable assignments that cause it to evaluate to T – as a consequence, the ex-

pression may be said to be unsatisfied, often abbreviated as UNSAT.

Finding solutions to SAT problems is computationally hard in the general case, and is

known to be NP -complete [40]. Indeed, equivalence to Boolean SAT is often used as a

means of proving a problem’s NP -completeness. Given a particular variable assignment,

evaluating a Boolean expression is typically linear in the size of the expression. Treating

the expression as a black box, it is potentially necessary to enumerate all possible input

assignments in order to find one that causes the expression to evaluate to T, so in this

case the complexity of the search (assuming a deterministic machine) is exponential,

of the order of O(2N), in the number of variables. A nondeterministic machine could

of course evaluate all possible assignments in parallel and therefore find a solution in

polynomial time.

It is a characteristic of NP -complete problems that they can normally be freely con-

verted into each other in polynomial time. An NP -complete problem that cannot easily

be attacked in its native form can often be transformed into an alternative form – convert-

ing problems of other kinds into Boolean SAT problems is a commonly adopted strategy.

2.3.1 SAT solvers

A SAT solver is a program that is capable of automatically finding solutions to Boolean

SAT problems. Typically, SAT solvers do not treat expressions as a black box – rather,

they tend to adopt heuristics that attempt to gain leverage on the problem by exploiting

information from the expression itself. In practice, SAT problems typically vary consid-

erably in difficulty, and only in more extreme cases tend toward the exponential O(2N)

upper bound. Modern SAT solvers are capable of attacking very large expressions with

thousands of variables whilst maintaining acceptable run times.

Algorithms for solving SAT problems were first studied in the early 1960s. The Davis-

Putnam decision procedure [46, 47] is still widely used, albeit in modified form. In this

CHAPTER 2. BACKGROUND 25

approach, a recursive search is carried out, whereby each variable is in turn assigned a

value and the expression is checked to see whether it is satisfied, or if it is unsatisfiable.

If it is satisfied, the search terminates and the current variable assigments constitute a

solution to the SAT problem. If it is unsatisfiable, the search backtracks. If the search

completes before a solution is found, the algorithm terminates with an UNSAT result.

An alternative approach based on stochastic search was introduced by Selman et

al [114] in 1992. The GSAT algorithm is remarkably simple, yet it is capable of solving

many hard SAT problems rapidly. In outline, the GSAT algorithm is as follows:

1. Initialise all variables to random initial values

2. Evaluate the expression. If the result is T, a solution has been found, so the loop

terminates.

3. Taking each variable in turn, flip its state (i.e., change F to T and vice-versa), then

note the number of clauses (see Section 2.3.2) that evaluate to T as a consequence.

Return each variable to its initial state after each count.

4. Choose the variable that most increases the number of satisfied clauses, then flip it

permanently.

5. If a predetermined number of attempts has been exceeded, go back to step 1 (this

is typically called a restart in the literature), otherwise go to step 2.

A substantial improvement was made by Selman et al [112] in 1994. The WALKSAT

algorithm is broadly similar to GSAT, though at each step it concentrates only on the

variables of a single, randomly chosen, unsatisfied clause. In outline, the algorithm is as

follows:

1. Choose a clause at random that is currently unsatisfied

2. Depending on whether a random number exceeds a suitably chosen temperature

parameter, either:

(a) Randomly choose a variable that appears within the clause and flip it, or

(b) Attempt flipping each variable that appears within the clause in turn, noting

the number of unsatisfied clauses that result in each case, then choose the one

flip that results in the lowest number of unsatisfied clauses.

Both WALKSAT and GSAT perform credibly in comparison with current Davis-Putnam-

inspired algorithms, though unlike Davis-Putnam they are incomplete, in that they fail to

terminate if they are presented with an unsatisfiable expression.

CHAPTER 2. BACKGROUND 26

At the time of writing, SAT solver technology is a very popular research area. The SAT

Live! web site [3] carries links to current research and to downloadable SAT solvers that

are in the public domain. An annual competition [1] evaluates current solvers against a

large collection of SAT problems – the winners of recent competitions are generally good

places to start when selecting a SAT solver for a new project.

2.3.2 Clausal SAT

Most contemporary SAT solvers require formulas to be presented in clausal form, also

termed conjunctive normal form (CNF). Formulas in CNF are strictly of the form:

(· · · ∨ · · · ∨ · · ·) ∧ (· · · ∨ · · · ∨ · · ·) ∧ · · ·

A subexpression of the form (· · · ∨ · · · ∨ · · ·) is known as a clause, and may only contain

variables or their negations.

In some cases, SAT problems are already expressed naturally in clausal form. How-

ever, it often is necessary to transform problems into clausal form from an original form

that is expressed as an arbitrary formula or in some cases as a directed graph.

The standard technique for transforming a Boolean expression into CNF is multiplying

out. First, the expression is transformed to negation normal form, where negation is

pushed out to the leaves of the expression by exhaustively applying the following rewrite

rules:

¬¬a → a

¬(a ∧ b) → (¬a) ∨ (¬b)

¬(a ∨ b) → (¬a) ∧ (¬b).

All expressions may be transformed to equivalent expressions in NNF in space that is

linear with respect to the size of the original expression.

Next, the distributive law is used to push instances of ∧ out to the top level:

a ∨ (b ∧ c) → (a ∨ b) ∧ (a ∨ c)

This approach to conversion to CNF has the serious problem that, in worst case, it may

cause exponential blowup in the size of the resulting expression14. Better techniques

exist that preserve satisfiability whilst generating an expression linear in the size of the

original expression, though this comes at the expense of introducing extra variables to

14This is a consequence of the repetiton of a on the right hand side of the rewrite rule.

CHAPTER 2. BACKGROUND 27

the expression [137].

2.3.3 Non-Clausal SAT

It has been noted by Thiffault et al [126] and others (including ourselves, see Ap-

pendix B) that flattening an expression to CNF destroys a significant amount of structural

information that might otherwise be exploited. Non-clausal SAT solvers, including Thif-

fault’s NOCLAUSE as well as our NNF-WALKSAT, can solve SAT problems in a form close

to that of the problem’s original structure. Since circuits are rarely expressed in a form

that lends itself well to conversion to CNF, non-clausal SAT is particularly well suited to

the kinds of SAT problem that typically arise in hardware verification.

2.3.4 Discussion

SAT solvers are rapidly gaining popularity, to the extent that they appear as an essential

component of a large proportion of modern verification techniques. In some cases, the

SAT solver’s solution is the desired result, as is the case with our work on repairing

cosmic ray damage in FPGAs (see Chapter 5). Often, as is the case with bounded model

checking [21], a successful result is for the formula to be UNSAT, but if a solution is found,

it represents a counter example that illustrates the cause of the verification failure.

2.4 Digital Electronics

Perhaps the most important understanding that must be reached about digital electronics

is that the term is actually a misnomer – fundamentally, all electronic circuits are ana-

logue. ‘Digital’ is actually a convenient abstraction that is adopted by designers in order

to render the complexity inherent in large circuits tractable.

Modern silicon devices are most commonly constructed with the CMOS (complimen-

tary metal oxide semiconductor) process. Fig. 2.5 shows the typical construction of n-

and p-channel FETs (field-effect transistors). FETs behave somewhat like voltage con-

trolled resistors – when they are turned off, the resistance across their source and drain

is very large, in some cases in the teraohms. When turned on, this resistance reduces

to near zero ohms. Typically, CMOS chip production processes are carefully tweaked to

ensure that an n-channel FET will be turned on completely when its gate voltage ap-

proaches the positive supply rail (Vcc), and will turn off completely when its gate voltage

approaches ground (0V). Conversely, p-channel FETs exhibit an opposite response, and

are turned on when their gate input approaches 0V and off when the voltage approaches

CHAPTER 2. BACKGROUND 28

Drain

Source

Gate P

N

N

Metal

Oxide

Drain

Source

Gate N

P

P

P-channel FETN-channel FET

Figure 2.5: Construction of n- and p-channel FETs

Vcc

0V

Input Output

P-channel FET

N-channel FET

Figure 2.6: CMOS inverter circuit

Vcc. It is important to understand that these switching curves are not discontinuous as

the voltage varies, nor is the response instantaneous in time. Gate capacitance, in con-

junction with finite drive current and non-zero resistance, limits the effective slew rate

of the gate voltage, which restricts switching speed, and the solid-state physics of the

devices themselves imply transfer curves with finite steepness.

2.4.1 Logic Gates

Fig. 2.6 represents perhaps the simplest circuit that is in common use: a CMOS inverter,

constructed from a pair of FETs that have as-far-as-possible mirror image transfer curves.

CHAPTER 2. BACKGROUND 29

Vcc

0V

Input A

Output

Input B

Figure 2.7: CMOS NAND gate circuit

The behaviour of this circuit is as follows:

Input at or near 0V The upper p-channel FET turns on, and the lower n-channel FET

turns off, creating a low-resistance path from Vcc to the output.

Input at or near Vcc The upper p-channel FET turns off, and the lower n-channel FET

turns on, creating a low-resistance path from 0V to the output.

It is extremely important to understand that if the input voltage is not at some level

close to 0V or Vcc, then both FETs are likely to be turned on to some extent. Normally,

this only occurs very briefly (generally measurable in picoseconds for modern CMOS

devices) during switching, but this can also occur for longer periods as a consequence

of certain unwanted fault conditions. When both FETs are on, this creates a current

path directly between OV and Vcc – this consumes power as a consequence of Ohm’s

law, whilst also causing localised heating of the transistors and associated wiring. This

characteristic, along with the current necessary to overcome load capacitance during

switching, is jointly responsible for the tendency for the required supply current of CMOS

devices to vary proportionally with clock rate, and also why stopping (or substantially

slowing) the clock can often reduce power requirements to almost zero.

CHAPTER 2. BACKGROUND 30

AND gate

OR gate

NOT gate

Figure 2.8: Circuit symbols for standard gates

Figs. 2.7 shows the circuit most commonly used to implement a logical NAND oper-

ation15. When bearing in mind the transfer curves of the component FETs, it is easy to

visualise how this circuit validly implements the necessary logic operator – if either input

is held to Vcc, the output is disconnected from 0V and connected to Vcc. Only when both

inputs are at 0V do both of the p-channel FETs turn off, and both n-channel FETs turn on

providing a path from 0V to the output.

Just as n-channel and p-channel devices can be regarded as ‘digital’ by assuming that

their gate voltages are either 0V , Vcc or rapidly transitioning between these states, it is

also possible to further abstract the design problem by considering circuits at the gate

level. Gates behave, broadly speaking, like their corresponding operators in classical

Boolean logic16, and are usually represented diagrammatically with simplified circuit

symbols (see Fig. 2.8).

2.4.2 Combinational Circuits

Typically, any Boolean expression can be directly represented as a network of gates – if

there are no cycles in the network, this is known as a combinational circuit. When an

input of a combinational circuit changes, this causes a cascade of switching in the gate

network that eventually settles, with the circuit’s output faithfully representing the result

of the Boolean expression that is being modelled.

It is important to reiterate that combinational circuits are still fundamentally ana-

logue, and their ability to model logic is purely a convenient abstraction. In practice, as

device geometries get smaller, as noise margins reduce and as clock rates increase, this

15A logical AND gate can, if necessary, be constructed by connecting an inverter in series with the output
of a NAND gate.

16Though note the caveat that this does not necessarily apply to dynamically changing signals – see
Chapter 3 for further discussion

CHAPTER 2. BACKGROUND 31

Figure 2.9: CMOS SRAM cell

abstraction becomes a decreasingly safe assumption. It is a common saying in electronic

engineering that, as frequencies rise, electronics starts to increasingly resemble plumb-

ing. At high frequencies, electrons tend to migrate to the surface of conductors, and at

microwave frequencies, electrons have a tendency not to stay inside wires at all, to the

extent that waveguides (quite literally, copper pipes) are often used instead.

2.4.3 Memory

All CMOS memory devices either require some kind of feedback or must depend on ana-

logue FET behaviour – as a consequence, no purely combinational circuit can implement

memory. The simplest possible CMOS memory device is the DRAM (dynamic random

access memory) cell, which essentially stores one bit of digital data in the charge on

the gate of a single transistor [49]. Clearly, a DRAM cell is a fundamentally analogue

device – gate charge leaks away quite rapidly, so in order to retain memory contents for

more than a few milliseconds, it is necessary to periodically refresh the charge.

Fig. 2.9 depicts a SRAM (static random access memory) cell, which typically consists

of a pair of inverter circuits connected in a ring. The tendency of this circuit is to maintain

the voltage at the output either at OV or at Vcc indefinitely – no refresh circuitry is

required. Like a DRAM cell, however, SRAM is also fundamentally analogue – in order

to change the value stored in the memory cell, it is necessary to overpower the feedback

path. Generally, this is achieved by arranging that the transistors in the backwards-facing

inverter have less current sourcing capability than the transistor(s) driving the input.

Predictably, the current consumption of SRAM devices tends to be directly proportional

to how often data is written – the supply current necessary to maintain its contents is

often so low that a small lithium or mercury battery is sufficient for several years of

standby operation.

CHAPTER 2. BACKGROUND 32

R

S
Q

Q

Figure 2.10: S-R flip flop

D QInput Output

Clock

Figure 2.11: D-type flip flop circuit symbol

2.4.3.1 Flip-flops

DRAM and SRAM circuits are normally used to implement large capacity memories

where individual bits are read and written comparatively infrequently – though they

require comparatively little power and silicon area, they are often too slow for more de-

manding applications. In such cases, flip-flops are more commonly used, which use logic

gates for switching rather than over-powering.

The simplest such circuit, the S-R flip-flop, is shown in Fig. 2.10. In this circuit,

the output Q normally takes the opposite logic value to Q – the overbar notation is

commonly used in electronics to indicate ‘active low,’ rather than the more usual ‘active

high’ convention. When R and S are both at Vcc, the flip-flop retains the current output

levels indefinitely. Bringing R to 0V resets the flip flop, i.e., forces Q to 0V and Q to Vcc.

Bringing R to Vcc sets the flip flop, i.e., forces Q to Vcc and Q to 0V . However, if for any

reason R and S are allowed to simultaneously reach 0V , both outputs go to Vcc, which is

a condition that designers normally try to avoid.

The S-R flip flop has fallen out of favour in recent years, along with a number of other

formerly-popular devices such as T-type and JK flip-flops, mostly due to the widespread

adoption of VLSI design methodologies that tend to favour the use of D-type flip flops in

preference, where D abbreviates ‘delay.’ The standard circuit symbol shown in Fig. 2.11.

A D-type flip flop is controlled primarily by its clock input – Under most circumstances,

it maintains the level at its Q output indefinitely, but when a positive edge (i.e., an input

CHAPTER 2. BACKGROUND 33

that transitions cleanly from 0V to Vcc) occurs at the clock input, it copies the level at

its D input to its output. This behaviour tends to be very useful in practice – D-type

flip-flops allow clocked circuits to be constructed straightforwardly, without requiring so

much detailed consideration of timing relationships as is the case with most other kinds

of flip flop.

2.4.4 Synchronous Circuits

Just as combinational circuits allow a significant abstraction away from analogue be-

haviour to be made, whose predictions can be relied upon, the synchronous paradigm

provides a further abstraction that makes design yet simpler. In a nutshell, synchronous

circuits allow gates to be connected to form combinational circuits, with feedback al-

lowed via D-type flip flops, all of which are clocked synchronously by a single, global

clock signal. In a strictly synchronous design, no gates whatsoever are allowed in the

clock path. It is assumed that a clock rate is chosen such that, at worst case, all signals

will have settled to their new values at all D inputs strictly before the next clock edge.

It should be stressed that it is not really the circuit that is synchronous – rather, it is

the abstraction underlying the design technique that is important here. It is quite pos-

sible to build circuits based only on gates and D-type flip flops that are not inherently

synchronous, which do not have behaviour that can be safely predicted by the usual syn-

chronous abstraction. Particular examples include so-called gated clock synchronous cir-

cuits, where for reasons usually associated with reduction in power consumption, clock

signals driving subcircuits or even individual flip flops are gated in order to disable them

when they are not required. Such designs break the strict synchronous design rules,

which means that correct functionality can only be relied upon if detailed timing analy-

sis is carried out on the gated clock signals – it is no longer sufficient to simply assume

that there will exist a global clock frequency sufficiently slow to allow the circuit to func-

tion correctly.

2.4.5 Asynchronous Circuits

Circuits that are designed at a level of abstraction above that of analogue though are

not compliant with purely synchronous design rules are typically known as asynchronous

circuits in the literature [118], though in recent times the term has more commonly been

used to describe specific design abstractions that can be used to design clockless (or

multiply-clocked) circuits. Some of the more common asynchronous design methodolo-

gies are summarised as follows:

CHAPTER 2. BACKGROUND 34

Globally Asynchronous, Locally Synchronous (GALS) In this approach [34], several

locally pure-synchronous circuits are interconnected such that correct operation

is independent of local clock rates. Typically, asynchronous handshake protocols

are adopted that allow communication to be synchronised without any need for a

common clock. GALS circuits tend to be easier to design than self-timed circuits

and are often also more space- and power-efficient than their purer counterparts.

Self-timed circuits are essentially clockless, in the sense that they do not require global

or even local clock signals in order to function. Instead, computation proceeds

as values arrive on wires, with carefully designed protocols ensuring that gates

are given sufficient time to settle to new values before new values are allowed to

arrive. There are several approaches to self-timed circuit design, of which the most

common are as follows:

Dual rail. What would typically be a single wire in the synchronous paradigm

becomes a pair of wires in the dual rail paradigm [48], where false is represented

by a pulse on one wire, and true by a pulse on the other. This approach allows

wire pairs to carry timing information with them – data is inherently packetised,

represented by edges rather than absolute values. Computation is carried out such

that the edges representing results are only emitted once the input data edges have

arrived and have been processed – as a consequence, feedback is possible, and

such circuits naturally find their own ideal speed of operation, though there are no

clocks as-such.

Bundled Data. In this approach [109], signalling at a global level is similar to

dual rail logic, but computation is carried out locally in a manner closer to the

synchronous paradigm than to the pure dual rail approach. This is claimed to

reduce gate count and increase performance, which follows from the tendency for

dual rail gates to be large and complex in comparison with conventional gates,

though it reintroduces a requirement to carefully consider delay characteristics in

order to ensure that circuits behave as intended.

Self-timed circuits have some interesting characteristics that are not typically shared

by synchronous circuits. Their self-timed nature affords considerable advantages in terms

of hardness to certain environmental constraints. If ambient temperature increases, this

tends to increase resistances generally, so self-timed circuits slow down to compensate.

Interestingly, varying the supply voltage can be used to control both speed and power

consumption, with circuits tending to function correctly regardless. It is likely that, for

this reason, self-timed circuits could be very effective in extreme environment applica-

CHAPTER 2. BACKGROUND 35

tions, though at the time of writing little is known about how they might behave in

practice.

2.4.6 Radiation Effects

Returning to the issues described in Section 2.1, radiation effects on digital electronics

are a significant problem, particularly in aerospace applications, but also in many safety-

and mission-critical terrestrial applications.

Total Dose Effects Digital circuits that are exposed to radiation for long periods typ-

ically exhibit gradually degraded performance, which is a consequence of cumulative

physical damage to the chip itself. FETs affected by this process cease to be able to

switch as effectively as they did initially – when turned off, their resistance may be lower

than ideal, and similarly, when turned on, their resistance may be higher than expected.

As a consequence, leakage current across the ladder structures found in CMOS gates

gets steadily worse, thereby increasing overall power requirements. The degradation

also limits the switching current that can be delivered to the gates of downstream tran-

sistors, which reduces the chip’s maximum achievable clock rate. Eventually, damage

may accumulate that is severe enough to render the device non-functional.

Single-Event Effects Single-event effects (SEEs) are caused by impacts from isolated,

highly energetic charged particles, generally cosmic rays and heavy ions from solar flares.

Typically, a charged particle at these energies will pass through the chip’s packaging and

substrate, but due to its extremely high velocity (often close to the speed of light), it

leaves a trail of charge behind it that affects the gates of any nearby transistors. In most

cases, this charge dissipates within approximately 600 picoseconds17, and may cause a

transient voltage spike known as a single-event transient (SET). If such a transient affects

the value stored in a memory element, this is typically referred to as a single-event upset

(SEU). In some cases, permanent latch-up occurs, where a gate is permanently damaged

by having both its n- and p-type transistors turned on simultaneously for an extended pe-

riod, resulting in gate rupture due to the excessive heating caused by the current spike.

This effect must be distinguished from the more usual latch-up mechanism familiar to

designers of ground-based electronics, where latch-up effects are more usually caused by

parasitic thyristor structures that are a consequence of typical contemporary VLSI design

approaches. In conventional latch-up, an over-voltage condition at the input of a FET

17The duration 600ps was quoted by USAF engineers at a meeting with the author at Kirtland AFB in
December 2005, and is otherwise unpublished.

CHAPTER 2. BACKGROUND 36

causes a parasitic thyristor to turn on, thereby permanently ‘latching’ the input to the

relevant supply rail. Normally, this can be cleared by power cycling the chip, unlike per-

manent latch-up which cannot be resolved without replacing the device. Conventional

latch-up can also be caused by single-event effects, either indirectly as a consequence

of voltage spikes or directly as a consequence of a charged particle impact on or close

to a parasitic thyristor. Spacecraft designers are concerned by both kinds of latch-up,

and therefore design circuits to accommodate both conditions. Conventional latch-up is

normally dealt with either by adopting latch-up-immune fabrication technologies such as

Silicon-on-Insulator (SOI), or (particularly when commercial off-the-shelf parts are used

in the design) by watchdog circuits that incorporate power cycling into their reset pro-

cedures. Permanent latch-up is normally accommodated through modular redundancy.

In this dissertation, we are primarily concerned with permanent latch-up damage – this

should be assumed unless otherwise specified in the text.

2.4.7 Discussion

This section has provided a very brief overview of digital electronics, particularly as seen

from the point of view of spacecraft design. Engineering digital circuits for reliability

is a complex problem, and typically requires deeper understanding of circuit behaviour

than can be relied upon from design paradigms that were not intended for the purpose.

To date, circuit design for radiation-hard circuits has largely been seen as a black art,

depending much more upon the experience and skill of design engineers than on formal

techniques. Much of the work reported in Part III of this thesis is aimed at redressing

this problem – it is always preferable to have some means of proving that a circuit will

be reliable under given circumstances, rather than to have to rely only upon testing.

Part II

Foundations

Chapter 3

Transitional Logics

The work described in this chapter was

published previously in [130, 133].

3.1 Introduction

Most contemporary design approaches assume an underlying synchronous paradigm,

where a single global signal drives the clock inputs of every flip flop in the circuit. As

a consequence, nearly all synthesis, simulation and model checking tools assume syn-

chronous semantics. Designs in which this rule is relaxed are generally termed asyn-

chronous circuits.

In a synchronous model, glitches (also known as static and dynamic hazards) do

not cause problems unless they occur on a wire used as a clock input; with purely

synchronous design rules1 this cannot occur. However, such safety restrictions are not

enforced by the semantics of either Verilog or VHDL – it is quite easy, deliberately or

otherwise, to introduce unsafe logic into a clock path.

We present a technique, based upon abstract interpretation [42, 43], that allows the

glitch states of asynchronous circuits to be identified and reasoned about. The approach

taken involves a family of extended, multi-value transitional logics with an underlying

dense continuous time model, and has applications in synthesis, simulation and model

checking.

Our logics are extended with extra values that capture transitions as well as steady

states, with an ability to distinguish clean, glitch-free signals from dirty, potentially

glitchy ones. As a motivating example, consider the circuits shown in Fig. 3.1.I and 3.1.II,

represented respectively by the expressions (a∧c)∨ (¬a∧b) and (a∧c)∨ (¬a∧b)∨ (b∧c).

1Exactly one hazard-free global clock driving the clock inputs of all flip flops in the circuit.

CHAPTER 3. TRANSITIONAL LOGICS 39

I)

a

b

c

Output

II)

a

b

c

Output

III)

Input a

Time

Possible glitch

Output
(I)

Output
(II) Guaranteed clean

Figure 3.1: Comparison of dynamic behaviour

With respect to steady-state values for a, b and c, both circuits would appear to be iden-

tical, with the former representing a circuit that might result from näıve optimisation

of the latter. Our technique can straightforwardly illustrate differences in their dynamic

behaviour, however. Consider the critical case a = ↑0 and b = c = T0 (see Fig. 3.1.III),

representing b and c being wired to true for all time, and a clean transition from false to

true on a (this notation is defined fully in Section 3.3):

(a ∧ c) ∨ (¬a ∧ b) (a ∧ c) ∨ (¬a ∧ b) ∨ (b ∧ c)

= (↑0 ∧ T0) ∨ (¬↑0 ∧ T0) = (↑0 ∧ T0) ∨ (¬↑0 ∧ T0) ∨ (T0 ∧ T0)

= ↑0 ∨ ↓0 = ↑0 ∨ ↓0 ∨ T0

= T0..1 (I) = T0 (II)

CHAPTER 3. TRANSITIONAL LOGICS 40

The result T0 may be interpreted as ‘true for all time, with no glitches’. However, T0..1

represents ‘true with zero or one glitches’, clearly demonstrating the poorer dynamic

behaviour of the smaller circuit.

3.1.1 Achronous Analysis

Our transitional logics are all achronous, in that they do not consider absolute timing

information, though they are nevertheless capable of reasoning about hazards in asyn-

chronous circuits. More formally, an achronous analysis adopts an independent attribute

model [73], whereby signals are considered separately without regard to absolute time.

In contrast, a non-achronous analysis may take into account absolute time. For example,

given two signals: s1 that transitions cleanly from 1 to 0 at time 5.0 and s1 that transitions

cleanly from 0 to 1 at time 7.5, a non-achronous analysis of s1 ∧ s2 could determine that

the result is ‘0 for all time’, whereas an achronous analysis (since it must by definition

disregard absolute time) must conclude that the result may either be 0 for all time or a

single positive pulse.

3.1.2 Hardware Components

In this chapter we consider four2 basic building blocks: (perfect – zero delay) AND-gates,

(perfect) NOT-gates, delay elements (whose delays may depend on time, and environ-

mental factors like temperature, and thus are non-deterministic in a formal sense), and

inertial delay elements. The difference between an ordinary delay and an inertial delay is

that in the former the number of transitions on its input and output are equal, but in the

latter a short-duration pulse from high-to-low and back (or vice versa) may be removed

entirely from the output.

Of course, real circuits are not so general, in particular no practically realisable circuit

of non-zero size can have zero-delay. Hence real-life circuits all correspond to combina-

tions of the above gates with some form of delay element. For the point of designing

synchronous hardware all that matters is the maximum delay which can occur from a

circuit, so the exact positioning of the delays is often of little importance. When circuits

are used asynchronously (e.g., for designing self-timed circuits without a global clock

or, more prosaically, when their output is being used to gate a clock signal locally) then

their glitch behaviour is often critically important. This leads to two models (the delay-

insensitive (DI) and speed-independent (SI) models) of real hardware. In the SI model

logic elements may have delays, but wires do not; in the DI model both logic elements

2A perfect OR-gate can be constructed from perfect AND- and NOT-gates using de Morgan’s law.

CHAPTER 3. TRANSITIONAL LOGICS 41

I)

a Output

II)

a Output

Isochronic fork

III)

a Output

IV)

a Output

Figure 3.2: Delay models of the circuit a ∧ ¬a

and wires have associated delay. One well-known fact about DI models is that it is impos-

sible to construct an isochronic fork, whereby the transitions in output from a given gate

will arrive delayed contemporaneously at two other gates. Reasoning in the DI model

has become much more important recently as wire delays (e.g., due to routing) have

become dominant over single-gate element delays in modern VLSI technologies [99].

Ordinary circuits may be embedded in our model as follows. In the SI model each

physical logic gate at the hardware level is seen as a perfect logic gate whose output is

then passed through a delay element. In the DI model, each physical logic gate is seen

as a perfect logic gate whose input(s) first pass through separate delays. In essence, the

SI and DI models of a circuit are translations of a physical circuit into idealised circuits

composed solely of our four perfect elements.

Now consider the circuit in Fig. 3.2.I. Seen as a perfect logic element, its output is

always false regardless of the value of its input signal. Seen as an SI circuit (i.e., delays

on the output of the AND and NOT, as shown in Fig. 3.2.II), given an input F1 which

starts at false then transitions to true and back, the circuit will be false at all times except

(possibly) for a small period just after the rising edge of the input, when the upper AND-

input will already be true, but before the delayed NOT-output has yet become false. Thus

the output, at this level of modelling, is F0..1 – an unpredictable choice between F0 and

F1 – if we assume an inertial delay and F1 if we assume a non-inertial delay3.

3This argument assumes positive delays; at times later in the chapter we also allow (non-physically
realisable) delays by negative time.

CHAPTER 3. TRANSITIONAL LOGICS 42

a ∧ b Perfect (zero delay) AND

a ∨ b Perfect OR

¬a Perfect NOT

∆a Transmission line delay

�a Inertial delay

Figure 3.3: Circuit symbols

In contrast, Fig. 3.2.III illustrates the DI model, where the separate delays on both

inputs to the AND-gate mean that the same input signal F1 may result in small positive

pulses on both the rising and falling edge of the input; thus the output is described as

F0..2 (i.e., F0 or F1 or F2). It is important to note that any of these three possible outputs

may occur; delays may vary with time and temperature, and can also differ on whether

an input signal is rising or falling.

Our abstract interpretation framework enables us to formally deduce the above be-

haviours of the circuit shown in Fig. 3.2. Our reasoning is correct because of the abstract

interpretation framework4. In some situations our reasoning is also complete in that all

abstractly-predicted behaviours may be made to happen by choosing suitable delay func-

tions for the delay elements. For example, in the DI model, our abstraction of the above

circuit maps abstract signal F1 onto F0..2, but the SI model cannot produce F2 however

(positive) delay intervals are chosen.

3.1.3 Abstract Interpretation Basis

In general in abstract interpretation we start with a most precise abstract model from

which we make further abstractions which are guaranteed correct by the abstract in-

terpretation formulation. Our most precise model, ℘(S), represents signals on wires as

4In the abstract interpretation literature, the term soundness is sometimes used synonymously with cor-
rectness. In this thesis, we adopt the latter alternative in order to avoid confusing soundness (correctness)
in abstract interpretation with soundness in mathematical logic.

CHAPTER 3. TRANSITIONAL LOGICS 43

sets of functions from dense real time to the Booleans. Nondeterminism is captured

straightforwardly – given a signal ŝ ∈ ℘(S), a particular (deterministic) waveform s is

represented by ŝ if and only if s ∈ ŝ.

Our most precise abstract model is constructed by removing absolute timing infor-

mation from signals in ℘(S), resulting in values in ℘(T). Operators on ℘(T) are correct

with respect to their concrete counterparts, so analyses carried out within our abstract

framework are guaranteed to encompass all possible timing relationships, including any

possible best- and worst-case behaviours. This has advantages and disadvantages: it

means that we may predict multiple possible behaviours, some of which may not be

possible in reality due to concrete timing constraints, though our predictions are always

safe. The accuracy of the ℘(T) abstraction depends largely on how much is knowable

about timing relationships in the concrete domain – where detailed timing information

can be determined, ℘(T) may contain many false positive results. Our model is far more

predictive when timing information is limited, however. When timing information is

completely unknown, ℘(T) is a complete abstraction when applied to delay insensitive

circuits. Much related work in hardware analysis makes a similar assumption – see Sec-

tion 3.9 for further discussion.

3.2 Concrete Domain

Definition 3.2.1. Concrete time R is continuous, linear and dense, having no beginning or

end.

Definition 3.2.2. A signal is a total function in S : R → {0, 1} from concrete time to the

Boolean values. In order to avoid nonsensical behaviour, we restrict S to those functions that

are finitely piecewise constant5, i.e., there exists {k1, . . . , kn} which uniquely determines,

and is determined by, a signal s ∈ S such that

s(ki) = ¬s(ki+1) ∀1 ≤ i < n;

s(x) = s(ki) ∀ki ≤ x < ki+1;

s(−∞) = s(x) = ¬s(k1) ∀x < k1;

s(+∞) = s(x) = s(kn) ∀x ≥ kn.

The function Ψs
def
= {k1, . . . , kn} represents the bijection which returns the set of times

at which signal s has transitions; |Ψs| represents the total number, n, of transitions made

5Note that we do not consider signals that contain an infinite number of transitions, e.g., clocks that
oscillate for all time. We can, however, reason about such signals by ‘windowing’ them within finite
intervals (windows) [p, q] of R, resulting in signals that are themselves finitely piecewise constant.

CHAPTER 3. TRANSITIONAL LOGICS 44

by s. As a further notational convenience, we denote the values of s at the beginning

and end of time respectively as s(−∞) and s(+∞).

We model nondeterministic signals as members of the set ℘(S); e.g., delaying signal s

by time δ, where δmin ≤ δ ≤ δmax , gives {λτ.s(τ − δ) | δmin ≤ δ ≤ δmax}.

3.3 Abstract Domain

3.3.1 Deterministic Traces

Definition 3.3.1. A deterministic trace t ∈ T characterises a deterministic signal s ∈ S,

retaining the transitions but abstracting away the times at which they occur. Traces are

denoted as finite lists of Boolean values bounded by angle brackets ‘〈. . . 〉’, and must contain

at least one element – the empty trace ‘〈〉’ is not syntactically valid.

A singleton trace, denoted 〈0〉 or 〈1〉, represents a signal that remains at 0 or 1 respec-

tively for all time. For traces with two or more elements, e.g., 〈a, . . . , b〉, a is the value at

the beginning of time and b is the value at the end of time.

The trace 〈0, 1, 0〉 represents a signal that at the start of time takes the value 0, then

at some later time switches cleanly to 1, then back to 0 again before the end of time. The

instants at which these transitions occur are undefined, although their time order must

be preserved.

Values within traces may be discriminated only by their transitions. Therefore, the

trace 〈0, 0, 0, 0, 1, 1, 1〉 is equivalent to the trace 〈0, 1〉. It follows from this that all traces

may be reduced to a form that resembles an alternating sequence 〈. . . , 0, 1, 0, 1, 0, 1, . . . 〉.
Any such sequence can be completely characterised by its start and end values, along

with the number of intervening full cycles6. A convenient shorthand notation that takes

advantage of this is defined in Fig. 3.4.

3.3.2 Nondeterministic Traces

Following the approach taken in Section 3.2.2, we represent nondeterministic traces

t̂ ∈ ℘(T) as sets of deterministic traces7.

The need for this extra structure is demonstrated by the following example. Let us

attempt to specify the meaning of the expression 〈0, 1〉 ∧ ¬〈0, 1〉, which represents the

6It is of course also possible to represent traces completely in terms of their first (or last) element and
their length. However, the representation chosen here turns out to be more convenient, e.g., comparing
↑
0

with ↑
4

makes it immediately obvious that both represent traces that eventually transition from 0 to 1,
with ↑

0
being ‘cleaner’ than ↑

4
. The utility of this approach will become clear later.

7We adopt the convention that t and t̂ are separate variables that range over T and ℘(T) respectively.

CHAPTER 3. TRANSITIONAL LOGICS 45

F0 The trace 〈0〉 that is 0 for all time.

F1 1
The trace 〈0, 1, 0〉 that has 0 at the beginning and end, con-

taining exactly one pulse.

F2 1 2
The trace 〈0, 1, 0, 1, 0〉 that begins and ends with 0, contain-

ing exactly two pulses.

Fn 1 2 n

The trace 〈0, 11, 0, 12, 0, . . . , 0, 1n, 0〉 that begins and ends

with 0, containing exactly n positive-going pulses.

T0 The trace 〈1〉 that is 1 for all time.

T1 1
The trace 〈1, 0, 1〉 that has 1 at the beginning and end, con-

taining exactly one pulse.

T2 1 2
The trace 〈1, 0, 1, 0, 1〉 that begins and ends with 1, contain-

ing exactly two pulses.

Tn 1 2 n
The trace 〈1, 01, 1, 02, 1, . . . , 1, 0n, 1〉 that begins and ends

with 1, containing exactly n negative-going pulses.

↑0 The trace 〈0, 1〉 that cleanly transitions from 0 to 1.

↑1 1
The trace 〈0, 1, 0, 1〉 that transitions from 0 to 1 through ex-

actly one intervening cycle.

↑2 1 2
The trace 〈0, 1, 0, 1, 0, 1〉 that transitions from 0 to 1 through

exactly two intervening cycles.

↑n 1 2 n

The trace 〈0, 11, 0, . . . , 0, 1n, 0, 1〉 that transitions from 0 to 1
through exactly n intervening cycles.

↓0 The trace 〈1, 0〉 that cleanly transitions from 1 to 0.

↓1 1
The trace 〈1, 0, 1, 0〉 that transitions from 1 to 0 through ex-

actly one intervening cycle.

↓2 1 2
The trace 〈1, 0, 1, 0, 1, 0〉 that transitions from 1 to 0 through

exactly two intervening cycles.

↓n
1 2 n

The trace 〈1, 01, 1, . . . , 1, 0n, 1, 0〉 that transitions from 1 to 0
through exactly n intervening cycles.

Figure 3.4: Shorthand notation: deterministic traces

CHAPTER 3. TRANSITIONAL LOGICS 46

effect of feeding a clean transition from 0 to 1 to the a input of the circuit shown in

Fig. 3.2. The ¬ can be evaluated trivially, giving 〈0, 1〉 ∧ 〈1, 0〉. At first sight, it may

appear that the resulting trace should be 〈0, 0〉 or just 〈0〉. This would be the case if

certain constraints on the exact times of the transitions of the 〈1, 0〉 and 〈0, 1〉 traces were

met, but it is not sufficient to cope with all possibilities. If the 〈1, 0〉 transition occurs

before the 〈0, 1〉 transition, then the result is indeed 〈0〉. Should the transitions occur in

the opposite order, the result is 〈0, 1, 0〉. Formally,

{〈0, 1〉} ∧ ¬{〈0, 1〉} = {〈0, 1〉} ∧ {〈1, 0〉} = {〈0〉} ∪ {〈0, 1, 0〉} = {〈0〉, 〈0, 1, 0〉}

Definition 3.3.2. Where t̂ ∈ ℘(T) and û ∈ ℘(T), the nondeterministic choice t̂ | û is

synonymous with t̂∪û. For notational compactness, we allow either or both of the arguments

of | to range over T, e.g., where t ∈ T, the expression t | û is equivalent to {t} | û.

The ‘|’ operator allows the above equation to be expressed more compactly as follows:

〈0, 1〉 ∧ ¬〈0, 1〉 = 〈0, 1〉 ∧ 〈1, 0〉 = 〈0〉 | 〈0, 1, 0〉

Using the shorthand notation, this may equivalently be written as:

↑0 ∧ ¬↑0 = ↑0 ∧ ↓0 = F0 | F1

Definition 3.3.3. Letting X range over {T, F, ↑, ↓},

Xm..n
def
= Xm | Xm+1 | · · · | Xn Xa1|...|an

def
= Xa1

| . . . | Xan

For example, F0 | F1 may equivalently be written as F0|1, and rather than fully enu-

merating a long list of alternate pulse counts of the form Fm|m+1|...|n−1|n, the preferred

notation Fm..n may be used instead. These notations may be combined, e.g., F0|3|5..7|10..12.

Nondeterministic choice obeys all the laws of set union, e.g.,

a | a = a a | b = b | a a | (b | c) = (a | b) | c = a | b | c

From this, various subscript laws follow, e.g.,

Xa|a = Xa Xa..a = Xa

Xa..b | Xc..d =







Xmin(a,c)..max(b,d) if c ≤ b ∧ a ≤ d;

Xa..b|c..d otherwise.

CHAPTER 3. TRANSITIONAL LOGICS 47

Definition 3.3.4. It is convenient to name the following least upper bounds w.r.t. 〈℘(T),⊆〉:

F⋆

def
= F0..∞ T⋆

def
= T0..∞ ↑⋆

def
= ↑0..∞ ↓⋆

def
= ↓0..∞

⋆
def
= F⋆ ∪ T⋆ ∪ ↑⋆ ∪ ↓⋆

3.3.3 Galois Connection

In program analysis, it is common practice to relate partially ordered concrete and ab-

stract domains with concretisation γ and abstraction α functions that together form a

Galois connection (see also Section 2.2.1.3). In this section, we define α and γ func-

tions that relate the domains defined earlier, then show that they form a valid Galois

connection.

Definition 3.3.5. Given a deterministic concrete signal s ∈ S, the abstraction function

β : S → T returns the corresponding deterministic trace:

βs
def
= 〈s(−∞), s(k1), . . . , s(kn)〉 where {k1, . . . , kn} = Ψs

= 〈s(−∞),¬s(−∞), s(−∞),¬s(−∞), . . . 〉

Note that βs has exactly 1 + |Ψs| elements.

Definition 3.3.6. The abstraction function α : ℘(S) → ℘(T) and concretisation function

γ : ℘(T) → ℘(S) are defined as follows:

αŝ
def
= {βs | s ∈ ŝ} γt̂

def
= {s ∈ S | βs ∈ t̂}

Definition 3.3.7. Letting ∼: S × S → B represent the equivalence relation s1 ∼ s2 ⇔
βs1 = βs2, the set S

♯ def
= S/∼ is the set of equivalence classes in S with respect to ∼. The set

[s]
def
= {s′ ∈ S | βs = βs′} represents, for any s ∈ S, the equivalence class containing that

element.

Note that S
♯ is isomorphic with T.

Theorem 3.3.1. Together, the functions 〈α, γ〉 form a Galois connection between ℘(S) and

℘(T). Following Cousot & Cousot [43], Theorem 5.3.0.4 and Corollary 5.3.0.5, pp. 273, it

is sufficient to show that α ◦ γ(x̂) ⊑ x̂ and γ ◦ α(x̂) ⊒ x̂. We choose to prove instead the

slightly stronger α ◦ γ(x̂) = x̂, and since the ordering relations on ℘(S) and ℘(T) are subset

inclusion, we write ⊇ rather than ⊒. Proof; letting x̂ = {x1, . . . , xn}

1. α ◦ γ(x̂) = α{s ∈ S | βs ∈ x̂} = {βs′ | s′ ∈ {s ∈ S | βs ∈ x̂}} = {βs′ | βs′ ∈ x̂} = x̂.

CHAPTER 3. TRANSITIONAL LOGICS 48

2. γ ◦ α(x̂) = γ ◦ α{x1, . . . , xn} = γ{βx1, . . . , βxn} = γ{βx1} ∪ · · · ∪ γ{βxn} = {s ∈ S |
βs = β{x1}} ∪ · · · ∪ {s ∈ S | βs = β{xn}} = [x1] ∪ · · · ∪ [xn] ⊇ {x1, . . . , xn} = x̂.

3.4 Circuits

Definition 3.4.1. Circuits are modelled by composing four basic operators: zero delay ‘and’

∧, zero delay ‘not’ ¬, transmission line delay ∆ and inertial delay �, which are defined on

the concrete domain as follows:

∧ def
= λ(ŝ1, ŝ2).{λτ.s1(τ) ∧ s2(τ) | s1 ∈ ŝ1 ∧ s2 ∈ ŝ2}

¬ def
= λŝ.{λτ.¬s(τ) | s ∈ ŝ}

∆
def
= γ ◦ α

�
def
= γ ◦ �♯ ◦ α

Their abstract counterparts are defined as follows:

∧♯ def
= α ◦ ∧ ◦ 〈γ, γ〉

¬♯ def
= α ◦ ¬ ◦ γ

∆♯ def
= λx.x

�♯ def
= λt̂.{t ∈ T | ∃t′ ∈ t̂.Val(t) = Val(t′) ∧ Subs(t) ≤ Subs(t′)}

where Val : T → {F, T, ↑, ↓} and Subs : T → N are defined as follows:

Val(Xn)
def
= X Subs(Xn)

def
= n

Note that defining � in terms of α, γ and �♯ is unusual, though convenient.

And. The function ∧ : ℘(S)×℘(S) → ℘(S) represents a perfect zero-delay AND gate. Its

abstract counterpart, ∧♯ : ℘(T) × ℘(T) → ℘(T), is defined in terms of ∧ by composition

with α and γ; note that our achronous semantics is based upon an independent attribute

model [73].

Or. The function ∨ : ℘(S)×℘(S) → ℘(S) represents a perfect zero-delay OR gate. Since

it can be defined in terms of ∧, ¬ and de Morgan’s law, i.e., a ∨ b
def
= ¬(¬a ∧ ¬b), for the

purposes of this chapter we do not consider ∨ as a basic operator. Where space allows,

∨ is tabulated fully, though it is not otherwise discussed.

CHAPTER 3. TRANSITIONAL LOGICS 49

∧♯ F0 Fn T0 Tn ↑0 ↑n ↓0 ↓n

F0 F0 F0 F0 F0 F0 F0 F0 F0

Fm F0 F0..m+n−1 Fm F0..m+n F0..m F0..m+n F0..m F0..m+n

T0 F0 Fn T0 Tn ↑0 ↑n ↓0 ↓n

Tm F0 F0..m+n Tm T1..m+n ↑0..m ↑0..m+n ↓m ↓0..m+n

↑0 F0 F0..n ↑0 ↑0..n ↑0 ↑0..n F0..1 F0..n+1

↑m F0 F0..m+n ↑m ↑0..m+n ↑0..m ↑0..m+n F0..m+1 F0..m+n+1

↓0 F0 F0..n ↓0 ↓n F0..1 F0..n+1 ↓0 ↓0..n

↓m F0 F0..m+n ↓m ↓0..m+n F0..m+1 F0..m+n+1 ↓0..m ↓0..m+n

∨♯ F0 Fn T0 Tn ↑0 ↑n ↓0 ↓n

F0 F0 Fn T0 Tn ↑0 ↑n ↓0 ↓n

Fm Fm F1..m+n T0 T0..m+n ↑0..m ↑0..m+n ↓0..m ↓0..m+n

T0 T0 T0 T0 T0 T0 T0 T0 T0

Tm Tm T0..m+n T0 T0..m+n−1 T0..m T0..m+n−1 T0..m T0..m+n−1

↑0 ↑0 ↑0..n T0 T0..n ↑0 ↑0..n T0..1 T0..n+1

↑m ↑m ↑0..m+n T0 T0..m+n−1 ↑0..m ↑0..m+n T0..m+1 T0..m+n+1

↓0 ↓0 ↓0..n T0 T0..n T0..1 T0..n+1 ↓0 ↓0..n

↓m ↓m ↓0..m+n T0 T0..m+n−1 T0..m+1 T0..m+n+1 ↓0..m ↓0..m+n

¬♯

F0 T0

Fn Tn

T0 F0

Tn Fn

↑0 ↓0

↑n ↓n

↓0 ↑0

↓n ↑n

∆♯

F0 F0

Fn Fn

T0 T0

Tn Tn

↑0 ↑0

↑n ↑n

↓0 ↓0

↓n ↓n

�♯

F0 F0

Fn F0..n

T0 T0

Tn T0..n

↑0 ↑0

↑n ↑0..n

↓0 ↓0

↓n ↓0..n

where m > 0, n > 0.

Figure 3.5: Boolean functions on traces

CHAPTER 3. TRANSITIONAL LOGICS 50

Not. The bijective function ¬ : ℘(S) → ℘(S) represents a perfect zero delay NOT gate.

As with ∧, we define ¬♯ : ℘(T) → ℘(T) by composition of the concrete operator ¬ with α

and γ. When tabulated, ∧♯ and ¬♯ behave as shown in Fig. 3.5.

Transmission line (non-inertial) delay. Our definition of transmission line delay is

essentially a superset of all possible delay functions that preserve the underlying trace

structure of the signal. The definition, γ ◦ α, captures this behaviour straightforwardly;

the α function abstracts away all details of time, though preserves transitions and the

values at the beginning and end of time, then γ concretises this, resulting in the set of

all possible traces with similar structure. This definition is more permissive than more

typical notions of delay in that it includes negative as well as positive time shifts as well

as transformations that can stretch or compress (though not remove or reorder) pulses.

Inertial delay. Inertial delay is broadly similar to transmission line delay, in that, as

well as changing the time at which transitions may occur, one or more complete pulses

(i.e., pairs of adjacent transitions) may be removed. This models a common property

of some physical components, whereby very short pulses are ‘soaked up’ by internal

capacitance and/or inductance and thereby not passed on. We model inertial delay in

the abstract domain – in effect, nondeterministic traces are mapped to convex hulls of

the form F0..a | T0..b | ↑0..c | ↓0..d. The concrete inertial delay operator � is defined in terms

of �♯ by composition with γ and α, so as with transmission line delay, it encompasses all

possible inertial delay functions. It can be noted that, for all ŝ ∈ ℘(S), ∆ŝ ⊆ �ŝ.

Circuit Symbols As shown in Fig. 3.3, we adopt standard electronic engineering nota-

tion for the perfect gates ∧, ∨ and ¬. Note that we adopt slight variations on the usual

symbol for delay in order to distinguish inertial delay � from transmission line delay ∆.

3.4.1 Correctness and Completeness

An abstract function f ♯ may be described as correct with respect to a concrete function

f if all behaviours exhibited by f are within the set of possible behaviours predicted by

f ♯. Where these sets are identical (i.e., where f ♯ predicts all possible behaviours of f),

completeness holds [58, 59, 60, 56, 101], two forms of which are defined below.

Definition 3.4.2. Given a concrete domain D and an abstract domain D♯, related by func-

tions 〈α, γ〉 that form a Galois connection (i.e., α ◦ γ(x) ⊑ x and γ ◦ α(x) ⊒ x), a pair

of functions f : D → D and f ♯ : D♯ → D♯ may be said to be correct iff the following

CHAPTER 3. TRANSITIONAL LOGICS 51

Original
signal

Some possible
delayed signals

(Negative delays
are allowed)

Time

Figure 3.6: Transmission line delay

Original
signal

Some possible
delayed signals

(Pulses may be
removed but not

added)

Time

Figure 3.7: Inertial delay

(equivalent) relations hold:

α ◦ f ⊑ f ♯ ◦ α f ◦ γ ⊑ γ ◦ f ♯

Definition 3.4.3. Let f ♯
best

def
= α ◦ f ◦ γ.

Recalling the definitions of α- and γ-completeness from Section 2.2.1.5,

Definition 3.4.4. When f ♯ = f ♯
best and f ◦ γ = γ ◦ f ♯, the property γ-completeness holds.

Definition 3.4.5. When f ♯ = f ♯
best and α ◦ f = f ♯ ◦ α, the property α-completeness holds.

Note that α-completeness and γ-completeness are orthogonal properties; neither im-

plies the other, though if either or both kinds of completeness hold, correctness must also

hold.

CHAPTER 3. TRANSITIONAL LOGICS 52

Theorem 3.4.1. The transmission line delay operator (∆, ∆♯) is correct, α-complete and

γ-complete. Proof:

1. ∆♯
best = α ◦ ∆ ◦ γ = α ◦ γ ◦ α ◦ γ = α ◦ γ = (λx.x) = ∆♯.

2. α-completeness: α ◦ ∆ = α ◦ γ ◦ α = α = (λx.x) ◦ α = ∆♯ ◦ α.

3. γ-completeness: ∆ ◦ γ = γ ◦ α ◦ γ = γ = γ ◦ (λx.x) = γ ◦ ∆♯.

Theorem 3.4.2. The inertial delay operator (�,�♯) is correct, α-complete and γ-complete.

Proof:

1. �
♯
best = α ◦ � ◦ γ = α ◦ γ ◦ �♯ ◦ α ◦ γ = �♯.

2. α-completeness: α ◦ � = α ◦ γ ◦ �♯ ◦ α = �♯ ◦ α.

3. γ-completeness: � ◦ γ = γ ◦ �♯ ◦ α ◦ γ = γ ◦ �♯.

Theorem 3.4.3. The perfect NOT operator (¬,¬♯) is correct, α-complete and γ-complete.

Proof:

1. ¬♯
best = α ◦ ¬ ◦ γ = ¬♯.

2. Since ¬ is a bijection, γ ◦ α ◦ ¬ = ¬ ◦ γ ◦ α.

3. α-completeness: α ◦ ¬ = α ◦ γ ◦ α ◦ ¬ = α ◦ ¬ ◦ γ ◦ α = ¬♯ ◦ α.

4. γ-completeness: ¬ ◦ γ = ¬ ◦ γ ◦ α ◦ γ = γ ◦ α ◦ ¬ ◦ γ = γ ◦ ¬♯.

Theorem 3.4.4. The perfect AND operator (∧,∧♯) is correct8. Proof:

1. ∧ ◦ 〈γ, γ〉 ⊆ γ ◦ ∧♯ = γ ◦ α ◦ ∧ ◦ 〈γ, γ〉.

Note that whilst perfect, zero delay AND is correct but not complete, a compos-

ite speed-insensitive AND (∧SI
def
= ∆ ◦ ∧,∧♯

SI

def
= ∆♯ ◦ ∧♯) can be straightforwardly be

shown to be γ-complete, but not α-complete. Dually, delay-independent AND (∧DI
def
=

∧ ◦ 〈∆, ∆〉,∧♯
DI

def
= ∧♯ ◦ 〈∆♯, ∆♯〉) is α- but not γ-complete. We find, however, that

(∧complete
def
= ∆ ◦ ∧ ◦ 〈∆, ∆〉,∧♯

complete

def
= ∆♯ ◦ ∧♯ ◦ 〈∆♯, ∆♯〉) is both α- and γ-complete.

8Note that we adopt an independent attribute model when considering the dyadic nature of AND.

CHAPTER 3. TRANSITIONAL LOGICS 53

3.5 Finite Versions of the Abstract Domain

The abstract domain defined in Section 3.3 allows arbitrary asynchronous combinational

circuits to be reasoned about. In this section we present a number of simplifications of

this basic model which allow accuracy to be traded off against levels of abstraction. The

model presented in Section 3.3 is useful in identifying possible glitches within circuits,

though in this case generally one is interested in whether a particular signal can glitch,

rather than the number of possible glitches – this requires less information than that cap-

tured by our original abstraction. It follows that further abstraction should be possible,

which is indeed the case.

3.5.1 Collapsing Non-Zero Subscripts: the 256-value Transitional

Logic T256

Mapping all non-zero subscript traces t ∈ X1..∞ to the single abstract value X+, for X

ranging over {F, T, ↑, ↓}, makes it possible to define a finite abstract domain with a Galois

connection to T. This domain has the desirable property of abstracting away details of

‘how glitchy’ a trace may be, whilst retaining the ability to distinguish clean traces from

dirty traces.

Definition 3.5.1. The abstract domain of subscript-collapsed deterministic traces is the

set Tc
def
= {F0, F+, T0, T+, ↑0, ↑+, ↓0, ↓+}. Following the usual convention, the corresponding

abstract domain of subscript-collapsed nondeterministic traces is the set T256
def
= ℘(Tc).

Note that unlike T and ℘(T), both Tc and ℘(Tc) are finite sets, with 8 and 256 members

respectively.

Definition 3.5.2. The Galois connection αc : ℘(T) → ℘(Tc), γc : ℘(Tc) → ℘(T) is defined

as follows:

βc Xn
def
=







X0 iff n = 0;

X+ otherwise.

αct̂
def
= {βct | t ∈ t̂} γct̂

def
= {t ∈ T | βct ∈ t̂}

It is possible to tabulate 256 × 256 truth tables that fully enumerate all members of

T256 along their edges, but they are too large to reproduce here in full. For brevity,

Fig. 3.8 defines the operators ¬c : Tc → ℘(Tc), ∆c : Tc → ℘(Tc), �c : Tc → ℘(Tc) and

∧c : Tc × Tc → ℘(Tc) on Tc. Their fully nondeterministic versions, defined on ℘(Tc), are

as follows:

CHAPTER 3. TRANSITIONAL LOGICS 54

∧c F0 F+ T0 T+ ↑0 ↑+ ↓0 ↓+

F0 F0 F0 F0 F0 F0 F0 F0 F0

F+ F0 F? F+ F? F? F? F? F?

T0 F0 F+ T0 T+ ↑0 ↑+ ↓0 ↓+

T+ F0 F? T+ T+ F? ↑? ↓+ ↓?

↑0 F0 F? ↑0 ↑? ↑0 ↑? F? F?

↑+ F0 F? ↑+ ↑? ↑? ↑? F? F?

↓0 F0 F? ↓0 ↓+ F? F? ↓0 ↓?

↓+ F0 F? ↓+ ↓? F? F? ↓? ↓?

∨c F0 F+ T0 T+ ↑0 ↑+ ↓0 ↓+

F0 F0 F+ T0 T+ ↑0 ↑+ ↓0 ↓+

F+ F+ F+ T0 T? ↑? ↑? ↓? ↓?

T0 T0 T0 T0 T0 T0 T0 T0 T0

T+ T+ T? T0 T? T? T? T? T?

↑0 ↑0 ↑? T0 T? ↑0 ↑? T? T?

↑+ ↑+ ↑? T0 T? ↑? ↑? T? T?

↓0 ↓0 ↓? T0 T? T? T? ↓0 ↓?

↓+ ↓+ ↓? T0 T? T? T? ↓? ↓?

¬c

F0 T0

F+ T+

T0 F0

T+ F+

↑0 ↓0

↑+ ↓+

↓0 ↑0

↓+ ↑+

∆c

F0 F0

F+ F+

T0 T0

T+ T+

↑0 ↑0

↑+ ↑+

↓0 ↓0

↓+ ↓+

�c

F0 F0

F+ F?

T0 T0

T+ T?

↑0 ↑0

↑+ ↑?

↓0 ↓0

↓+ ↓?

where F?
def
= F0 | F+, T?

def
= T0 | T+, ↓?

def
= ↓0 | ↓+, ↑?

def
= ↑0 | ↑+

Figure 3.8: Operators on Tc

¬ct̂
def
=

⋃

t∈t̂

{¬ct} ∆ct̂
def
=

⋃

t∈t̂

{∆ct} �ct̂
def
=

⋃

t∈t̂

{�ct} t̂ ∧c û
def
=

⋃

t∈t̂
u∈û

{t ∧c u}

Note that, as with ∆♯, the ∆c operator is merely an identity function.

3.6 Further Simplification of the Abstract Domain

A fully tabulated version of the ¬c, ∆c, �c and ∧c operators defined in Section 3.5.1

can be regarded as a 256-value transitional logic, where the values are the members of

℘(Tc). Such an approach still captures more nondeterminism than is useful for many ap-

plications. It is possible to further reduce the abstract domain, replacing some nondeter-

ministic choices with appropriate least upper bound elements with respect to 〈℘(Tc),⊆〉.
The hierarchy of domains that results is shown in Fig. 3.9 – the relationship to 2-value

CHAPTER 3. TRANSITIONAL LOGICS 55

℘(S) ℘(T) T256

T13 T9 T5 B3 B

T15 T11 T7 T5 T3 U

...

.....
..
..
..
.

α
..

..
..
..
.

............γ
...

.....
..
..
..
.

α
..

..
..
..
.

............γ
...

.......... ..

..
..
.
.
.
.
.
.

α

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...........
.......
.
.
.
.
.
.
.

γ

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
......
.
.
.
.
.
.
.

.........
...

α ...
..
..
.
.
.
.
.
.

..
..........

γ

...

.....
..
..
..
.

α
..

..
..
..
.

............ γ
...

.....
..
..
..
.

α
..

..
..
..
.

............ γ
...

.....
..
..
..
.

α
..

..
..
..
.

............ γ

...

.....
..
..
..
.

α
..

..
..
..
.

............ γ
...

.....
..
..
..
.

α
..

..
..
..
.

............ γ
...

.....
..
..
..
.

α
..

..
..
..
.

............ γ
...

.....
..
..
..
.

α
..

..
..
..
.

............ γ
...

.....
..
..
..
.

α
..

..
..
..
.

............ γ
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
..

.

.

.

.

.

.

.

.

..
..

α

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

....

γ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..
..

.

.

.

.

.

.

.

.

..
..

α

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

....

γ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..
..

.

.

.

.

.

.

.

.

..
..

α

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

....

γ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..
..

.

.

.

.

.

.

.

.

..
..

α

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

....

γ

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
......
.
.
.
.
.
.
.
.

............

α

..
..
.
.
.
.
.
.
.
.

..
...
.......

γ

...
..
..
..
.

............

γ

where U
def
= {⋆}, B

def
= {F, T}, B3

def
= B ∪ {⋆} = {F, T,⋆}.

Note that α and γ are different functions in all cases.

Figure 3.9: Hierarchy of domains

Boolean logic B and 3-value ternary logic B3 is shown9 (see also Appendix A.3). Note

that since B lacks an upper bound that corresponds with ⋆, it is not possible to define

α : B3 → B (though γ : B → B3 can be trivially defined), so a Galois connection does not

exist in that particular case. Following Cousot & Cousot [42, 43], the domain U, useless

logic, containing only ⋆, completes the lattice.

Finding the smallest lattice including {F0, F+, T0, T+, ↑0, ↑+, ↓0, ↓+} that is closed un-

der ∧c, and ¬c results in the 13-value transitional logic,

T13
def
= {F0, F+, F?, T0, T+, T?, ↑0, ↑+, ↑?, ↓0, ↓+, ↓?,⋆}

Though much smaller than ℘(Tc), this logic is equivalently useful for most purposes –

note that a special element needs to be explicitly included, ⋆, representing the least

upper bound (top element) of the lattice.

In cases where it is important to know that a trace is definitely clean, but where it is

not necessary to distinguish between ‘definitely dirty’ and ‘possibly dirty’, further reduc-

ing the domain by folding F+, T+, ↑+ and ↓+ into their respective least upper bounds F?,

T?, ↑? and ↓? results in a 9-value transitional logic, T9
def
= {F0, F?, T0, T?, ↑0, ↑?, ↓0, ↓?,⋆}.

An even simpler 5-value transitional logic T5
def
= {F, T, ↑, ↓,⋆} results from folding all

remaining nondeterminism into ⋆. T13 and T9 are well suited to logic simulation, re-

finement and model checking, whereas T5 is only recommended for glitch checking. The

truth tables for T13, T9 and T5 are shown in Appendix A.1.

3.6.1 Static-Clean Logics

The T13, T9 and T5 logics can be usefully extended by introducing two extra upper

bounds: S, the least upper bound of traces whose values are fixed for all time, and

9As with our other logics, we assume that F ⊆ ⋆ and T ⊆ ⋆ – some ternary logics in the literature
(notably Kleene’s) lack this formal requirement.

CHAPTER 3. TRANSITIONAL LOGICS 56

C, the least upper bound of traces that may transition, but that never glitch. We adopt

the notation Tn to represent a static-clean logic with n values.

Definition 3.6.1. With respect to ℘(Tc), the least upper bounds S, C and ⋆ are as follows:

S
def
= {F0, T0} C

def
= {F0, T0, ↑0, ↓0}

⋆
def
= {F0, F+, T0, T+, ↑0, ↑+, ↓0, ↓+}

The resulting static-clean transitional logics T15
def
= T13 ∪{S, C}, T11

def
= T9 ∪{S, C} and

T7
def
= T5 ∪ {S, C} have applications in the design rule checking of ‘impure’ synchronous

circuits. For example, in order to ensure that the clock input of a D-type flip flop can

never glitch, a signal generated by the circuit S ∧ C = C might be accepted by a model

checker, but C ∧ C = ⋆ would not.

Removing ↑ and ↓ from T7 results in a 5-value static-clean logic T5
def
= {F, T, S, C,⋆}

capable of reasoning about gated clock synchronous circuits; an even simpler (though

less accurate) 3-value static-clean logic T3
def
= {S, C,⋆} results from also removing F and

T.

The truth tables for these logics are shown in Appendix A.2.

3.7 Refinement and Equivalence in Transitional Logics

Hardware engineers are frequently concerned with modification and optimisation of ex-

isting circuits, so it is appropriate to support this by defining equivalence and refinement

with respect to our abstract domains. Refinement relationships between circuits are

analogous to concepts of refinement in process calculi, and may similarly be used to aid

provably correct design. For example, the Boolean equivalence a∧¬a = F is not a strong

equivalence in many of our models, nor is it a weak equivalence – it actually turns out to

be a (left-to-right) refinement, i.e., a∧¬a < F0, reflecting the ‘engineer’s intuition’ that it

is safe to replace a∧¬a with F0, but that the converse could damage the functionality of

the circuit by introducing new glitch states that were not present in the original design.

Such refinement rules are also known as hazard non-increasing transformations in the

asynchronous design literature [82].

Informally, if the deterministic trace u ∈ T refines (i.e., retains the steady state be-

haviour of, but is no more glitchy than) trace t ∈ T, this may be denoted t < u.

Definition 3.7.1. Given a pair of traces t ∈ T and u ∈ T,

t < u
def≡ Val(t) = Val(u) ∧ Subs(t) ≥ Subs(u)

CHAPTER 3. TRANSITIONAL LOGICS 57

For example, F1 < F0, T3 < T2, ↑5 < ↑5, but ↓0 and ↑1 are incomparable. Where t ∈ T

and u ∈ T, if t < u and u < t, it follows that t = u.

Refinement and equivalence for nondeterministic traces is slightly less straightfor-

ward, in that it is necessary to handle cases like ↓1|3|5 < ↓0|2|4. To make these comparable,

we construct convex hulls of the form X0..n enclosing the nondeterministic choices, so the

above case becomes equivalent to ↓0..5 < ↓0..4. In effect, this approach compares worst-

case behaviour, disregarding finer detail; in practice, since ∧, ∆, � and ¬ typically return

results of the general form X0..n anyway, this tends not to cause any practical difficulties.

Less permissive definitions of refinement, e.g., t̂ <strict û ≡ ∀t ∈ t̂ . ∀u ∈ û . t < u,

often disallow too many possible optimisations that in practice are quite acceptable –

our model better reflects the engineer’s intuition that ‘less glitchy is better,’ but that very

detailed information about the structure of possible glitches is generally not important.

Definition 3.7.2. Given t̂ ∈ ℘(T) and û ∈ ℘(T),

t̂ < û
def≡ (∀t ∈ t̂, u ∈ û . Val(t) = Val(u)) ∧ MaxSubs(t̂) ≥ MaxSubs(û)

where MaxSubs(t̂)
def
= maxt∈t̂ Subs(t) is a function returning the largest subscript of a non-

deterministic trace.

3.7.1 Equivalence of Nondeterministic Traces.

Given t̂ ∈ ℘(T) and û ∈ ℘(T), if t̂ = û then the traces are strongly equivalent, i.e.,

they represent exactly the same sets of nondeterministic choices. If the convex hulls

surrounding t̂ and û are identical, as is the case when t̂ < û ∧ û < t̂, the traces may

be said to be weakly equivalent, denoted t̂ ≏ û. Where t̂ < û ∨ û < t̂, the traces are

comparable, denoted t̂ ≎ û.

3.7.2 Finite Abstract Domains

Refinement and equivalence can also be defined for the finite abstract domain T256 and

some of its simplified forms. Since T256 is implicitly nondeterministic, we do not need to

consider the deterministic case.

Definition 3.7.3. Given traces t ∈ T256 and u ∈ T256, the above definitions simplify to

t < u ≡ Val(t) = Val(u) ∧ (Subs(t) = Subs(u) ∨ Subs(u) = 0)

t ≏ u ≡ t < u ∧ u < t ≡ t = u

t ≎ u ≡ t < u ∨ u < t ≡ Val(t) = Val(u)

CHAPTER 3. TRANSITIONAL LOGICS 58

3.8 Algebraic Properties of ℘(T)

In Section 3.7, refinement and equivalence were defined for the hierarchy of transitional

logics. In this section, we extend this by reexamining the familiar logical identities from

classical Boolean logic in order to verify which also apply to ℘(T), and to what extent.

Fig. 3.10 summarises the identites that have been identified for ℘(T).The definitions

for ∧, ¬ and ∨ are taken from Fig 3.5 unless otherwise specified (we omit the ♯ decoration

here for readability).

Boolean Identity ℘(T) Identity

Idempotence a ∧ a = a a ∧ a < a

a ∨ a = a a ∨ a < a

Consistency a ∧ ¬a = F a ∧ ¬a < F0

Law of the Excluded Middle a ∨ ¬a = T a ∨ ¬a < T0

Associativity a ∧ (b ∧ c) = (a ∧ b) ∧ c a ∧ (b ∧ c) = (a ∧ b) ∧ c

a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∨ (b ∨ c) = (a ∨ b) ∨ c

Commutativity a ∧ b = b ∧ a a ∧ b = b ∧ a

a ∨ b = b ∨ a a ∨ b = b ∨ a

de Morgan’s Laws ¬(a ∧ b) = ¬a ∨ ¬b ¬(a ∧ b) = ¬a ∨ ¬b

¬(a ∨ b) = ¬a ∧ ¬b ¬(a ∨ b) = ¬a ∧ ¬b

Distributivity (a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ c) (a ∧ b) ∨ (a ∧ c) < a ∧ (b ∨ c)

(a ∨ b) ∧ (a ∨ c) = a ∨ (b ∧ c) (a ∨ b) ∧ (a ∨ c) < a ∨ (b ∧ c)

Double Negation ¬¬a = a ¬¬a = a

Contrapositive Law ¬a ∨ b = ¬¬b ∨ ¬a ¬a ∨ b = ¬¬b ∨ ¬a

Properties of T a ∨ T = T a ∨ T0 = T0

a ∧ T = a a ∧ T = a

Properties of F a ∧ F = F a ∧ F0 = F0

a ∨ F = a a ∨ F0 = a

Absorption Laws a ∧ (a ∨ b) = a a ∧ (a ∨ b) < a

a ∨ (a ∧ b) = a a ∨ (a ∧ b) < a

Figure 3.10: Identities of Boolean logic and the transitional logic ℘(T)

3.9 Related Work

There seems to be relatively little work reported in the literature regarding the appli-

cation of modern program analysis techniques to hardware. Indeed hardware analyses

CHAPTER 3. TRANSITIONAL LOGICS 59

seem to have been developed the same one-at-a-time manner as software analyses be-

fore the advent of unifying frameworks such as Monotone Data Flow Frameworks [76],

Kildall’s ‘Unified Approach to Global Program Optimization’ [78] and Abstract Interpre-

tation [42] which significantly enhanced the development of software analyses.

3.9.1 Achronous Analyses

The works considered in this section all make the achrony assumption (which we make

in considering signals on wires to be values in ℘(T)) and hence re-appear as instances of

our framework.

Janusz Brzozowski’s algebra of transients [28, 29] has many similarities to our transi-

tional logic ℘(T). Values in the algebra of transients are analogous to convex hulls of the

form X0..n in our notation. Similar correctness results to our own are reported, achieved

instead through different mathematical techniques. Interestingly, some reduced forms of

the algebra of transients turn out to be identical to some of our reduced forms – how-

ever, our logics including ‘definitely dirty’ (X+) values and/or S and C values do not

appear to have equivalent representations, perhaps due to our finer-grained model of

nondeterminism.

David S. Kung defines a hazard-non-increasing gate-level optimisation algorithm [82]

based partly upon a multi-value logic that closely resembles our transitional logic T9,

though his theoretical justification appears to be somewhat inconsistent. His 9 values,

1, 0, ↑, ↓, S0 , S1 ,D+,D− and ∗ are defined equivalently to our T, F, ↑0, ↓0, F+, T+, ↑+, ↓+

and ⋆, though more accurately they should be seen as equivalent to T, F, ↑0, ↓0, F?, T?, ↑?, ↓?

and ⋆. The 9 values are claimed to partition possible waveforms into disjoint equiva-

lence classes10, and a separate < operator is given that defines a Hasse ordering over

the values. Though Kung’s justification appears to have some problems, his results as

regards hazard-non-increasing extensions are likely to be correct as a consequence of the

similarity of his logic to T9.

Don Gaubatz [55] proposes a 4-value ‘quaternary’ logic (see Appendix A.3) that,

extended slightly to allow operators to be represented as total functions, is equivalent to

our T5 (see Appendix A.1).

10Kung’s definition is inconsistent – since the values 1, 0, ↑, ↓,S0 ,S1 ,D+,D− cover all possible wave-
forms, ∗ must be an empty set in order for the logic’s 9 values to be disjoint, though informally it is
stated to mean ‘any value at all’. This problem can be avoided (as in our definition) by abandon-
ing a requirement for disjointness and defining the Hasse ordering in terms of subset inclusion, i.e.,

0 ⊆ S0 ⊆ ∗, 1 ⊆ S1 ⊆ ∗, ↑ ⊆ (D+) ⊆ ∗ and ↓ ⊆ (D−) ⊆ ∗.

CHAPTER 3. TRANSITIONAL LOGICS 60

3.9.2 Non-Achronous Analyses

Paul Cunningham [44] extends Gaubatz’s work in many respects, though his formalism is

based on a conventional 2-value logic with transitions handled explicitly as events rather

than as values in an extended logic.

Jerry R. Burch’s binary chaos delay model [30] underlies a method for verifying speed-

dependent asynchronous circuits. Though aimed at a different design paradigm (we pri-

marily consider speed- and delay-independent circuits), his technique’s adoption of an

underlying dense time model presents an interesting contrast to our approach, particu-

larly in that it allows absolute timing information to be exploited. Burch’s model is more

abstract than our concrete domain ℘(S) and more concrete (as a consequence of taking

into account absolute time) than our most accurate abstract domain ℘(T), though the

approaches are sufficiently different that neither subsumes the other.

3.9.3 Synchronous Analyses

Most existing work in hardware analysis is aimed at synchronous circuits and as-such is

beyond the scope of this chapter, since we mainly consider asynchronous circuits. It is,

however, noteworthy that Charles Hymans [65] uses abstract interpretation to present a

safety property checking technique based upon abstract interpretation of (synchronous)

behavioural VHDL specifications.

Thomas Jensen [71] applied abstract interpretation to the analysis of multiple inde-

pendent synchronous clock domains within the Lustre language [31]. Lustre began as an

academic project in the early 1980s, then in 1993 was commercially adopted by Esterel

Technologies, under the name Esterel [51, 18, 19, 20] as the core of the SCADE (Safety

Critical Application Development Environment) system. Current implementations of Es-

terel support multiple asynchronous clock domains, primarily in support of GALS system

design, though the language’s primary focus remains on synchronous design. Abstract

interpretation has been used extensively to analyse systems implemented in Esterel –

in particular, the flight control system of the A380 Airbus was implemented entirely in

Esterel and verified using the abstract-interpretation-based ASTRÉE static analyser [23].

3.10 Discussion

In this chapter, we have presented a technique based upon the solid foundation of ab-

stract interpretation [42, 43] that allows properties of a wide class of digital circuits to

be reasoned about. We describe what is essentially a first attempt at applying abstract

CHAPTER 3. TRANSITIONAL LOGICS 61

interpretation to asynchronous hardware.

Transitional logics are essentially the result of exploring the limits of achronous anal-

ysis. The ℘(T) abstraction is effectively the most precise achronous analysis possible,

which therefore causes all other achronous analyses to be subsumed. It is also the most

accurate analysis that can be achieved assuming an independent attribute model in re-

lation to time. Therefore, all analyses offering greater accuracy must of-necessity adopt

a relational attribute model. Taken as-is, transitional logics are probably insufficiently

accurate to be directly usable for analysis purposes in an EDA design flow if they are

applied to time windows that encompass many transitions – too many false positives

are likely to be generated. However, when signals are windowed such that most signals

are effectively static or making clean transitions, this greatly increases accuracy, reduc-

ing potential false positives to a minimum. For example, an advanced logic simulator

might model signals as streams of values in ℘(T), which would guarantee that arbitrarily

narrow glitches could not be missed; even though the simulation has finite timing resolu-

tion, the dense continuous time model underlying transitional logics guarantees that any

possible glitches between simulator events will be identified. This idea was examined

further in the author’s 2004 workshop paper [131].

It is possibly the case that transitional logics may be more useful as a mathematical

framework than as a practical analysis. In Chapter 7, transitional logic is used to help

prove that it is impossible for any possible delay-insensitive circuit constructed from

gates to guarantee immunity to single-event transients. Though this result could no-

doubt have been achieved through alternative mathematical means, the correctness and

completeness relationship between ℘(S) and ℘(T), along with some of the algebraic

properties of ℘(T), greatly simplifies the proof.

Identities and refinements in the transitional logic (e.g., those described in Section 3.8)

are extremely strong, because by definition they hold for all possible combinations of de-

lays and all possible signals. For example, the refinement a ∧ a < a states that the

circuit a ∧ a may be replaced with a without introducing extra hazards, but replacing

a with a ∧ a is potentially an unsafe transformation. However, a ∨ (b ∨ c) is provably

safely interchangeable with (a∨ b)∨ c. A gate-level optimiser whose transformations are

proven correct on this basis can be safely applied to a delay insensitive asynchronous

circuit without risk of inadvertent introduction of unwanted hazards. This approach was

introduced by Kung [82], though his formalism is subsumed by ours.

Chapter 4

Bit-Level Partial Evaluation of

Synchronous Circuits

The work described in this chapter

significantly reworks and extends some

ideas from the author’s M.Sc

thesis [129], the majority of which was

undertaken in Cambridge during late

2003 and early 2004. Some extensions

were made whilst at the NASA Ames

Research Center during Summer 2004

in collaboration with Guillaume Brat

and Arnaud Venet.

The work was published in [134].

4.1 Introduction

Partial evaluation [72, 88, 87] is a long-established technique that, when applied to

software, is known to be very powerful; apart from its usefulness in automatically cre-

ating (usually faster) specialised versions of generic programs, its ability to transform

interpreters into compilers is particularly noteworthy.

In this chapter, we present a partial evaluation framework for synchronous digital

circuits that, whilst supporting specialisation, also supports the first Futamura projec-

tion [54]:

PE [[interpreter , program]] = compiler [[program]].

In hardware terms, this is equivalent to taking the circuit for a processor and a program

ROM image, then compiling this into hardware that represents the program only. As

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 63

with software partial evaluation, the processor itself is optimised away, leaving only the

functionality of the program expressed directly in hardware.

Note that in this chapter, we consider only the partial evaluation of purely syn-

chronous circuits, i.e., circuits consisting only of acyclic networks of gates, with feedback

occurring only via D-type latches whose clock inputs are all driven by a single global

clock net. Generalisation to the asynchronous case is discussed briefly in Section 9.2.

4.2 PE of Combinational Circuits

The simplest form of hardware partial evaluation is already well known to hardware

engineers, though under a different name: Boolean optimisation. For example, the com-

binational circuit represented by the expression

a ∧ (b ∨ c)

where a, b and c are inputs, may be specialised for the case where c is known to be true

as follows:

a ∧ (b ∨ true) = a ∧ true = a

Boolean optimisation is well-studied, with many approaches documented in the liter-

ature. Some techniques are sub-optimal but can be applied to any circuit, whereas others

(e.g., OBDDs, flattening to CNF or DNF) can yield optimal results1 but suffer exponential

size blowup when confronted with some circuits, particularly multipliers. Any of these

techniques are potentially capable of PE of combinational circuits, though for clarity and

generality, we have opted for a simple approach based upon term rewriting. Table 4.1

shows a simple set of rewrite rules that are sufficient to implement (sub-optimal) combi-

national PE in time and space that is linear with respect to the original circuit.

The software analogue of a combinational circuit, from the point of view of PE, would

be a program consisting only of assignment statements, if-then and if-then-else constructs,

but strictly no loops.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 64

a ∧ a → a a ∨ a → a

a ∧ false → false a ∧ true → a

a ∨ false → a a ∨ true → true

¬false → true ¬true → false

Table 4.1: Rewrite rules for combinational PE

input

State f g output

CLK

Figure 4.1: General form of synchronous circuits

4.3 PE of Synchronous Circuits

A slight variation2 on the general form of any synchronous circuit, generally referred to

as a Mealy machine [94], is shown in Fig. 4.1. In software terms, such circuits resemble

a program of the form

while true

statek+1 := f(statek, input)

output := g(statek+1, input)

endwhile

Each iteration of the loop represents exactly one clock cycle. The internal state of the

circuit, represented by statek, may change only once per clock cycle and is determined

only by the result of the combinational Boolean function f : (B × · · · × B) × (B × · · · ×
B) → (B × · · · × B); the subscript k has no effect on execution, and is purely a naming

convention that is convenient when describing unrolling. The input is assumed to change

synchronously just after the clock, and the output is determined by the combinational

Boolean function g : (B× · · · ×B)× (B× · · · ×B) → (B× · · · ×B). Note that the internal

state of the circuit, represented by state, is observable only through g.

1In hardware terms, ‘optimal’ is not easily defined. In some cases, circuits are optimised for minimum
gate count, though more commonly they are optimised for speed or power consumption – only rarely will
a circuit be optimal with respect to more than one of these considerations.

2Conventionally, f would be drawn on the left of the state flip-flops. The (equivalent) form used within
this chapter allows unrolling to be described more conveniently, however.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 65

output1

output2State f gf

g

input2

input1

CLK

Figure 4.2: Synchronous circuit after one unrolling

Partial evaluation of this kind of circuit typically requires specialisation of f and g, but

may also involve either partly or completely unrolling the while loop. State minimisation

is not performed3. A single unrolling yields the program

while true

statek+1 := f(statek, input1)

output1 := g(statek+1, input1)

statek+2 := f(statek+1, input2)

output2 := g(statek+2, input2)

endwhile

which can be equivalently expressed as

while true

statek+2 := f(f(statek, input1), input2)

output1 := g(f(statek, input1), input1)

output2 := g(f(f(statek, input1), input2), input2)

endwhile

corresponding to the circuit shown in Fig. 4.2. After unrolling, since statek+1 is not

externally observable, it need not be explicitly computed. In one clock cycle, this new

circuit performs the same computations that the original circuit performed in two cycles,

though possibly with a slower maximum clock rate due to longer worst-case paths.

In the general case, since the input i and output j may change at every cycle, they may

need to be separately accessible in the unrolled circuit. Often, though, input may be

known to remain unchanged for many iterations, or for all time. It is common, also, for

3In synchronous circuits, state minimisation is often undesirable – though it reduces flip flop count, the
extra state decoding logic required often adversely affects maximum clock rates. As an extreme example,
the performance advantages of a carefully designed one-hot encoded state machine might be lost entirely
if state minimisation was to be näıvely attempted.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 66

outputState f gf

CLK

input

. . .

Figure 4.3: Synchronous circuit after n unrollings

outputs other than those resulting from the final state to be unimportant; in combination,

this allows loop unrolling to generate much more efficient hardware.

In the rest of this chapter, we make the assumption that input may change only syn-

chronously with the clock of the unrolled hardware, and that output reflects the final

state of the unrolled loop body at the end of each clock cycle.

4.3.1 Multiple Unrollings

Loops may be unrolled an arbitrary number of times by the following method:

while true

statek+1 := f(statek, input)

statek+2 := f(statek+1, input)

. . .

statek+n := f(statek+n−1, input)

output := g(statek+n, input)

endwhile

or, equivalently:

while true

statek+n := f(f(. . . f(statek, input), . . . input)

output := g(statek+n, input)

endwhile

Since the repetition of input gives potential for common subexpression elimination, and g

needs to be evaluated exactly once regardless of the number of unrollings (see Fig. 4.3),

the gate count of any resulting circuit is typically (and often substantially) less than

n × |f | + |g|, where |f | is the gate count of the original f , |g| is the gate count of the

original g, and n is the number of unrollings. In some cases, the final gate count may

even be less than |f | + |g| (see Section 4.4).

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 67

4.3.2 Reset Logic

Most synchronous circuits require some form of reset capability, corresponding to the

following program:

state0 := initialstate

while true

statek+1 := f(statek, input)

output := g(statek+1, input)

endwhile

In pure-synchronous hardware terms, since state may only change at a clock edge,

it is not possible to have code execute outside the loop, so practical implementations

usually resemble the following:

while true

if reset = true

statek := initialstate

endif

statek+1 := f(statek, input)

output := g(statek+1, input)

endwhile

Here, reset is a special synchronous input that causes statek to be reset to initialstate if

it is held true for one or more cycles. Note that, in this form, the circuit is just a special

case of the general definition given in the introduction to Section 4.3.

4.3.3 Full Unrolling

Where repeated application of f reaches a fixed point, i.e., where

state0 = initialstate

statek+1 = f(statek, input)

and there exists an n such that for all values of input , staten+1 = staten, it is possible to

fully unroll (and therefore eliminate) the while loop:

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 68

outputf gf

input

finitial
state

. . .

Figure 4.4: Synchronous circuit after full unrolling

state0 := initialstate

state1 := f(state0, input)

state2 := f(state1, input)

. . .

staten := f(staten−1, input)

output := g(staten, input)

Any resulting circuit will be purely combinational (see Fig. 4.4); all D-type flip flops will

have been eliminated.

4.4 The HarPE Language

HarPE (pronounced ‘harpie’) is a simple hardware description language created specif-

ically to aid experimentation in partial evaluation [127]. As is becoming increasingly

common [22], HarPE is an embedded language, existing within a larger, more sophisti-

cated general purpose programming language, in this case C++.

The HarPE language currently exists as an ISO C++ template library, taking ad-

vantage of template metaprogramming techniques [140, 141]. Compiling and then ex-

ecuting a C++ source file incorporating HarPE code causes a hardware netlist to be

generated. The current compiler generates gate-level Verilog for further processing by a

conventional tool chain.

4.4.1 Semantics

HarPE source code has a standard, imperative semantics, with the characteristic that a

whole program defines exactly one machine cycle. An implicit outer while loop, executing

once per clock cycle, is assumed, where one execution of the loop body corresponds to

exactly one clock cycle. Partial evaluation is carried out aggressively as compilation

proceeds. As a simple example, the following program

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 69

Bit reset(“reset”);

IntReg〈8〉 a;

a = a + 1;

If(reset);

a = 0;

EndIf();

Output(“a”, a);

implements an 8-bit up counter with a synchronous reset input. The generated circuit

outputs one count per clock cycle; though the source code has an imperative semantics,

sequential composition does not mean that one or more clock cycles must take place –

rather, in all cases, sequential composition requires exactly zero clock cycles.

4.4.2 Types

4.4.2.1 Bit

The fundamental type within HarPE is Bit, representing a single bit. Declarations follow

C++ syntax:

Bit a, b;

C++ operator overloading [122] is used to implement the logical operators representing

and, or and not:

Bit a, b, c, d, e;

c = a & !b;

d = b | c;

e = a | d;

By default, Bit variables are initialised to false, so

Bit a;

Output(“a”, a);

will result in an output, labelled “a”, that is connected directly to false (ground).

4.4.2.2 BitReg

D-type flip flops are represented by the BitReg type. BitReg behaves almost identically

to Bit, with the exception that variables are initialised to reference a D-type flip flop.

Any modifications to the value of a BitReg variable are incorporated into the feedback

loop of the flip flop.

The circuit shown in Fig. 4.5 results from the following code:

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 70

D Q

D-Type
Flip Flop

CLK

output

Figure 4.5: A 1-bit ‘counter’

BitReg a;

a = !a;

4.4.2.3 Int〈n〉

A variable of type Int〈n〉 represents a n-bit wide unsigned integer, implemented as an

array of Bits, with operator overloads supporting the usual arithmetic operators. Since

Bit’s functionality is inherited, Ints are initialised to 0.

A number of alternative constructors are supported, including numeric constants,

though they must be explicitly introduced (see the example in Section 4.4.1). For exam-

ple, the following code generates an 8-bit multiplier:

Int〈8〉 a, b, c;

c = a ∗ b;

Individual bits within an Int may be addressed through the standard C++ array

notation:

Int〈8〉 a;

Bit b;

b = a[3];

a[4] = a[1];

If the subscript is a compile-time constant, HarPE simply provides access to the relevant

underlying Bit. Where the subscript is itself an Int-valued expression, HarPE generates

an appropriate multiplexer circuit.

4.4.2.4 IntReg〈n〉

IntReg is to Int what BitReg is to Bit; it allows multi-bit registers (normally represent-

ing unsigned integers) to be defined straightforwardly. As with Int, overloaded numeric

operators support the usual arithmetic functions.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 71

4.4.3 External Inputs

Inputs are introduced by passing a string parameter representing the input name to the

constructor of Bit or Int:

Bit x(“x”), y(“y”), z;

z = x | y;

In this example, z represents the output of an or gate whose inputs are the external

inputs “x” and “y”. 4

Similar functionality is provided by Int:

Int〈8〉 a(“a”), b(“b”), c;

c = a + b;

In this case, a pair of 8-bit input ports (named a[0..7] and b[0..7] in the netlist) are de-

clared, with c representing the output of an 8-bit adder whose inputs are a and b.

4.4.4 Outputs

All outputs must be declared through the overloaded function Output(“name”, expression),

which can accept variables or expressions of type Bit, BitReg, Int or IntReg:

Bit x(“x”), y(“y”), z;

Int〈8〉 a(“a”), b(“b”), c;

z = x | y;

c = a + b;

Output(“z”, z);

Output(“c”, c);

Output(“q”, x & y);

4.4.5 Compilation of Control Flow Constructs

The HarPE compiler flattens all control flow, so programs that do not require D-type flip

flops (i.e., those programs that do not use variables of type BitReg or IntReg) always

generate purely combinational hardware – such programs, in effect, execute in exactly

zero clock cycles. When D-type flip flops are used, HarPE programs define what happens

during exactly one clock cycle of the generated hardware. In this section, we describe

how this is achieved.

4Note the distinction between variable names and input labels – though it is common for these to be
named identically, they exist in separate name spaces so there is no formal requirement for this. The
declaration Bitfoo(“bar”) introduces an input labelled “bar” in the netlist which is named “foo” in the
source code.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 72

4.4.5.1 Guarded Assignment

During compilation, HarPE maintains at all times a guard expression, Γ, that represents

whether or not assignment statements should take place. At the start of compilation,

Γ = true, so all assignments take place. Control flow statements ‘and’ extra terms into

Γ. The HarPE compiler maintains a guard stack, allowing block structured code with

arbitrary nesting depth to be handled.

All assignment statements in HarPE, e.g.

var = newvalue;

are transformed internally to the following form:

var ′ =







var iff Γ = false,

newvalue iff Γ = true

All subsequent references to var in the program are renamed to var ′. At bit level, this is

equivalent to a simple multiplexer:

var ′ = (Γ ∧ newvalue) ∨ (¬Γ ∧ var).

Where Γ = true, this simplifies to var ′ = newvalue. If Γ = false, the assignment simplifies

to var ′ = var , i.e., the assignment has no effect. As a consequence, multiplexers are only

generated when they are actually necessary.

Guarded assignment has close parallels with existing work on static single assignment

(SSA) form [45], though since control flow is fully incorporated into assignments, there

is no equivalent of SSA’s Φ-functions (control flow merge points).

4.4.5.2 If..Else..EndIf

The If..Else..EndIf control structure introduces the result of a conditional expression to

the guard of all statements within its scope, e.g.,

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 73

[[Γ]]

If(cond1);

[[Γ ∧ cond1]]

If(cond2);

[[Γ ∧ cond1 ∧ cond2]]

Else();

[[Γ ∧ cond1 ∧ ¬cond2]]

EndIf();

[[Γ ∧ cond1]]

EndIf();

[[Γ]]

Note that, following the usual convention, the Else clause may be omitted.

In the following example, an If construct implements a reset circuit for a 3 element

‘one hot’ encoded shift register:

BitReg a1, a2, a3;

Bit rst(“rst”), x;

If(rst);

a1 = 1;

a2 = a3 = 0;

EndIf();

x = a3; a3 = a2; a2 = a1; a1 = x;

HarPE flattens this into the equivalent of the following:

BitReg a1, a2, a3;

Bit rst(“rst”), x;

a1 = (rst & 1) | (¬rst & a1);

a2 = (rst & 0) | (¬rst & a2);

a3 = (rst & 0) | (¬rst & a3);

x = a3; a3 = a2; a2 = a1; a1 = x;

4.4.5.3 While..EndWhile

The HarPE While..EndWhile construct provides support for loop unrolling where the

number of times the loop should execute may only be determined at run time, though a

constant upper bound is necessary in order for compilation to terminate. The unrolling

algorithm proceeds by rewriting the While statement, unrolling the loop body one itera-

tion at a time (see Section 2.2.2.1), until the conditional can be determined to be false.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 74

Note that this requires all While loops to have upper bounds that can be determined at

compile time in order for the algorithm to terminate.

The code sequence

Int〈3〉 a(1), b(0), c(“stop”);

While(b < 3 & !c[b]);

a = a ∗ a

b = b + 1

EndWhile();

loops through the bits of c, squaring the value of a each time as a side-effect, stopping

either when the relevant bit of c is true or when the upper bound, 3, is reached. HarPE

unrolls the loop equivalently to the following series of nested If statements:

Int〈3〉 a(1), b(0), c(“stop”);

If(b < 3 & !c[b]);

a = a ∗ a

b = b + 1

If(b < 3 & !c[b]);

a = a ∗ a

b = b + 1

If(b < 3 & !c[b]);

a = a ∗ a

b = b + 1

EndIf();

EndIf();

EndIf();

Unrolling terminates when the condition of the While..EndWhile loop can be determined

to be false by combinational rewriting.

4.5 HarPE Internals

HarPE exists as a single C++ header file (harpe.h) that implements an embedded lan-

guage within C++. It consists of a number of class definitions and inline functions that,

together, allow compilable C++ code to express hardware constructs directly. When this

code is compiled, HarPE template definitions and inline functions are expanded (by any

ISO C++ compiler) into code that generates and manipulates a directed graph repre-

sentation of the target circuit. Finally, one of several ‘code generators,’ may be called

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 75

that traverse the directed graph either to generate Verilog or SAT problems in a variety

of formats.

4.5.1 Syntactic Sugar

The HarPE language, as described in Section 4.4, is a thin layer of syntactic sugar over

the internals of the library. All of the user-accessible classes and functions are on the most

part wrappers that provide a syntactically pleasing interface to the underlying function-

ality.

For example, the Bit class’s implementation of the logical AND operator (actually an

inline function) is as follows:

inline Bit operator&(Bit a, Bit b)

{

return hwGate::And(a, b);

}

The Bit class’s overloaded & operator causes an AND gate (or equivalent thereof) to be

generated, without requiring the user to become involved with the internal implementa-

tion details of the library.

Most of HarPE’s actual functionality is implemented in or around the hwGate class,

which has an interface that is oriented towards efficiency rather than syntactic elegance,

so is not well suited to being used directly. The various wrappers implement a friendly

interface to hwGate – by keeping the syntactic sugar separate from the internals, the task

of achieving a simple, intuitive syntax need not get in the way of internal sophistication,

or vice-versa.

4.5.2 The hwGate Class

HarPE represents target circuits as directed graphs, and it is the hwGate class that has

this responsibility in the code. A single hwGate object (instance of the hwGate C++

class) represents exactly one of the following circuit elements:

1. 2-input AND gate.

2. 2-input OR gate.

3. NOT gate.

4. D-type flip-flop.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 76

5. Connection to power (logic true).

6. Connection to ground (logic false).

7. Connection to a named external input.

If higher-level code wishes to create an instance of a hwGate, this is never carried

out by simply allocating a new instance of the relevant object. Rather, the existing di-

rected graph is searched in order to find an equivalent, already-extant gate, or a signal

that is known to be identical. A ‘constructor function’ is called5 given the inputs of the

gate, if any, and the function returns a pointer to a (possibly pre-existing) hwGate object

that implements the necessary functionality. Wherever possible, needless duplication is

avoided, so the directed graph grows as slowly as possible – this significantly reduces

HarPE’s memory footprint in comparison with approaches that implement optimisation

as a separate pass.

For example, the HarPE code:

Bit a("apple"), b("banana"), c, d;

c = a & b;

d = a & b;

proceeds by first allocating Bit wrappers a, b, c and d, which are initialised such that a

and b point respectively to hwGate objects representing external inputs apple and banana,

and c and d point initially to a single global connection to ground. The assignment c = a

& b calls hwGate::And(), which (assuming a previously empty circuit) will cause a single

AND gate to be added to the directed graph, whose inputs are connected to the hwGate

objects representing the external inputs. Note that hwGate objects only ever point to

other hwGate objects, and never to wrapper objects like Bit or BitReg. When the second

assignment, d = a & b, is compiled, the hwGate::And() constructor first checks the di-

rected graph, and on finding a previously generated AND gate with the necessary inputs,

simply returns a pointer to the original AND object. Where possible, the optimisations

try to arrange that separate Boolean subexpressions with identical values are represented

by the same nodes in the directed graph. It is therefore possible, when performing opti-

misations, to compare passed-in pointer addresses – if the addresses are the same, then

it is guaranteed that both inputs represent the same value. If the addresses are differ-

ent, the values are assumed also to be different. Of course, since HarPE’s optimisation

5Not actually a C++ constructor in the usual sense of the word, rather a static function that implements
the necessary optimisations.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 77

is suboptimal6 it may miss some cases, resulting in multiple nodes reprenting identical

subexpressions. Nevertheless, this approach is safe – equality is only assumed in cases

where it is definitely known, and cases missed by the optimiser result only in a larger

gate count, never incorrect functionality.

Simple Boolean optimisations are carried out by the hwGate constructors directly. The

code:

Bit a("apple"), b;

b = a & !a;

will first cause a NOT gate to be generated, whose input is connected to apple. When the

wrapper requests hwGate to generate an AND gate, the optimisation notices the Boolean

identity and returns instead a pointer to the single global-scope hwGate object that rep-

resents a connection to ground.

4.5.3 Assignment and If() . . . EndIf()

In the examples of the previous section, assignment was used without further explana-

tion. In those simple cases, intuitive assumptions about assignment hold. However, the

actual mechanism used to implement assignment statements in HarPE is complicated by

the need to implement guarded assignments, as described in Section 4.4.5.1.

HarPE implements a guard stack (see Section 4.4.5.1). The If() function pushes a

new guard onto the stack, and EndIf() pops the top value off the stack. Guards are

hierarchical – an empty guard stack implies a current guard value of true. Calling If()

with a conditional expression places that expression on the guard stack, and the current

guard then becomes the value on the top of the stack. Further calls to If() conjoin

further expressions to the current guard.

The following (simplified) code fragment illustrates HarPE’s assignment implementa-

tion quite succinctly:

Bit operator=(const Bit &b)

{

g = hwGate::Or(hwGate::And(grd, b.g),

hwGate::And(hwGate::Not(grd), g));

6This was a deliberate design decision – optimal optimisation strategies all tend to have space or time
(or both) blow-up problems with important classes of circuit, particularly multipliers. HarPE’s optimisa-
tions tend towards time roughly linear in the size of the original circuit and space normally smaller than
the original circuit.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 78

return *this;

}

Note that g is the member variable of Bit that represents the value (signal) that the

wrapper currently refers to, and grd is the current guard. In effect, this code generates a

2-input multiplexer, whereby the new value for g is defined such that when grd is false,

the previous value is retained, and when g is true, the new value b is taken instead. The

optimisations built into hwGate::Or(), hwGate::And() and hwGate::Not() guarantee

that actual hardware is only ever generated when it is really necessary7.

4.5.4 Loop Unrolling with While() . . . EndWhile()

The While() . . . EndWhile() construct is implemented in HarPE using the following C-

style macro expansion:

#define While(X) _BeginWhile(); while((X).mayBeTrue()) { _If(X);

#define EndWhile(X) _EndIf(); } _EndWhile();

The effect of this code is not immediately obvious from the macro definitions, but it

can be illustrated by working through the expansion of a small example:

While(a);

b = c & d;

EndWhile();

Manually applying the macro expansions and reformatting for readability gives:

_BeginWhile();

while(a.mayBeTrue())

{

_If(a);

b = c & d;

_EndIf();

}

_EndWhile();

The BeginWhile() and EndWhile() functions perform internal housekeeping and won’t

be described further. The If() and EndIf() functions are slight variations on the

usual If() and EndIf() that implement the necessary nesting of guards as the loop is

unrolled8. The tt Bit::mayBeTrue() helper function returns false if the underlying hwGate

7The actual implementation of the Bit::operator=() function performs much more optimisation than
this, for obvious reasons, though this has been omitted here for clarity.

8Note that this example code is not likely to be compilable, since a is not altered within the body of the
loop. Since loops are unrolled fully, unless a was initially false, HarPE would fail to terminate in this case.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 79

is a connection to ground (logical false), and returns true in all other cases – the C++

while() loop therefore proceeds until the conditional becomes ‘definitely false.’

Note that, in many cases, it is also possible to use the standard C++ conditional

and looping facilities in HarPE code, though it is necessary to bear in mind that these

constructs do not affect the guard stack and therefore they should be used with caution.

4.5.5 Handling D-type Flip-Flops

D-type flip flops are supported by the BitReg wrapper class and by the underlying hwGate

functionality. A Bit wrapper is initialised to point to logic false, and takes on new values

when its value is reassigned. The BitReg wrapper is extremely similar, except that it

allocates a special hwGate object representing a D-type flip flop. Initially, the flip flop has

no input, and its output is the wrapper variable’s initial value. Reassignment of the tt

BitReg wrapper is handled in exactly the same way as reassignment of an ordinary Bit

variable – in fact, in the current implementation, this is carried out by the same code in

both cases. Eventually9, the final value of the BitReg variable is connected back to the

flip flop’s input.

4.5.6 Bit Vectors and Integers

The HarPE library provides several classes that encapsulate multiple Bit or BitReg vari-

ables in larger structures. The Int and IntReg classes are built on top of Bit and BitReg

respectively, and may be used either as a vector of bits or as a two’s compliment integer.

Width is specified by a template parameter, and has no inherent granularity – it is equally

acceptable to specify a 37-bit register as it is a 16-bit register, for example.

The code:

Int<9> a("apples"), b(23), c;

c = a + b;

declares a to be a 9-bit input, whose individual wires are named apples 0 . . . apples 8.

The 9-bit variable b is initialised to 23 decimal, and c is initialised by default to 0 (i.e.,

all bits false). The reassignment c = a + b generates a bit-level adder as expected. The

optimisations inherent in the underlying hwGate implementation offer a significant gate

count reduction over an unspecialised adder of similar width – see Section 4.6.2.1 for a

relevant worked example.

9i.e., after compilation has completed, but before code generation.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 80

The C++ [] operator, normally used for array referencing, is overloaded in the wrap-

per class in such a way that the usual C++ array notation may be used to access indi-

vidual bits. When the array index is determined by the C++ compiler to be a constant,

no specialised hardware is generated, and the statement resolves to a reference to the

underlying Bit or BitReg object as necessary. If the index is itself an Int or IntReg, a

multiplexer is generated automatically. Note that multiplexers tend to optimise very well

when partial information about the index is known. For example,

Int<16> x("databus");

Int<4> addr("addr");

Bit p;

p = x[addr & 0x07];

will generate an 8-way multiplexer, rather than a 16-way as might be expected. This

optimisation results from the usual PE collapse due to partially known values, rather

than from any explicitly coded optimisation in HarPE itself.

4.5.7 Generating Gate-Level Verilog

Once a directed graph structure has been created, generating gate-level Verilog is very

straightforward. The Output() function adds a specified named output to a list, and

would normally be called multiple times in order to expose all of a circuit’s outputs.

Verilog generation proceeds by a simple recursive tree walking algorithm, seeded from

each output node in turn:

1. If the current node has already been emitted, emit a reference to the existing wire

and then return immediately.

2. If the current node is an AND, OR, NOT or D-type, recursively emit code for its

inputs first before proceeding.

3. Emit a new wire declaration. Depending on the current node:

(a) If the node is an AND, OR or NOT object, emit an assign statement that

implements the necessary gate.

(b) If the node is a power or ground object, emit an assign statement that fixes

the wire’s value to 1’b1 or 1’b0 respectively. Note that at most one definition

for power and one definition for ground will ever be emitted.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 81

(c) If the node is a D-type flip flop, emit a reg declaration and a suitable always

@ (posedge CLK) block. The code is emitted such that on each clock, the new

value of the register is set to the value of the wire representing the input of

the D-type flip flop in the directed graph, and its output is wrapped back as

described in Section 4.5.5.

(d) If the node is an external input, emit a suitable input statement.

The generated Verilog is purely bit level. For this reason, HarPE should not be thought

of as targeting RTL in the normally accepted sense of the term, though its output (always

in the form of a single Verilog module) can be integrated with higher-level human-written

Verilog and passed to a conventional tool chain for further optimisation and synthesis.

4.5.8 SAT solver interface

The SAT solver interface in HarPE is currently somewhat experimental, though it already

provides facilities for extracting SAT problems in a number of formats. HarPE can (with

a compile-time #define statement) be constrained to build its internal directed graph in

CNF or NNF – in both cases, this is achieved by selectively enabling extra ‘optimisation’

rewrite rules that have the effect of flattening the circuit. Alternative code generators are

included that can generate output for ZCHAFF or in the form of Standard ML source code.

A more fully developed interface to our own NNF-WALKSAT solver is included that calls

the solver library directly as the graph is walked, thereby removing the need to generate

a description of the SAT problem in textual format and then have the solver’s front end

parse it.

The NNF-WALKSAT interface can optionally either expand or retain sharing. Earlier

versions of the solver required that input must be structured as a tree, though it later be-

came apparent that the same algorithm (with minor modifications) would also work on a

directed graph. In one test case, a complete definition of the MD5 hashing algorithm was

implemented in HarPE – without sharing, it was not feasible to apply NNF-WALKSAT as

a consequence of the exponential blow-up that undoing MD5’s particularly pathological

sharing would require. However, with sharing enabled, it was possible to rapidly gener-

ate a usable SAT problem, without any requirement to introduce temporary variables.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 82

Figure 4.6: Altera EPXA1 development board

4.6 Experimental Results

4.6.1 Test Environment and Experimental Procedures

For all of these experiments, code was compiled by HarPE, generating gate-level Ver-

ilog, which was then passed to Altera’s Quartus II tool chain [8]. Each resulting circuit

was compiled for an Altera Excalibur EPXA1F484C1 FPGA [7], then examined using the

simulation tools within Quartus. Selected designs were uploaded to an Altera EPXA1

development board (see Fig. 4.6), though as this has a fixed 25MHz clock, timing infor-

mation quoted below was calculated by post-layout timing simulation by the tool chain

for designs that required a substantially different rate. The pure-combinational circuits

were not characterised for timing.

4.6.1.1 Empty Circuit

To ensure that the gate count and other similar statistics were not skewed by something

similar to the overhead of library code familiar in the software world, the following code

Int〈7〉 c(0);

Output(“R1”, c);

was compiled and passed through the Quartus II tool chain. The test confirmed that, as

expected, zero gates and zero flip flops were emitted by HarPE, resulting in a test FPGA

which used zero logic elements (LEs).

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 83

4.6.2 Combinational PE

4.6.2.1 Specialising an Adder

The (unspecialised) program

Int〈7〉 a(“a”), b(“b”);

Int〈7〉 c;

c = a + b;

Output(“R1”, c);

causes HarPE to emit 91 gates. Specialising b to the numeric value 1, e.g.,

Int〈7〉 a(“a”), b(1);

reduces the gate count to 36. In a cases where both a and b are specialised, e.g.,

Int〈7〉 a(25), b(9);

exactly zero gates are generated. Note that, as in all of these tests, HarPE performs this

partial evaluation only at bit level – it has no higher level rules dealing with integers or

any other more complex data types.

Tying both inputs of the adder together:

c = a + a;

also results in a zero gate count, generating only wiring that performs a ‘shift left’ op-

eration. Again, this results directly from bit level PE without higher level rules being

necessary.

4.6.2.2 Specialising a Multiplier

Replacing c = a + b in the test case shown in Section 4.6.2.1 with

c = a ∗ b;

generates a 7bit × 7bit multiplier, emitting 443 gates. Specialising b to take the value 5

reduces this to just 58 gates.

The code

c = a ∗ a;

generates a ‘squarer’ by tying the multiplier’s inputs together. In this case the result-

ing gate count is 432, somewhat improved on the unspecialised version, though not so

spectacularly as for addition.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 84

Loops per Cycle Gatesa DFFsb LEsc Max Clkd

1 35 7 16 257MHz

2 69 7 13 257MHz

3 103 7 22 183.35Mhz

50 1701 7 18 257Mhz

aTotal count of AND, OR and NOT gates emitted by HarPE
bD-type Flip Flop
cFPGA Logic Elements, each of which typically comprises a small lookup table capable of

implementing an arbitrary Boolean expression with a (small) fixed number of inpute, and
one or more flip flops

dMaximum Clock Rate

Table 4.2: Loop unrolling a 7-bit up counter

4.6.3 Synchronous PE

4.6.3.1 Loop Unrolling of a Simple Counter

A simple, 7-bit up counter may be implemented as follows10:

IntReg〈7〉 reg;

reg = reg + 1;

Output(“out”, reg);

This circuit is particularly amenable to loop unrolling – see Table 4.2 for timing and

gate count results. The disparity between the number of gates emitted by HarPE and

the number of LEs generated by the Quartus II tool chain is indicative that the latter’s

more sophisticated combinational optimisation is successfully collapsing multiple incre-

ments into a single constant addition. Since HarPE emits purely bit-level Verilog, this

optimisation must again be entirely bit-level in nature.

4.6.3.2 Loop Unrolling a Fibonacci Series Counter

The code

10Note that there is an implicit outer while loop – see also Section 4.4.1.

Loops per Cycle Gatesa DFFsb LEsc Max Clkd

1 107 14 38 163.03MHz

2 191 14 51 120.5MHz

3 275 14 52 96.83MHz

5 443 14 83 73.16MHz

Table 4.3: Loop unrolling a Fibonacci counter

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 85

Gates DFFs LEs Max Clk Run Time

Unmodified, 2 cycles per instruction 2029 75 646 27.48MHz 5.6µS (at 25MHz)

Merged fetch/execute, 1 instruction per cycle 1810 67 588 28.3MHz 2.8µS (at 25MHz)

2 × unrolled, 2 instructions per cycle 3883 67 1426 16.05MHz 2.37µS (at 15MHz)

4 × unrolled, 4 instructions per cycle 8029 67 2776 8.72MHz 2.1µS (at 8.33MHz)

Fully unrolled, 1 loop iteration per cycle 107 14 36 153.92MHz 70nS (at 150MHz)

Table 4.4: Experimental results for partial evaluation of a small processor

IntReg〈7〉 a, b;

Int〈7〉 temp;

Bit reset(“rst”);

If(reset);

a = 1;

b = 0;

EndIf();

temp = a + b;

b = a;

a = temp;

Output(“out”, a);

implements a specialised counter that outputs the Fibonacci series (1, 2, 3, 5, 8, 13, 21, 34, . . .).

These test cases, and those of Section 4.6.3.3, are loosely based on an example due to

Page & Luk [106]. Test results are shown in Table 4.3. This time, maximum clock rate

falls off as the number of unrollings increases – this is an expected (if not entirely wel-

come) feature of PE, and is caused by increasing propagation delays due to longer, more

complex data paths.

4.6.3.3 Partial Evaluation of a Small Processor

Loosely following [106] we define a small, 7-bit microprocessor with one 7-bit general

purpose register, 8 bytes of RAM and 8 bytes of ROM. Both the RAM and ROM are

mapped into a single 16 byte address space, with address 0..7 being RAM and 8..15

being ROM. The contents of address 13 (labelled R1 in the assembler source below) are

externally visible as a 7 bit output port for simulation and verification purposes.

Instructions are all single byte, with the 3 most significant bits representing an opcode

and the 4 least significant bits representing a single operand. The supported instruction

set is shown in Table 4.5.

In all tests shown here, the ROM contains the following program:

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 86

R1 = 13

R2 = 14

X = 15

start : LDA R2

ADDA R1

STA X

LDA R2

STA R1

LDA X

STA R2

JMP start

A hardware reset circuit preinitialises R2 with the value 1. All other locations are

initialised to 0. Since the program loops forever unless externally terminated, run times

were measured by layout aware timing simulation in Quartus II, measuring from the

falling edge of the reset pulse to the time that R1 reaches the arbitrarily chosen value 34

decimal (0100010 binary).

The basic processor was implemented in HarPE and instrumented to allow various

levels of loop unrolling to be applied. Test results are shown in Table 4.4. Without un-

rolling, the processor requires 2029 gates (646 LEs), and executes one instruction every

2 clock cycles due to an explicit two phase fetch/execute cycle. Flattening this to one

cycle, somewhat surprisingly, reduces the gate count and maintains a roughly similar

maximum clock rate, halving the run time of the program11. Further unrolling generated

versions of the processor that executed 2 and 4 instructions per clock cycle – simula-

tion showed that these versions worked correctly, but increasing worst case propagation

11Though the reason for this reduction is unclear, it seems likely to be an artefact of our very simple
fetch/execute implementation and is unlikely to be exhibited when specialising more complex processors.

Opcode Mnemonic Description

000 SKIP Do nothing

001 LDC acc := operand

010 LDA acc := mem[operand]

011 STA mem[operand] := acc

100 ADDA acc := acc + mem[operand]

101 JMP ip := operand

110 STOP Halt

Table 4.5: Instruction set

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 87

delays appeared to restrict the practical speedups that could be achieved.

Fully unrolling the loop so that the entire loop executes one iteration per clock cy-

cle causes a dramatic reduction in gate count along with a large increase in speed.

The resulting circuit compares well with the simple Fibonacci counter described in Sec-

tion 4.6.3.2 – partial evaluation apparently optimises away the processor, leaving behind

only the hardware necessary to implement the ROM program.

4.6.4 Computational Cost

In all examples described in this chapter, partial evaluation run times were insignificant

in comparison with the run time of the FPGA tool chain, under 10 seconds running on

a 1GHz Pentium III under Linux. In general, when combinational PE is implemented by

the term rewriting rules described in Table 4.1, complexity is approximately O(M × N),

where M is the size of the original circuit and N is the number of loop unrollings carried

out.

4.7 Related Work

The author’s 1991 M.Sc thesis [129] described a hardware compiler based upon partial

evaluation, that compiled a dialect of C to a gate-level netlist – this chapter significantly

extends that work and places it in a modern context. In other work [136], HarPE has

been used to flatten circuits (in this case, small areas of an FPGA) to a combinational

form suitable for analysis by a SAT solver (see also Chapter 5 and Section 4.5.8).

4.7.1 Dynamic Synthesis of Correct Hardware

The Dynamic Synthesis of Correct Hardware project [92, 91] at the University of Glasgow,

which ran from May 1997 to May 1999, reported encouraging results from bit-level

combinational PE, though did not address loop unrolling. Generic circuits were compiled

to layouts for Xilinx XC6200 FPGAs, then specialised at the level of the layout, rather than

at the level of the specification as implemented HarPE and by typical software partial

evaluators. Significant speedups were achieved, though the reported results are perhaps

most notable for the relatively lightweight and fast partial evaluator, which generated

chip layouts directly via the Xilinx jBits interface without any requirement for a back-

end tool chain. Layout-specific PE does not lend itself easily to loop unrolling, however,

and this was not attempted.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 88

4.7.2 SystemC

SystemC [4, 105] is a sophisticated C++ class library that was initially aimed at high-

level hardware modeling, but over time has grown to encompass the entire hardware

concept-to-implementation lifecycle. The Open SystemC Initiative (OSCI) reference im-

plementation is a freely downloadable implementation of the SystemC standard. As in

the HarPE library, C++ operator overloading is used extensively in order to allow Sys-

temC to function as an embedded language. The reference implementation is essentially

a hardware simulator – it does not perform synthesis. Like HarPE, the SystemC standard

specifies a shell, providing an outer, user-level interface, and a kernel, housing the in-

ternals of the library. Designs coded in SystemC are typically higher level (system-level,

hence the name) than those coded in more traditional hardware description languages.

Multiple concurrently communicating subsystems may be modeled at the transaction

level – the OSCI reference implementation simulates this by leveraging the coroutine

support within the underlying operating system.

Control flow in SystemC code is performed by the usual C++ language constructs.

This is illustrated by the following code fragment, taken from one of the sample designs

provided with the OSCI reference implementation:

void pic::entry(){

if (ireq0.read() == true) {

intreq.write(true);

vectno.write(0);

} else if (ireq1.read() == true) {

intreq.write(true);

vectno.write(1);

} else if (ireq2.read() == true) {

intreq.write(true);

vectno.write(2);

} else if (ireq3.read() == true) {

intreq.write(true);

vectno.write(2);

} else {

}

if ((intack_cpu.read() == true)

&& (cs.read() == true)) {

intreq.write(false);

}

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 89

}

This shows a substantial departure from HarPE’s approach to control flow (see Sec-

tions 4.4.5 and 4.5.3), and probably makes it infeasible to implement a standards compli-

ant SystemC library implementation that performs synthesis directly without specialised

preprocessing upstream of the C++ compiler.

4.7.3 Cynthesizer

Forte Design Systems’ [52, 110] Cynthesizer product is essentially a compiler that trans-

forms transaction-level SystemC programs to low-level RTL. It is claimed that simulation

and synthesis can be carried out from the same source code, though the company’s pub-

licly available information does not specify how large a subset of the SystemC standard

is synthesizable directly by their tool. Intellectual property (IP) libraries are provided

that implement hardware versions of typical transaction-level constructs, which allows

designs to be synthesized whilst retaining strict compliance with the semantics of the

high-level design.

4.7.4 Synopsys Behavioural Compiler

The Synopsys Behavioural Compiler [80] (referred to here as BC for brevity) is no longer

a current product, but was influential in being one of the first widely available be-

havioural synthesis tools. BC supports the synthesizable subsets (with some extensions)

of both Verilog and VHDL, and generates conventional RTL for synthesis by an existing

back-end tool chain (normally the Synopsys Design Compiler, see Section 4.7.5). A typi-

cal design consists of Verilog or VHDL code with one or more processes embedded within

it, each of which takes the form of a Verilog always or forever block or a VHDL process.

The Behavioural Compiler ignores any non-behavioural code, and operates only on pro-

cesses. Processes normally specify behaviour spanning multiple clock cycles – a typical

code fragment is as follows:

forever begin

@(posedge clk);

out = 2’b00;

@(posedge clk);

out = 2’b01;

@(posedge clk);

out = 2’b10;

end

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 90

which implements a counter that repeats the sequence 00, 01, 10, 00, 01, 10 . . . indefinitely.

Though the syntax would appear to support multiple asynchronous clocks, BC man-

dates that a single, global synchronous clock is used. All processes are considered (and

therefore scheduled) separately; BC does not attempt to enforce protocols between state

machines. Loops that have constant upper bounds are unrolled automatically by the

compiler, though this can be overridden by a pragma. Infinite loops, and loops that have

upper bounds that are computed at run time cannot be unrolled. Though there is no

direct equivalent of HarPE’s support for loops with a compile-time upper bound and a

run-time limit, this can be simulated by coding the upper bound as a loop and embedding

a suitable conditional inside it.

Processes are each compiled to a data path that is controled by a single synchronous

state machine. BC explores the scheduling solution space in order to find schedules that

meet the user’s constraints. It is therefore possible, with minor changes to the source

code, to explore many potential implementations rapidly. This aspect, along with the

code size reduction that comes from behavioural Verilog/VHDL’s more concise represen-

tation, is often quoted as providing a very significant reduction in design time.

HarPE is actually closer to more conventional, non-behavioural, Verilog compilers

than it is to BC. HarPE source code strictly describes single-cycle behaviour, whereas BC’s

processes strictly describe multiple cycle behaviour. Both tools perform loop unrolling;

in HarPE’s case this is mandatory, though since BC is free to schedule loops to execute

across multiple cycles, loops can be unrolled or not as necessary.

4.7.5 Synopsys Design Compiler

The Synopsys Design Compiler [124] (referred to here as DC for brevity) is the company’s

flagship RTL compiler product. Source code is industry-standard RTL, and output is gate-

level netlists targetted at any of a range of implementation technologies inlcluding FPGAs

and ASICs from a variety of foundries. DC supports constraint-based optimisations, as

well as sophisticated technology mapping. The compiler is further supported by a wide

selection of reusable IP cores, including support for image processing, communications

and a range of hardware interface standards, as well as a wide range of related tools.

4.7.6 Synopsys System Studio

The Synopsys System Studio product [125], originally developed by CoCentric, is a com-

mercial system-level modeling tool that supports SystemC. It has a particular bias toward

System-on-Chip (SoC) applications; a variety of additional IP modules may be purchased

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 91

that provide accurate cycle-level models of a wide range of common interface, algorithm

and protocol standards.

4.7.7 Bluespec

The Bluespec hardware compiler [14] performs partial evaluation at the register transfer

level12, (i.e., not at bit-level), though details of this remain unpublished. Bluespec is

somewhat more sophisticated than the Synopsys Behavioural Compiler, in that it is capa-

ble of automatically enforcing synchronisation protocols between subsystems. Bluespec’s

native source language is a dialect of Haskell [74] with hardware-specific extensions. A

SystemVerilog [5, 70] front-end is also provided – though it is less expressive than the

Haskell-based alternative, it is more familiar to engineers that have come from a Ver-

ilog [69] background. Recently, SystemC support [24] has been added, which at the

time of writing allows Bluespec designs to be simulated with exising SystemC simula-

tors, particularly the OSCI reference implementation. The company has announced an

intention to support SystemC synthesis in late 2006, though more specific detail is not

currently available.

4.8 Discussion

The experimental results shown in Section 4.6 clearly show that partial evaluation of

synchronous hardware is feasible. Partial loop unrolling offers designers an ability to

specify circuits relatively simply, then transform them into faster (though possibly more

complex) circuits purely by transformation. Full unrolling goes further, making it pos-

sible (as demonstrated in Section 4.6.3.3) to transform a processor and a ROM image

into equivalent, low-level dedicated hardware – potentially, any synchronous soft core

processor, in conjunction with a suitable partial evaluator, can be used as a hardware

compiler for the machine language interpreted by the soft core itself.

In all of our tests, partial evaluation gave a net speed gain in comparison with the

original circuit. In some cases, gate count was also reduced. Full unrolling gave the

most extreme results, with a 2 orders of magnitude speed up and 1 order of magnitude

reduction in gate count.

12Personal conversation between the author and Joe Stoy at the APPSEM II workshop in Frauenchiemsee,
Germany, 2005.

CHAPTER 4. BIT-LEVEL PARTIAL EVALUATION OF SYNCHRONOUS CIRCUITS 92

4.8.0.1 Limitations

Partial evaluation may, in principle, be applied to any circuit that has been designed

assuming a strictly synchronous paradigm. However, it is not envisaged that it would

normally be applied as an automatic transformation; rather, it is expected to extend the

palette of design approaches available to hardware engineers.

Part III

Applications

Chapter 5

Repairing Cosmic Ray Damage in

FPGAs with Non-Clausal SAT Solvers

The work described in this chapter was

carried out at the NASA Ames Research

Center during Summer 2004, in

collaboration with Guillaume Brat and

Arnaud Venet, and was published

in [136].

5.1 Introduction

FPGAs are finding an increasing number of applications within NASA in deep space

probes, planetary rovers and manned vehicles. Like other silicon devices, FPGAs can

be damaged by high energy cosmic ray impacts, resulting in permanent latch-up con-

ditions that manifest as ‘stuck-at’ faults. Traditionally, multiple redundancy and voting

logic have been employed as a work-around, particularly for high reliability, extreme

environment applications. However, reconfigurable FPGAs are becoming increasingly

common in flight systems, offering a potentially valuable possibility for improved levels

of fault recovery – after a fault is detected and localised within an FPGA, it is feasible

to reprogram the device, in flight, with an alternative, equivalent, circuit that does not

depend upon the damaged portion of the chip.

Designing such alternative chip layouts by hand is a valid option, though costly in

terms of the man-hours of effort required; a fully automated alternative would be far

preferable. In this chapter, a technique is presented that allows the automatic generation

of FPGA configurations for fault recovery purposes by means of non-clausal SAT solver

technology.

CHAPTER 5. REPAIRING COSMIC RAY DAMAGE IN FPGAS WITH NON-CLAUSAL SAT SOLVERS 95

Designing hardware capable of reliable operation in deep space is far from trivial.

The familiar, tried and trusted design techniques employed by engineers working on

conventional, ground-based electronics are not sufficient to ensure reliability in the ex-

treme environment of deep space. Radiation, extreme temperatures, hard vacuum and

many other challenges must be addressed whilst accommodating a requirement for ex-

tremely high reliability – deep space probes typically must operate for decades, with no

possibility of servicing by astronauts if anything goes badly awry.

Inherently radiation hard semiconductor devices do exist, though they carry a very

significant cost penalty, as well as generally requiring more power in return for less per-

formance in comparison with commercially available off-the-shelf (COTS) devices. A

common radiation hardening design approach involves taking an existing COTS stan-

dard cell design, then synthesising a new version where some or all of the original gates

and flip flops are replaced with more complex, internally redundant equivalents. The

widely used RAD6000 processor was created by replacing the standard cells of the orig-

inal IBM RS/6000 design with hardened versions, resulting in a processor with greatly

improved radiation hardness with respect to the original. Such chips are more radiation

resistant than the COTS equivalent, but are slower, require more power and are typi-

cally extremely costly ($100k per device is not unusual) due to the need to amortise

foundry set-up costs over a relatively small number of saleable devices. Designers op-

erating within contemporary budgetary constraints often therefore prefer to use COTS

devices where possible, reserving extremely expensive radiation hard components for

critical subsystems only. For example, a mission critical guidance system might be imple-

mented with radiation hardened chips, but a less critical instrument package might use

COTS components instead, achieving a significant cost, mass and power saving as well

as allowing higher clock rates.

5.1.1 FPGAs in Space

The Apollo programme at it height consumed more than half the world’s entire chip

manufacturing capacity, comprising many custom-built ASICs. Modern spacecraft, how-

ever, are designed within budgetary constrains that mean that full custom ASICs are far

too expensive to be considered. Nevertheless, mass limitations1 still mean that custom

chips are necessary. Field programmable gate arrays (FPGAs) offer a good compromise;

though less efficient than full-custom ASICs in terms of density and power consumption,

they nevertheless offer a means by which custom chips can be incorporated into designs

without incurring the huge (approximately US$2 million per iteration) fabrication costs

1Largely due to launch costs of the order of approximately $30,000 per kg to low earth orbit.

CHAPTER 5. REPAIRING COSMIC RAY DAMAGE IN FPGAS WITH NON-CLAUSAL SAT SOLVERS 96

of full-custom devices. FPGAs typically contain a large array of general purpose logic

that only ‘becomes’ the target circuit after an appropriate configuration bit stream is up-

loaded. In some FPGA families, particularly those manufactured by Actel, programming

is carried out once only, after manufacture but typically before the chip is incorporated

into a board-level system. Other families, particularly those manufactured by Xilinx and

Altera, hold their bit stream in static RAM, thereby making it possible to reconfigure such

FPGAs dynamically.

As with any other semiconductor device, FPGAs are susceptible to radiation effects

including single-event upsets (SEUs) and permanent latch-up faults. Radiation hard

FPGAs are commercially available [9], though they tend to have lower density, lower

performance and significantly higher cost than commercial grade devices. At the time of

writing, both approaches are in use in ongoing missions – the Galileo/Huygens spacecraft

incorporates a number of Actel radiation hardened FPGAs, whereas the Mars Exploration

Rover mission’s twin rovers, Spirit and Opportunity, depend on COTS devices sourced

from Xilinx.

5.1.2 Radiation Damage

As described in Section 2.1, radiation levels in space vary widely; in low earth orbit,

levels can be sufficiently low that conventional electronics can be used unmodified2. As

spacecraft venture outside the protective effects of the Earth’s magnetic field, radiation

levels increase both in terms of the frequency and energy of particle impacts.

Fig. 5.1 shows the effect of a heavy ion moving at a relativistic velocity (cosmic ray)

passing through the gate of a field effect transistor in a typical gate. The ion leaves a

trail of charge that transiently affects the operation of the transistor, which may manifest

as an unwanted voltage spike in the circuit. In many cases, such spikes are benign and

do not cause circuit behaviour to deviate from specification. Often, however, such a

spike, typically referred to as a Single Event Transient (SET), may cause a circuit to enter

an invalid state. Normally, such conditions are detected by watchdog circuits and are

cleared by simply resetting the malfunctioning subsystem.

Sufficiently high energy particle impacts can cause permanent damage. Often re-

ferred to as permanent latch-up, such damage manifests as signals ceasing to function

correctly and appearing to be stuck permanently at logic true or false. Such damage

cannot be cleared by a reset, so some form of redundancy is required in order for the

subsystem to continue to function.

2On the International Space Station (ISS), many computing tasks are carried out by COTS laptop PCs.

CHAPTER 5. REPAIRING COSMIC RAY DAMAGE IN FPGAS WITH NON-CLAUSAL SAT SOLVERS 97

Substrate

Positive

well

DrainSource

AluminiumAluminium

Gate

Oxide

Cosmic ray

(heavy ion)

track

Figure 5.1: SEE triggered by a cosmic ray impact

5.1.3 Modular Redundancy

Traditionally, modular redundancy has been the standard approach toward mitigating

the effects of permanent latch-up. In this approach, majority voting logic [143] allows

the incorrect output of one or more faulty subsystems to be ignored. In 3-way modular

redundancy (see Figs. 5.2 and 5.3), any two subsystems can override the output of the

third, allowing one subsystem to fail completely without affecting system level behaviour.

5-way modular redundancy, as employed by the Shuttle main computers, allows up to

two subsystems to fail without affecting functionality.

Modular redundancy is certainly effective, but its requirement for duplication of sub-

systems carries a significant mass and power consumption penalty. Whilst it is likely to

remain a requirement for critical subsystems, cost precludes its universal applicability.

Redundant

Subsystem

Redundant

Subsystem

Redundant

Subsystem
Input Voting

Logic
Output

Figure 5.2: Modular redundancy

CHAPTER 5. REPAIRING COSMIC RAY DAMAGE IN FPGAS WITH NON-CLAUSAL SAT SOLVERS 98

5.1.4 Exploiting Redundancy within FPGAs

For practical reasons, most FPGA layouts are typically restricted to using no more than

approximately 60 – 80% of the chip’s theoretical optimal capacity. FPGA layout is thought

to be an NP-complete problem, though good heuristics exist that can do a reasonable job

of automatically mapping designs to configuration bit streams. These algorithms tend

to reach a solution much faster when the design can be mapped to a relatively small

proportion of the chip’s resources, and can fail to generate a layout completely in cases

where the proportion is close to 100%. As a consequence of this, almost all practical

FPGA layouts contain a significant amount of unused resources – though FPGA circuits

are not usually in and of themselves redundant, spare FPGA logic capacity unused by the

circuit can nevertheless be exploited in order to improve reliability.

A tempting possibility would be resynthesising logic locally within small areas of the

chip, adding redundancy to the circuit until the chip is completely full. This approach,

however, would incur a power and performance penalty, whilst adding redundancy to

circuits in an unpredictable way, without any guarantee that the resulting layout would

in practice survive any particular fault.

A more practical approach is to lay out the FPGA conventionally, then locally resyn-

i)

Output

a

b

c
Voltage

Comparator

R

R

R

R

R

All resistor values are equal,

e.g. R = 1kΩ

Vsupply

Ground (0V)

ii)

a

b

c

Output

Figure 5.3: Typical majority voting logic implementations: i. Analogue, ii. Digital

CHAPTER 5. REPAIRING COSMIC RAY DAMAGE IN FPGAS WITH NON-CLAUSAL SAT SOLVERS 99

thesise logic around faults as and when they are detected (see Section 5.2.4). Having

spare capacity in terms of unused logic blocks and wiring resources spread across the

chip layout makes it feasible to consider only a small area near the fault, avoiding the

need to generate a complete new layout from scratch. In outline, this approach may be

summarised as follows (see also Fig. 5.4):

1. FPGA running normally (Fig. 5.4.i)

2. Fault detected (Fig. 5.4.ii)

3. Take FPGA off line and put it through a test procedure in order to localise the fault

or faults

4. Locally resynthesise logic around each fault, resulting in a working, work-around

layout

5. Upload new configuration bit stream to FPGA

6. Put chip back on line (Fig. 5.4.iii)

Several alternatives are possible as regards the implementation of local resynthesis.

Most obvious is perhaps re-running the software responsible for the original FPGA layout

again with appropriate constraints preventing it from using damaged parts of the chip –

whilst technically feasible, this approach is not well suited to automated in-flight use,

since the software required typically assumes a powerful workstation class computer,

often with some human intervention.

Jason Lohn’s group at the NASA Ames Research Centre [86, 85] have experimented

with automatically generating FPGA layouts with genetic algorithms. A population of

random FPGA bit streams are tested, with their behaviour compared with ideal test traces

derived from the original circuit. Over many generations, functionality tends to converge

on the desired circuit, even though no formal link other than observed behavior exists

between the original design and the generated design. Good results have been achieved

on a number of test circuits, but the difficulty of proving that a generated circuit that

includes flip flops really does implement the intended behaviour (as opposed to just

happening to respond correctly to a non-exhaustive set of tests) is likely to limit the

technique’s applicability.

5.1.5 Availability

An FPGA undergoing repair will, of necessity, not be able to continue performing its

intended function during the repair process. As a consequence, our technique will not

CHAPTER 5. REPAIRING COSMIC RAY DAMAGE IN FPGAS WITH NON-CLAUSAL SAT SOLVERS 100

i)

Undamaged FPGAA

B C D

E F

ii)

Cosmic ray (heavy ion)

impact permanently

damages logic resource

A

B D

E F

iii)

Functionality of damaged

resource implemented in

redundant, previously

unused logic by local

resynthesis

Note that the resulting

look up tables need not

resemble the original

versions − local resynthesis

does not just naïvely move

blocks and reroute wires

P

R

Q

S

T U

Figure 5.4: Using available FPGA resources to work around permanent latch-up damage

CHAPTER 5. REPAIRING COSMIC RAY DAMAGE IN FPGAS WITH NON-CLAUSAL SAT SOLVERS 101

be suitable for applications requiring high availability unless the FPGA is itself part of a

modular redundant subsystem. In such situations, the ability to repair faulty subsystems

is still a significant advantage, because it allows redundancy to be maintained over far

longer periods.

5.1.6 Local resynthesis as a SAT problem

In this chapter, we describe a technique that can automatically perform local resynthesis

whilst retaining functionality that is formally identical to that of the original circuit.

In essence, formally correct local resynthesis requires an alternative, work-around bit

stream to be determined such that for all possible inputs and/or internal states, the

outputs and next internal state of the work-around circuit matches exactly that of the

original circuit. Finding such configurations is computationally hard, perhaps prompting

the adoption by Lohn’s group of heuristic search algorithms that do not attempt to ensure

formal correctness.

In the remainder of this chapter, we demonstrate how local resynthesis can be trans-

formed into a equivalent SAT problem [47, 46, 40], thereby demonstrating that local

resynthesis is no harder than NP-complete3. The resulting SAT problems are suitable for

attack by SAT solvers, with solutions guaranteed to preserve correctness with respect to

the original circuit.

5.2 Defining the SAT problem

Given an original, correct, bit stream b along with a model of a correct FPGA f , a work-

around bit stream b′ for a faulty FPGA f ′ must possess the following property:

∀i . f(b, i) ⇔ f ′(b′, i)

Informally, this states that for all possible inputs i, the bit stream b′ causes the damaged

FPGA to behave exactly identically to the original FPGA and bit stream (see also Fig. 5.5).

Letting b′ represent any potential work-around bit stream, this expression will evaluate

to true if and only if correct functionality is preserved – in effect, the expression embodies

formal verification of a work-around bit stream with respect to an original bit stream4.

Alternatively, the expression may be thought of as defining a Boolean satisfiability prob-

3We conjecture (assuming P 6= NP) that no complete P space/time algorithm exists, though such
speculation is beyond the scope of this chapter.

4Note that this approach may be used to verify the correctness of any work around bit stream, including
those generated by genetic algorithms or by other means.

CHAPTER 5. REPAIRING COSMIC RAY DAMAGE IN FPGAS WITH NON-CLAUSAL SAT SOLVERS 102

Input

FPGA Model f

(Undamaged)

FPGA Model f’

(Damaged)

=

Original bit stream b

(known)

New bit stream b’

(to be determined)

true iff both FPGA

models have identical

outputs

Figure 5.5: FPGA repair as a SAT problem

lem whose solutions represent all possible work-around bit streams – solving such a SAT

problem is therefore equivalent to the local resynthesis problem.

After constant propagation, quantifier elimination and (if necessary) transformation

to CNF or NNF form, feeding the resulting expression to a SAT solver allows b′ to be

calculated.

It is noteworthy that no inherently complex conventional chip layout, placement or

routing algorithms are required, suggesting that this functionality might be implemented

within embedded systems carried on the spacecraft itself. Typical SAT solver memory

requirements are generally not particularly severe for the kinds of problem we consider,

requiring approximately 3MB for the circuit shown in Fig. 5.6. Run times are of the order

of tens of seconds on contemporary CPUs (see Section 5.3, Fig. 5.7).

The SAT problems that result from this process are typically quite hard, in the sense

that standard SAT solvers do not typically find solutions very quickly. Empirically, non-

clausal SAT solvers (i.e., those that do not require their formulas to be converted to CNF

form) appear to be most effective, possibly because they allow circuits to be modeled in

a form that is closer to their original structure.

5.2.1 Quantifier Elimination

SAT solvers typically do not directly support quantifiers, so the first step involves elim-

inating them from the expression. Removing the universal quantifier ∀i is therefore

essential. Since i may consist of several Boolean variables, it is helpful to (equivalently)

express the problem as

∀i1 ∀i2 . . . ∀in . f(b, i) ⇔ f ′(b′, i)

CHAPTER 5. REPAIRING COSMIC RAY DAMAGE IN FPGAS WITH NON-CLAUSAL SAT SOLVERS 103

We can now eliminate these quantifiers one by one by applying the rewrite rule

∀a . F (a) −→ F (1) ∧ F (0)

repeatedly until none remain. Since this operation has an expression size and space

upper bound of 2N , this restricts our technique’s applicability to fairly small sub-circuits,

though this is less significant when slicing techniques are adopted (see Section 5.2.2).

After constant folding and common subexpression elimination, the resulting expres-

sion is a directed acyclic graph, with exactly one ‘output’ node representing the result of

the expression, and one ‘input’ node for each bit in b′. The variables i and b are no longer

externally exposed, with the resulting expression depending only upon b′. At this point,

the expression may be passed to a suitable SAT solver, e.g., NNF-WALKSAT, as described

in Appendix B.1.

5.2.2 Slicing

Attempting to resynthesise a complete FPGA is infeasible with our method due to the

tendency for the size of the SAT problem to be proportional to 2N , where N is the total

number of inputs and flip flop outputs (see Section 5.2.3). It is therefore necessary to

work on a small slice of the chip. The rationale behind this approach is that, whilst a cos-

mic ray impact might render the original circuit useless, many possible work-around bit

streams with low Hamming distance from the original bit stream typically exist, differing

only near the damage site. Several variant approaches are feasible:

1. Slicing by Coordinate. In this case, a slice is chosen such that inclusion is based on

physical distance (in terms of the 2D chip layout) from the damage site.

2. Slicing by Connectivity. Such a slice might be generated by beginning at the dam-

age site and including all bit stream bits that are electrically reachable through a

predetermined number of logic blocks.

3. Slicing by Heuristic. In this case, a slice might be generated by some device-specific

algorithm capable of exploiting aspects of its design in order to create a more ef-

fective slice than either of the above simpler approaches.

It is possible that, in some cases, no local solution may exist, but solutions that differ

more significantly may still be possible. The probability that this might occur can be

reduced by arranging the original design such that used resources are spread evenly

across the chip rather than clustered together, but in extreme cases the fall back option

CHAPTER 5. REPAIRING COSMIC RAY DAMAGE IN FPGAS WITH NON-CLAUSAL SAT SOLVERS 104

still exists of creating an alternative layout manually (e.g., remotely on Earth). Our

experimental results suggest that local solutions are possible in most cases, however.

5.2.3 Handling flip flops

The technique presented here essentially considers combinational circuits; clocked syn-

chronous circuits may be accommodated by a small modification:

1. If a working flip-flop necessary to implement the original circuit falls within the

slice under repair, treat its output as if it was an external input of the subcircuit.

Similarly, treat its input as an output of the subcircuit.

2. If a damaged flip-flop necessary to implement the original circuit falls within the

slice, exclude its connections from the slice and substitute an alternative, working

flip flop. Local resynthesis will take advantage of the alternative flip-flop and avoid

the damaged original.

5.2.4 Detection and Localisation of Faults

It is envisaged that faults will initially be detected as a consequence of observably incor-

rect behaviour of a subsystem implemented on an FPGA. Well known techniques already

exist, such as watchdog circuits, suicide/fratricide circuits, etc. In a practical implemen-

tation, when incorrect behaviour is detected, an embedded processor5 will be triggered

to begin a repair cycle.

Initially, the fault will only be known to exist somewhere within a particular chip, but

gate-level fault information is required in order to allow a work around bit stream to be

generated. Most FPGAs support in-circuit testing via the industry standard JTAG inter-

face – this typically allows all flip flops to be temporarily reconnected as a single shift

register, allowing the internal state of the chip to be uploaded or downloaded. Assuming

that the chip is not so badly damaged that its JTAG interface no longer functions, up-

loading a series of test vectors and examining their results potentially allows faults to be

localised with considerable accuracy. Such testing procedures are ubiquitously employed

by automated test equipment during chip manufacture, so this requirement is unlikely to

be prohibitive.

CHAPTER 5. REPAIRING COSMIC RAY DAMAGE IN FPGAS WITH NON-CLAUSAL SAT SOLVERS 105

Output

Inputs

Zero

One

Stuck at Zero

Stuck at One

Lookup Table Bits

Figure 5.6: Example test circuit model

5.3 Experimental Results

As a proof-of-concept, a small, FPGA-like circuit was modeled (see Fig. 5.6). Eight inputs,

split into two groups of four, feed the inputs of four 16-bit look-up tables, whose outputs

feed a fifth 16-bit look up table. The model was configured by randomly generated ‘bit

streams’, each 80 bits long, mapping to the configuring bits of the look up tables. Stuck-

at faults were simulated by fixing the values of one or more bits at 0 or 1. For simplicity,

fixed wiring was assumed. A non-clausal variant of the WALKSAT algorithm [112], NNF-

WALKSAT, was used to solve the resulting SAT problems (see Appendix B.1).

In our experiments, the SAT problems were generated by a modified version of the

HarPE hardware partial evaluator [134]. HarPE is a C++ template library [140] that

allows circuits to be described in a high-level language, then manipulated by partial

evaluation [72, 88, 87]. HarPE represents circuits internally as a directed graph data

structure, which is normally emitted as gate-level Verilog. The library was extended

slightly to allow output to be emitted in CNF form suitable for contemporary clausal SAT

solvers, or alternatively as NNF represented either as a tree or as a directed graph for use

with our own NNF-WALKSAT non-clausal SAT solver (see also Appendix B). Note that as

HarPE exists purely as a simple C++ header file, it has a far smaller footprint than any

5This could either be an on-chip CPU or an external, possibly radiation hardened, general purpose
processor.

CHAPTER 5. REPAIRING COSMIC RAY DAMAGE IN FPGAS WITH NON-CLAUSAL SAT SOLVERS 106

2 3 4 5 6

30

40

50

60

70

80

Number of Stuck-at Faults

M
e

a
n

 R
u

n
 T

im
e

 (
s)

2 3 4 5 6

20

40

60

80

100

%
 S

u
cc

e
ss

Number of Stuck-at Faults

Figure 5.7: Test results

typical commercial hardware description language, which lends itself well to embedded

applications.

Test runs were repeated with between 1 and 6 simulated faults. Run times (C++,

gcc -O3, running on a 1.6GHz Pentium III) and success rate are shown in Fig. 5.7, where

‘success’ was defined empirically as the SAT solver finding a solution within 20 minutes6.

5.4 Related Work

The original concept of generating FPGA bit streams with SAT solvers is due to David

Greaves at the Computer Laboratory, University of Cambridge [62].

The Dynamic Evolution for Fault Tolerance (ITSR/ES) project headed by Jason Lohn

at the NASA Ames Research Centre is applying genetic algorithms to FPGA repair [86,

85, 83]. This approach has been shown to work, but suffers from the problem that its

generated circuits are not guaranteed to be formally equivalent to the original.

Adrian Stoica’s group at JPL is working on the synthesis and repair of analogue field

programmable transistor array (FPTA) devices with genetic algorithms [120].

Toby Walsh’s group at the School of Computer Science and Engineering, University

of New South Wales, Australia are working on non-clausal SAT solvers, one of which,

NOCLAUSE, is due to be released into the public domain shortly [126].

There is a huge amount of literature on the subject of SAT, particularly with regard to

resolution of Boolean expressions in CNF form. The web site http://www.satlive.org/

is a widely-used and very useful resource for information about SAT/QBF solvers.

6Note that no attempt was made to verify whether the generated problems were actually soluble –
this corresponds well to reality, in that some damage sites in critical positions may not allow any possible
work-around configuration to be determined.

Chapter 6

Reconfigurable Manifolds

Work described in this chapter was

carried out in conjunction with the US

Air Force Office of Scientific Research,

Space Vehicles Directorate, and was

previously published in [135].

6.1 Introduction

Spacecraft design is, without doubt, one of the most challenging areas of modern engi-

neering. In order to be viable, spacecraft must mass relatively little, whilst being capable

of surviving the considerable G-forces and vibration of launch. In space, they must with-

stand extreme temperatures, hard vacuum and high levels of radiation, for several years

without maintenance.

Conventionally, spacecraft wiring harnesses are built with architectures that are fixed

at the time of manufacture. They must therefore be designed to endure the lifetime of

the mission with a very high probability, though the conventionally necessary redundant

duplication of signals has significant implications for mass. Given that launch costs are

typically in excess of $30,000 per kg, reducing the mass of a spacecraft’s wiring harness,

without compromising reliability, is highly desirable. As a motivating example, the net-

work cabling in the International Space Station (ISS) is known to mass more than 10

metric tonnes.

Recent advances in MEMS-based switching [90] have made it possible to consider the

construction of reconfigurable manifolds – essentially, wiring harnesses that behave like

macroscopic FPGA routing networks. Redundant wiring can be shared between many sig-

nals, thereby significantly reducing the total amount of cable required. Reconfigurability

has a significant further benefit, in that it also allows adaptation to mission requirements

CHAPTER 6. RECONFIGURABLE MANIFOLDS 108

Star

Tracker

Gyroscopes

Torquer Bars

Rough Sun

Tracker

Antennas

Solar Panel

Figure 6.1: A typical near-earth small satellite configuration

that change over time, whilst also significantly reducing design time.

In a recent initiative, the US Air Force has been moving toward a responsive space

paradigm which aims to reduce the time from design concept to launch (currently sev-

eral years) to less than one week [53]. Such a target is unlikely to be achievable with

existing bespoke one-off design techniques; a parts-bin driven, plug-and-play approach

to satellite construction will become essential. It must be possible to choose a satellite

chassis of a size appropriate to the task in terms of accommodating sufficient manoev-

ering propellant as well as the necessary instrumentation payload, then bolt everything

together and have the resulting satellite ‘just work.’

We present an approach that allows such a reconfigurable manifold to be automat-

ically self-configured, then dynamically tested in-situ, such that signals are automati-

cally rerouted around non-functioning wires and switches as soon as faults are detected.

Make-before-break switching is used in order to allow wires to that are currently in use to

be rerouted transparently from the point of view of subsystems that are interconnected

by the manifold, whilst also making it possible to achieve near-100% testability.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 109

Figure 6.2: Card frame with backplane

6.1.1 Physical satellite wiring architectures

Conventionally, satellites are constructed with fixed wiring architectures. Reliability must

therefore be engineered-in through modular redundancy – duplication or triplication (or

more) of signal paths is common, which carries with it an attendant mass penalty.

Typically, two kinds of wiring architecture are common:

Card frame with passive backplane Fig. 6.2 shows a typical passive backplane with

multiple subsystems, each slotting in to a rack on separate cards1.

Motherboard/daughterboard Another common approach is shown in Fig. 6.3, where

a single motherboard has a number of daughter boards attached to it on standoffs.

Normally (though not visible in the diagram) these daughter boards plug directly

into connectors on the motherboard, again avoiding the need for cables.

Wiring harnesses, in the sense that they exist in cars and aircraft as bundles of physical

cables, tend to be avoided where possible because of their greater mass and poorer

reliability.

1Note that the image is representational – actual satellite hardware differs in detail

CHAPTER 6. RECONFIGURABLE MANIFOLDS 110

Edge View

Figure 6.3: Motherboard with attached daughter boards

Typically, card frames have passive backplanes, which do not normally contain active

electronics beyond perhaps some simple power regulation or line termination. Mother-

board approaches more commonly include active electronics on the main board itself,

though this is not a prerequisite.

6.1.2 Logical satellite wiring architectures

At a logical, block diagram level, fixed architecture satellite wiring harnesses typically

follow the structure shown in Fig. 6.4. All of the main subsystems are attached to a moth-

erboard or backplane that provides most of the necessary interconnection infrastructure,

with external devices plugging directly into the relevant subsystems. All required redun-

dancy must be in place from the outset. Typically, satellites are one-off designs, so any

design changes before launch require physical modifications – of course, such changes

after launch are typically impossible. As a further consequence of this approach, sub-

system re-use is relatively uncommon, requiring considerable effort in terms of design,

validation and verification, of the order of several years from concept to launch.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 111

Motherboard/

Backplane Other ...

Solar

Panels

Radioisotope

Thermoelectric

Generator

Power

Management

Subsystem

Torquer

Bars
Gyros

Chemical/Ion

Thrusters

Coarse Sun

Tracker
Star Tracker

Navigation

Subsystem
Antenna

Camera
Imaging

Subsystem

Comms

Subsystem

Figure 6.4: Typical non-reconfigurable satellite wiring architecture

6.2 Reconfigurable manifolds

The responsive space paradigm [53] implies the requirement to move away from fixed

architectures and their consequential design and validation costs toward an autonomous,

self-organising approach. In essence, a reconfigurable manifold is a self-organising, self-

testing, self-repairing replacement for a fixed architecture wiring harness. Ideally, at a

system level, a spacecraft adopting this approach should have an architecture similar to

that shown in Fig. 6.5.

Ideally, all wiring should be routed by the manifold rather than connected directly to

subsystems. From a the point of view of rapid construction, this is ideal – a subsystem

such as a gyroscope, star tracker, sun tracker or antenna could be bolted to the spacecraft

chassis anywhere that is physically convenient, with all of the necessary wiring being

‘discovered’ and automatically routed after power-up.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 112

Reconfigurable

Manifold

Other ...Solar

Panels

Radioisotope

Thermoelectric

Generator

Power

Management

Subsystem

Torquer

Bars

Gyros
Chemical/Ion

Thrusters
Coarse Sun

Tracker

Star Tracker

Navigation

Subsystem

Antenna

Camera

Imaging

Subsystem

Comms

Subsystem

Figure 6.5: Reconfigurable manifold architecture

6.2.1 Signal types

Spacecraft wiring harnesses (reconfigurable or otherwise) must be able to carry a wide

variety of signals, varying in terms of power, voltage and bandwidth, with similarly vari-

able electrical considerations in terms of impedance, end-to-end resistance, etc. Typical

signal types found in satellites, along with example applications are listed as follows:

Power Normally a single +28V DC unregulated supply rail powers the entire spacecraft,

with local step-down regulators providing lower voltage high quality supply rails to

each subsystem. Where higher voltages are necessary, e.g. to drive cryocoolers for

low background noise imaging sensors, this is normally achieved with local step-up

switching DC-DC converters.

Heavy current analogue High current feeds to torquer bars, motor drives, solenoid

power, explosive bolts, etc.

Low current, low speed analogue Analogue sensor feeds, thermocouples, rough sun

tracker photocells, etc.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 113

Low current, high speed analogue Higher speed sensor wiring, video feeds from cam-

eras and star trackers, etc.

Low speed digital Simple on/off telemetry sensors, e.g. mechanical limit switches.

High speed digital Digital communications between subsystems.

Low power microwave Radio receiver antenna feeds, low power radio transmitter an-

tenna feeds.

High power microwave High power antenna feeds, ion thruster power cabling, etc.

Optical High speed network connectivity, lower speed sensor applications that require a

significant degree of electrical isolation2.

No single switching architecture, at the time of writing, can accommodate more than

a few of the above signal types.

6.2.2 Constructing practical reconfigurable manifolds

A practical reconfigurable manifold must encompass most, if not all, signal types in order

to be effective. Since no single switch fabric is suitable, it makes sense to split the

manifold into separate sub-manifolds, each of handling a different signal type, as shown

in Fig. 6.6.

Some cross-connectivity between the sub-manifolds makes sense, since, for example,

several MEMS relays could potentially be connected in parallel in order to switch heavier

current, or DC-biased analogue routing with sufficient bandwidth could, in an emergency

on orbit, be used to carry digital data.

Fig. 6.7 shows a reconfigurable manifold implemented as a replacement for a passive

backplane or passive motherboard. In contrast with Fig. 6.4, external systems connect

to the manifold rather than direct to the subsystems themselves. Configuring such a

satellite might be as simple as installing cards in a backplane or motherboard in any

convenient order, then plugging external devices into the manifold. Spare slots could,

given sufficient mass budget, be used to provide extra redundancy simply by plugging in

extra duplicate cards; appropriate firmware could potentially handle this automatically.

An alternative architecture is shown in Fig. 6.8. Rather than a single manifold routing

between devices connected to its periphery, the manifold is itself distributed between

the subsystems. Interconnection between subsystems is passive, with the subsystems

cooperating to establish longer distance, multi-hop routes.

2Optical switching is beyond the scope of this work and will not be discussed further.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 114

Other ...Solar

Panels

Radioisotope

Thermoelectric

Generator

Power

Management

Subsystem

Torquer

Bars

Gyros
Chemical/Ion

Thrusters
Coarse Sun

Tracker

Star Tracker

Navigation

Subsystem

Antenna

Camera

Imaging

Subsystem

Comms

Subsystem

Power

Digital

Microwave

Analogue

Figure 6.6: Separate routing networks for power, analogue, digital and microwave

The single manifold approach is perhaps best suited to small satellites, whereas the

(more complex, though more flexible and scalable) distributed approach lends itself to

larger spacecraft such as large satellites, manned spacecraft, space stations or indeed

also to terrestrial aircraft.

6.2.3 Switching technologies

Many switching technologies exist that differ considerably in capability:

FPGAs Field-programmable gate arrays can be used to route digital data, and are also

comparatively cheap and readily available.

FPTAs Field-programmable transistor arrays [120] have some similarities to FPGAs, though

they are aimed more closely at analogue applications. As with FPGAs, they are not

intended from the outset as routing devices for use within a the switch fabric of

CHAPTER 6. RECONFIGURABLE MANIFOLDS 115

Motherboard/

Backplane

Solar

Panels

Radioisotope

Thermoelectric

Generator

Torquer

Bars
Gyros

Chemical/Ion

Thrusters

Coarse Sun

Tracker
Star Tracker

Antenna

Camera

Power

Management

Subsystem

Navigation

Subsystem

Other ...
Imaging

Subsystem

Comms

Subsystem

Reconfigurable Manifold

Figure 6.7: Reconfigurable manifold as a motherboard or backplane

a reconfigurable manifold, though it would seem feasible to apply them to the

switching of low- to medium-speed analogue signals.

Digital Crossbar Switch ASICs A number of commercial, off-the-shelf (COTS) digital

crossbar switch chips are available, though this application appears to be becoming

dominated by FPGAs as a consequence of the larger FPGA manufacturers getting

more directly involved by releasing support for using their devices in this way [11].

Analogue Crossbar Switch ASICs Though not so widely supported as digital crossbar

switch devices, analogue crossbar switches are available, mostly aimed at switching

analogue video signals [10].

MEMS switches Micron-scale electromechanical switches have been demonstrated to be

an effective candidate technology [90]. Though physically far larger than CMOS

transistor-based switches, MEMS switches are nevertheless orders of magnitude

smaller and lighter than full-size mechanical relays, and have excellent electri-

cal characteristics that renders them capable of being applied to almost any low-

current switching application, including microwave.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 116

Motherboard/

Backplane

Power

Management

Subsystem

Navigation

Subsystem

Other ...

Imaging

Subsystem

Comms

Subsystem

Solar

Panels

Radioisotope

Thermoelectric

Generator Antenna

Camera

Torquer

Bars
Gyros

Chemical/Ion

Thrusters

Coarse Sun

Tracker
Star Tracker

Figure 6.8: Reconfigurable manifold distributed across subsystems

Electromechanical Relays Somewhat old-fashioned, relays are nevertheless capable of

switching very heavy currents. They are sufficiently massive, however, that it is

difficult to imagine them being used in large numbers in a spacecraft application.

Discrete MOSFET/IGBT Switching Large power transistors, both MOS and bipolar, are

commonly used to switch heavy current and moderately high voltage (up to a few

hundred volts and/or hundreds of amps) signals, particularly in motor drive appli-

cations. They exhibit high reliability and relatively good radiation hardness charac-

teristics due to their very large (in comparison with ASICs) geometries, though their

gate drive circuitry can be tricky to engineer. Though physically bulky, they nev-

ertheless remain a useful possibility for constructing heavy current and/or power

switching networks.

Table 6.1 shows compatibility between switch technologies and signal types. The

notation ‘?,’ denoting ‘possibly compatible,’ indicates that, under normal operational cir-

cumstances, an automated routing algorithm would not attempt to make a connection

of this type, though in an emergency such connections might be made in the absence of

more appropriate infrastructure. Normally, signals would be prioritised, so critical sig-

CHAPTER 6. RECONFIGURABLE MANIFOLDS 117

nals would almost certainly be routed, but less important connections may be degraded

or even omitted. For example, a non-critical redundant temperature sensor might be

disconnected in favour of keeping an instrument package in operation.

FPGA FPTA Digital X-bar Analogue X-bar MEMS Relays MOSFET/IGBT

Power × × × × ?
√ √

Heavy current analogue × × × × ?
√ √

Low current, low speed analogue × √ × √ √ √
?

Low current, high speed analogue × √ × √ √
? ?

Low speed digital
√ √ √ √ √ √ √

High speed digital
√

?
√

?
√

? ×
Low power microwave × × × × √ × ×
High power microwave × × × × ? × ×

× – Not compatible ? – Possibly compatible
√

– Compatible

Table 6.1: Compatibility between switch technologies and signal types

6.2.4 Routing architectures

The major alternative switching architectures that may be considered when designing a

reconfigurable manifold are as follows:

Crossbar Switch An M ×N grid of switches configured to provide a M -input, N -output

routing network.

Permutation Network A permutation network performs an arbitrary permutation on N

inputs, such that any possible reordering of the inputs is supported.

Ad-Hoc and Hybrid Approaches Practical considerations make it appropriate to con-

sider the possibility of leveraging existing COTS technologies, possibly in combi-

nation, to create reconfigurable manifolds. Though the result network topology

and routing algorithms may be technically inferior to a purer design, economic

considerations are nevertheless important for practical designs.

Embedding into Networks of Arbitrary Topology Given a sufficiently large and com-

plex graph, with nodes representing switches and edges representing wires, it is

possible to compute a switch configuration that implements an arbitrary circuit.

Each approach is described in detail below.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 118

Figure 6.9: Crossbar switch

6.2.4.1 Crossbar switches

Crossbar switches have a long history, having originally been introduced as a means of

routing telephone calls through electromechanical telephone exchanges. Conceptually

extremely simple, a crossbar switch is constructed from two sets of orthogonal wires

(bus bars in telecommunications nomenclature), such that each crossing can be bridged

by a switch. Fig. 6.9 depicts the circuit of a small 8 × 8 crossbar switch.

To route a particular input to a given output, all that is necessary is for the switch

corresponding to that input and output to be closed. Crossbar switches are somewhat

inefficient in terms of hardware requirements, and also in terms of providing more rout-

ing capability than is strictly necessary in many cases – it is possible, for example, to

route a single input to any number of outputs, or to common inputs together. Achieving

reliability is relatively straightforward, however – replacing each non-redundant switch

(Fig. 6.10) with a partially- or fully-redundant alternative (Fig. 6.11 or Fig. 6.12 respec-

tively) allows single point failures to be recovered. A fully-redundant switch configura-

tion allows any of its four component switches to fail-open or fail-closed without affecting

functionality. The partially redundant version only requires half as many switches, but is

only safe against fail-closed faults – however, given one or more spare bus bars on each

CHAPTER 6. RECONFIGURABLE MANIFOLDS 119

Figure 6.10: Non-redundant switch

Figure 6.11: Partially redundant switch configuration

Figure 6.12: Fully-redundant switch configuration

axis, fail-open faults can easily be patched around and are therefore still recoverable.

In cost terms, building a fully-redundant M × N switch requires 4 × M × N switches,

whereas the partially redundant approach requires 2×(M +1)×(N +1) switches, though

clearly the larger circuit is more fault-tolerant. Though both circuits can accommodate

at least one fail-closed fault per cross point, the smaller circuit is limited to only one

fail-open fault across the entire switch for each additional pair of redundant bus bars.

A related architecture, once commonly used in circuit-switched telephone exchanges

prior to the widespread introduction of digital technology, was the Clos network [38],

which was normally constructed from three layers of smaller crossbar switches. This ap-

proach may or may not support all possible permutations depending upon the details of

its construction – non-blocking Clos networks may provide an efficient means of build-

ing large manifolds from small crossbar ASICs, though from-scratch designs based on

permutation networks (see below) are still likely to require fewer switches.

6.2.4.2 Permutation networks

Permutation networks are an alternative approach to routing that, in many cases, require

substantially fewer switches for a given number of inputs – rather than O(N2), they tend

toward O(N log N), which can be a very significant advantage when the number of in-

puts is large. Fig. 6.13 illustrates the concept with a 6-way permutation network. Its 15

swap nodes, each of which typically constructed from four switches (see Fig. 6.14), can

each be in either of two states: pass the inputs left to right unchanged, or swap them.

For 6 inputs, a crossbar switch is likely to be cheaper, in that it is likely to require only 36

CHAPTER 6. RECONFIGURABLE MANIFOLDS 120

Figure 6.13: 6-way permutation network

A in

B in

A out

B out

Control

Figure 6.14: Swap node circuit

switches, in comparison with 60 for the permutation network shown in Fig. 6.13. How-

ever, for 1000 inputs, assuming N log2 N , approximately 40, 000 switches are required,

whereas a 1000 × 1000 crossbar switch would require 1 million switches.

Designing a permutation network can be somewhat baroque, though a useful rela-

tionship with sorting networks can be exploited. A sorting network [13, 16, 35, 41, 81] is

architecturally similar to a permutation network, with the exception that the swap/don’t

swap decision at each node is made by comparing its inputs, such that its outputs are

constrained always to respect a given ordering relation. Many well-known sort algo-

rithms, e.g. merge sort, bubble sort, transposition sort, bitonic sort or shell sort, can

be constructed as sort networks. Since a sort may also be seen as just a particular kind

of permutation, sort networks – by definition – must be capable of performing permu-

tations. Furthermore, since the data to be sorted might initially be in any order, a sort

network must be capable of supporting all possible permutations – therefore, if a sort al-

gorithm can be adapted to create a sort network of arbitrary dimension, it follows that an

equivalently structured permutation network would also be capable of any possible per-

mutation. Usefully, the underlying sort algorithm can be leveraged to efficiently generate

CHAPTER 6. RECONFIGURABLE MANIFOLDS 121

switch configurations, as follows:

1. Let 〈W,<〉 be a totally ordered set such that |W | is the number of wires in the

switch network, and each w ∈ W represents exactly one input and one output.

2. Let the total bijection P : W → W represent the desired permutation to be imple-

mented by the switch network.

3. Sort P with the underlying sort network, such that for each (a, b) ∈ P , a represents

the input, and b represents the output. This can be achieved trivially by feeding

tuples into the network ordered on a, then having the network sort these tuples

ordered on b.

4. Note whether each swap node passed its data through unchanged, or whether it

performed a swap. This gives the switch configuration for an isomorphic permuta-

tion network that performs an equivalent permutation.

Since suitable sort algorithms exist that have O(N log N) time complexity, computing a

switch plan is therefore also an O(N log N) operation.

Permutation networks are nevertheless not always a better solution than crossbar

switches, particularly when constructed as ASICs – their complex wiring reduces the

effective advantage of their reduced switch count, particularly when considering that

regular grids (crossbar switches being a particularly ideal example) are cheap and easy

to lay out in comparison with the more spaghetti-like nature of large permutation net-

works, though Claessen et al [35] have shown promising results by adopting a layout

combinator approach. Limitations on chip packaging limit the number of wires that can

be physically connected to a single chip, which places hard limits on the impact of the

O(N2) complexity problem with crossbar switches. However, when switches are large

and/or expensive, as is the case with MEMS relays or any discrete component approach

(e.g. full-size relays, MOSFETs, IGBTs), the reduction in component count could prove

important.

6.2.4.3 Shuffle networks

Shuffle networks are essentially degenerate, incomplete permutation networks that do

not support all possible permutations. Shuffle networks implement a perfect shuffle, [121],

which typically allow any input to be routed to any output through log2 N layers of

switches. They are perhaps best known in the parallel computing world, where they are

commonly used as high speed inter-processor interconnect architectures. Omega net-

works [84], a commonly used shuffle network architecture, typically require some kind

of blocking or queueing hardware at each swap node so that collisions can be arbitrated.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 122

In general, the incompleteness inherent in a single shuffle network is not tolerable

for our application – it was, however, conjectured by Beneš in 1975 [17] and again

more recently by Mary Sheeran [116] that exactly two shuffle networks in series can

implement any possible permutation. The conjecture was recently proven by Çam [32],

which means that this approach may lead to a means of designing compact, geometrically

regular permutation networks that preserve O(N log N) complexity.

6.2.4.4 Ad-hoc COTS approaches

In some cases, COTS devices may be used to implement routing fabric. FPGAs, in partic-

ular, are ubiquitous, low cost and can be used (with appropriate considerations) in high

radiation environments. There are a number of potential approaches:

1. Implement a general purpose crosspoint switch or permutation network as a HDL

model, then synthesise it.

2. Generate HDL that routes the FPGA’s inputs and outputs according to the desired

switching plan, then synthesise the design.

The first option clearly limits the size of switch that can be implemented in a partic-

ular FPGA, though is inherently general purpose and can be reconfigured very rapidly.

The second option is probably infeasible for embedded use at the time of writing due to

the requirement for a complete tool chain in order to perform reconfiguration, though

this situation may improve as technology supporting dynamic reconfiguration matures.

In particular, the Xilinx jBits library [63, 117] allows FPGA configuration bitstreams to

be generated on-the-fly from Java code, though it is currently unclear whether it can

be feasibly implemented on the kinds of low-performance radiation-hard CPUs that are

typically used for spacecraft applications.

6.2.4.5 Embedding into networks of arbitrary topology

A reconfigurable manifold of arbitrary topology may be represented by a graph whose

nodes represent switches and whose edges represent wires. Embedding a desired circuit

into such a network is essentially equivalent to computing a switch configuration. For the

general case, this is a difficult computational problem that seems almost certainly to be

in NP , with complexity rising exponentially with the number of switches in the network.

Though this approach ultimately encompasses all others, in that both crossbar switches

and permutation networks may be seen as special cases, the difficulty of computing

switching plans makes it unlikely that this approach could be feasible in practice.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 123

Permutation

Network

A

Permutation

Network

B

Switch

A

Switch

B

OutputsInputs

Figure 6.15: Work-around for make-before-break using permutation networks

6.2.5 Make-before-break switching

At the device level, make-before-break switching requires the capability to establish a

new connection, in parallel, before an old connection is disconnected. Where a recon-

figurable manifold is routing signals that should not be temporarily interrupted, make-

before-break switching allows a connection to be moved to an alternative route trans-

parently to the signal’s endpoints. In a reconfigurable manifold that does not alter its

wiring plan after it has been initially configured, support for make-before-break switch-

ing is unnecessary – however, such a capability is essential in order to support continuous

automated testing and fault recovery (see Section 6.4).

Power, heavy current analogue, low-speed digital and low-speed analogue signals are

all well suited to make-before-break switching, in that they are not particularly sensitive

to minor changes in end-to-end resistance or discontinuities in impedance. However,

high-speed digital, high-speed analogue, or (particularly) microwave signals need more

careful consideration – in such cases, it may be necessary for the subsystems concerned

to become involved in the routing process, at least from the point of view of being able

to request that the manifold should not re-route particular signals during critical periods.

Crossbar switches support make-before-break switching by default: it is just neces-

sary to turn on the switch for the new connection, waiting long enough (if necessary)

for the switch to close fully and stop bouncing, then turn off the switch for the old con-

nection. Implementing make-before-break switching in a permutation network is not

feasible in general – making a change to a single route often requires several signals

to be rerouted at once. A work-around solution is shown in Fig 6.15, where a pair of

identical permutation networks is connected in parallel and are switched as follows:

CHAPTER 6. RECONFIGURABLE MANIFOLDS 124

1. Initially, Switch A is off and switch B is on.

Permutation Network A is carrying all signals and Permutation Network B is not

connected.

2. A new switch configuration is computed, and used to initialise Permutation Net-

work B

3. Turn on Switch B.

4. Turn off Switch A.

At this point, Permutation network B is now carrying all signals, and Permutation

Network A is not connected.

For the next cycle of reconfiguration, the procedure continues with A and B swapped.

This approach avoids switching glitches during reconfiguration of the permutation net-

works because whenever reconfiguration occurs, the permutation network in question is

disconnected – actual switching of live signals only occurs during steps 3 and 4, which

can trivially be arranged to be guaranteed clean.

Though this work-around implies slightly more than a doubling of hardware require-

ments, it nevertheless maintains O(N log N) complexity. Adding a third, redundant, per-

mutation network as a hot spare allows modular redundancy to be implemented with

a 3 times multiplier on hardware requirements, which compares well with the 4 times

multiplier that would result from replacing each component switch with a redundant

series-parallel switch network (see Fig. 6.12).

6.2.6 Grounding

Grounding of electronic systems within satellites is broadly similar to the grounding

of Earth-based electronics; as-such, the same techniques and best practice applies in

both cases. In satellites, grounding is particularly important because of the charging

effect, whereby charged particles impacting the spacecraft impart a (potentially large)

electric charge – careful grounding all conductive parts typically reduces or eliminates

any consequential problems.

It is normal practice for a spacecraft to implement a ground network with a star

topology – a single central grounding point is connected radially to the grounds on all

subsystems. Cycles in the ground network are avoided, because they can form unwanted

single-turn secondaries that may pick up hum or other unwanted noise from any heavy

current subsystems in the vicinity.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 125

Normally, grounds should not need to be switched by a reconfigurable manifold – a

conventional, fixed, star ground topology should be sufficient for nearly all cases. Signals

that are routed along shielded paths may require switchable ground connections3 at one

or both ends in order to avoid ground loops, though careful consideration of possible

ground routing requirements may avoid this.

6.3 Self-organisation

In some circumstances, it is undesirable or even impossible to precalculate routing for a

reconfigurable manifold. The responsive space paradigm requires that disparate subsys-

tems should be able to be plugged together in any convenient manner, at which point

they should self-organise and work together without human intervention. Achieving

concept-to-launch times of the order of one week does not leave much time for anything

other than physical assembly of the spacecraft, so the electronic subsystems must, of

absolute necessity, not require a lengthy design process.

Self-organisation, at a fundamental level, requires subsystems to be able to discover

each other, negotiate and configure any necessary wiring, and also to cooperate in main-

taining the long-term reliability of the connectivity. These issues are discussed in detail

in the remainder of this section.

6.3.1 ‘Space Velcro’

Some technologies absolutely require self-organisation in order to function at all. Fig. 6.16

is an electron micrograph of Joshi et al’s Microcilia concept [75, 123, 25]. MEMS technol-

ogy is used to construct micron scale, articulated ‘cilia’ that are capable of manipulating

small objects and of allowing the docking of small microsatellites. Assuming that electri-

cal connections between the mated surfaces can be achieved, a self-organising, reconfig-

urable manifold based satellite could automatically configure any necessary connections

during docking, then automatically recover the routing resources once the microsatellite

has undocked.

Brei et al have investigated a passive interconnect architecture known as Active Vel-

cro [37, 27, 26]. Fig. 6.17 illustrates the concept4. Mating, Velcro-like surfaces also

contain a (possibly large) number of connectors, a proportion of which happen to make

valid connections. Discovering these connections, then routing them via a reconfigurable

3Also known as ground lifts to electrical engineers.
4Note that this is the author’s rendering, and is intended to be representational of the connectivity

approach rather than an accurate physical description.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 126

Photo: John Suh, University of Washington

Figure 6.16: Microcilia cell

Velcro™ hook-and-loop surfaces

Randomly spaced contacts
A significant proportion of

contacts make valid

connections

Figure 6.17: Active Velcro

manifold, potentially allows extremely straightforward ad-hoc construction. In manned

spaceflight applications, an astronaut could connect or disconnect a piece of equipment

simply by sticking or unsticking it to a Velcro-like pad5. In satellite applications, assum-

ing that launch G force and vibration constraints are met, the same approach could allow

extremely rapid construction and deployment.

5It has long been standard practice to use Velcro to prevent small objects from floating around the
cabins of manned spacecraft.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 127

6.3.2 Local routing

In a very small satellite, or within a single subsystem of a more complex satellite, routing

may be exclusively local, i.e. switched only by a single level of switch networks. All con-

nections in such a case would occur only to the edge of a single manifold, or cluster of

sub-manifolds configured to act logically as a single manifold, with the consequence that

the routing of all signals is equivalent only to routing across the manifold itself. Comput-

ing switch assignments for such an architecture is relatively trivial, with complexity of

the order of O(N2) for a crossbar architecture or O(N log N) for a permutation network.

6.3.3 System level routing

Purely local routing requires a strict star architecture, with the manifold at the hub. This

physical geometry does not suit all applications – in many cases, particularly in larger

spacecraft, it is likely to be more appropriate to distribute the switching around the

craft. Though it is theoretically possible to construct a large crossbar switch by ganging

together smaller switches, this would be an expensive approach since the amount of

inter-switch cabling would rise in proportion to the square of the number of switches.

A more sensible and practical approach would be to construct a manifold-of-manifolds

with an architecture resembling that of a circuit-switched telephone network – a number

of manifolds handle primarily local connections internally, whilst handing off longer-

distance connections via multicore trunk connections to other manifolds.

Computationally, the system level routing problem tends towards NP in the worst

case (e.g. a manifold-of-manifolds where each manifold consists of exactly one switch

and connectivity between manifolds is arbitrary is essentially the same problem that

is discussed in Section 6.2.4.5), though the relatively small number of manifolds and

relatively large amount of connectivity within each manifold is likely to minimise the

consequences of this.

As with circuit-switched telephone networks, in general the manifold-of-manifolds

approach would not support all possible permutations, which suggests that in responsive

space applications, it makes sense either to adopt a local-routing-only approach, or to

deliberately overspecify the amount of manifold-to-manifold interconnection resources.

6.3.4 Dynamic discovery

The dynamic discovery of connections is something that is becoming increasingly common

in general-purpose computing. The USB standard, for example, allows devices to be dis-

covered and configured automatically without significant human intervention. From the

CHAPTER 6. RECONFIGURABLE MANIFOLDS 128

Candidate

power pins
DC-DC

Converter

Scavenged

supply out

Figure 6.18: Power scavenging circuit

point of view of reconfigurable manifolds, the dynamic discovery problem is somewhat

trickier, in that it is necessary to first power up any neighbouring subsystems, establish

contact with them (potentially with zero prior knowledge of their wiring configuration),

negotiate any required connections, then route the necessary signals. As a second re-

quirement, it is then necessary to continuously re-test the existing connectivity in order

that faults can be corrected and that subsystems coming on line or going off line can be

connected and disconnected correctly.

In this section, the requirements for achieving reliable dynamic discovery, continuous

testing and fault recovery are discussed.

6.3.4.1 The ‘chicken-and-egg’ initial power-up problem

It is a truism that any automatic discovery algorithm can only possibly run on hard-

ware that is itself powered up. However, if a subsystem’s power connections have not

yet been discovered and configured, it will not (yet) be powered up – hence there is

a chicken-and-egg problem. Though no longer in common use, a well-known solution

already exists. For many years, the most commonly used PC peripheral interface stan-

dards, RS232 and Centronics, both suffered from a design oversight – no power supply

pins – that proved maddening for any hardware engineer attempting to design small

peripherals without separate mains power supply connections. Designers nevertheless

succeeded in working around the limitation by including circuits that scavenged power

from the I/O pins themselves. The technique is illustrated in Fig. 6.18 – a diode network,

effectively a large-scale generalisation of a full-wave rectifier circuit, synthesises power

rails effectively by implementing a minimum/maximum function on the voltages that are

present. The clamping, smoothing and DC-DC converter circuitry takes the potentially

rather unpredictable raw output from the diode network and turns it into clean power

CHAPTER 6. RECONFIGURABLE MANIFOLDS 129

that can be safely used to power up discovery circuitry prior to permanent routes being

put in place.

Given suitable power scavenging circuits, a feasible power-up procedure for a large,

manifold-of-manifolds architecture might be follows:

1. Power is applied to the first manifold through an arbitrary power pin.

2. The power scavenger circuit synthesises a suitable voltage rail for the embedded

processor and discovery hardware responsible for the manifold.

3. All switches within the manifold are initialised to open circuit.

4. The power connection is detected, then connected via the manifold, thereby dis-

abling the diode network. This step avoids the inherent voltage drop across the

diode network, whilst also reducing power consumption and heat dissipation slightly.

5. The manifold starts to listen for connection requests from other subsystems (see

Section 6.3.4.3).

6. Power is temporarily routed to arbitrary pins on neighbouring subsystems that cur-

rently do not appear to be active, giving them the chance to power up and begin

their own discovery process. They may request that power is supplied through a

different pin, if necessary, or request that the existing pin should remain connected

indefinitely6.

Eventually, all subsystems will be powered up, with the discovery process continuing

to bring online all other necessary connections.

6.3.4.2 Watchdogs

It is standard practice for embedded processors in high reliability, mission critical and

safety critical systems to be equipped with watchdog circuits, see Fig. 6.19.

A watchdog circuit is essentially a simple timer that is periodically reset by the host

processor in such a way that, if the host processor happens to fail to reset it within a

predetermined interval, the watchdog timer performs a hard reset on the host processor.

Generally, this is integrated into a critical loop within the embedded software, so that if

the program crashes the timer will fail to be reset, causing an automatic restart of the

processor.

6Though it may be subject to change as part of the self-test algorithm.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 130

Embedded

CPU

Timer
Reset Reset Time OutI/O Port

Figure 6.19: Typical watchdog circuit

At a simplistic level, there is no reason why such a restart should cause problems

for a manifold-of-manifolds architecture, though careful attention must be given to the

following issues:

1. In the event of a watchdog reset, all external connections must be torn down, just

in case the crash was itself caused by a faulty connection or, for example, by a

single-event effect affecting the manifold itself.

2. Any negotiation protocol must be able to cope, e.g. by implementing timeouts, with

connections going down without any corresponding explicit notification.

6.3.4.3 Discovery probe circuits

Connection discovery depends upon an ability to safely probe connections to find out

what neighbouring subsystem they are connected to. The outline circuit shown in Fig. 6.20

shows how a suitable ‘discovery probe’ might be implemented. The circuit shows a

UART (bidirectional serial interface) connected to a host processor, whose serial I/O

ports (marked TxD and RxD) assume good quality, logic-level signals. On the transmit

side, the signal is first buffered in order to protect the UART7, then high pass filtered to

achieve AC coupling and connected to the probe output via a resistor, whose value should

be carefully selected in order to limit worst case current in the event of an accidental con-

nection to a power or high current analogue signal to a level that cannot cause damage.

On the receive side, a similar current limiting resistor and high-pass network protects the

active components from direct connection to otherwise potentially damaging signals. A

DC-coupled linear amplifier boosts the signal, then a Schmitt trigger [111] (comparator

7A high current buffer amplifier constructed from relatively large geometry transistors is far less likely
to be damaged by a voltage spike than a UART I/O pin.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 131

Embedded

CPU

UART

TxD

RxD

Gain

Buffer

To routing

network

Figure 6.20: A possible discovery probe circuit

Packet

Header

Sync

Waveform
Payload Checksum

Figure 6.21: Typical packet format

with hysteresis) squares up the signal and raises it to logic levels suitable for the RxD

input of the UART. Current limiting resistors should be chosen with values that are not

too overspecified, since lower values are likely to result in better noise performance and

higher achievable data rates.

In essence, the probe circuit is a simplified, extremely robust variation of a shared

bus CSMA/CD network interface, in the style of 10Base2 Ethernet. AC coupling and

a relatively high series resistance minimises the chance of damage due to accidental

connection to higher voltage signals, whilst the ability to send and receive digital data

without needing to switch between transmit and receive modes makes implementing

higher level protocols relatively straightforward.

Sending NRZ (non-return to zero) serial data across AC coupled connections requires

careful design of the low-level line protocol. Sending, for example, a long string of ones

will cause the voltage to decay back to a centre value over a period of time that is deter-

mined by the time constant of the high-pass filter. Similarly, a data packet that consists

predominantly of ones (or zeros) will tend to shift away from the most common value,

causing an unwanted DC bias and consequential reduction in noise margins. Typically

this is addressed by arranging for the data encoding to implicitly retain an equal number

of 0s and 1s – a trivial, though inefficient, approach is to spread an 8 bit byte across

16 bits, where each input bit corresponds to an inverted and a non-inverted copy in the

output word. More efficient encodings exist that spread 2 bytes across 24 bits.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 132

6.3.4.4 Line protocol

The main function of a suitable line protocol is to allow the discovery of connections,

then to allow routing negotiation for signals. Probe circuits will typically alternate be-

tween sending packets that announce the identity of the relevant wire and listening for

incoming packets that identify the other side of the connection. A suitable packet format

is likely to follow the pattern shown in Fig. 6.21. Initially, a synchronisation waveform

begins the transmission, whose purpose is to overcome any DC bias, whilst allowing the

receiving UART time to lock on to the data. A packet header follows, identifying the kind

of packet that is being sent, followed by the packet payload and finally a checksum.

6.3.4.5 Connection establishment

Connections are established as follows (assuming a single manifold):

1. Both endpoints announce their identity, and announce the identifier of the signal

that they wish to connect to.

2. Manifold detects the announcements.

3. Manifold replies to both end points to say that the connection is being established,

then ceases to probe either connection.

4. Manifold establishes the connection, within a predetermined maximum time inter-

val.

5. Both endpoints are now free to use the connection.

More complex manifold-of-manifolds architectures will require more complex nego-

tiation and routing, though the necessary protocols are likely to remain similar. A typi-

cal connection establishment protocol across a manifold-of-manifolds architecture would

follow the following pattern (assuming that the endpoints are on different manifolds):

1. Both endpoints announce their identity to their local manifolds, along with a glob-

ally unique signal identifier.

2. Each manifold announces the signal’s availability to neighbouring manifolds, along

with a distance measure. This takes place separately for each endpoint.

3. Signal availability information continues to propagate across the manifold-of-manifolds.

If a manifold receives connectivity information from more than one neighbouring

manifold, this is ranked with the lowest distance measure first. Termination may

CHAPTER 6. RECONFIGURABLE MANIFOLDS 133

be guaranteed by ensuring that connectivity information is propagated only when

shorter distance measures are found than any previous measure announced on the

same connection – the algorithm will therefore be guaranteed to reach a fixed point

after at most a number of steps bounded by the number of manifolds in the system.

4. After a delay to allow propagation to complete, the endpoint manifolds now may

use the routing information that has been collected in order to establish a shortest

route across the manifold-of-manifolds.

This algorithm is essentially a distributed variation of Dijkstra’s algorithm [50]. Since

each manifold (graph node) has its own processor, time complexity is effectively O(N)

rather than the more usual O(N2), since processing power scales with N . The approach

resembles the OSPF (Open Shortest Path First) routing protocol [100] in some respects.

Though this approach is relatively expensive in terms of the communications band-

width required for routing, it nevertheless is unaffected by a dynamically changing ar-

chitecture, or by component manifolds being unavailable, since routes will always be

discovered if they exist, however complex they may be. In a fixed architecture satellite,

some of this overhead may be avoided by precomputing the routing tables – such an ap-

proach would in principle be closer to the approach taken by the BGP (Border Gateway

Protocol) [107].

6.3.4.6 Stale connection tear-down

In the event that a subsystem crashes, stale connections should be torn down after a

known time-out interval. The discovery probe protocol should also allow a connection to

be torn down more rapidly by announcing that a neighbouring connection is no longer in

use. Assuming that a dynamic testing and fault recovery process will be continuously ap-

plied, there is no requirement for a ‘keep alive’ protocol to ensure that valid connections

stay up (see also Section 6.4).

6.4 Dynamic testing and fault recovery

The same probe architecture necessary for discovery is also well suited to end-to-end

testing of connections – if a connection is faulty (e.g. open circuit, shorted to ground or

shorted to power), it will not be used, since the discovery process will fail to recognise

it. As a consequence of this, at least for a short time after the discovery process has

completed, all discovered connections may be regarded as functioning correctly. Over

time, there is an increasing probability that, for example, permanent latch-up damage to

CHAPTER 6. RECONFIGURABLE MANIFOLDS 134

a digital crossbar switch, may cause one or more connections to fail. This limitation can

be avoided by constantly re-testing connections, ideally such that no connection may be

established for a period longer than the minimum necessary to achieve the desired level

of reliability.

6.4.1 Fault recovery protocol

There is actually no specific requirement to implement a fault recovery protocol as-such;

the ability to set up and tear down connections, with make-before-break capabilities, is

sufficient. Each end-point manifold should implement the following procedure (discov-

ery and initial establishment of connections is assumed to have happened already):

1. Choose a signal on a round-robin basis.

2. Establish a second route to the same remote end-point through the discovery proto-

col, which has the side-effect of ensuring that end-to-end connectivity is currently

valid.

3. Connect the signal to the newly established route, at both ends, whilst leaving the

original connection in place.

4. Tear down the original connection.

5. Repeat.

Note that in larger systems, connections between manifolds must always provide

sufficient spare connections to allow the discovery protocol to remain in operation at all

times.

The stale connection timeout (see Section 6.3.4.6) should be longer than the worst-

case time necessary to cycle through all connections.

When a connection fails, it will be repaired automatically the next time that the fault

recovery procedure cycles through the relevant signal, because the failed route will no

longer be detected, so it will naturally fall out of the pool of available connections.

6.4.2 Graceful degradation

In a situation where cumulative failures have exceeded the number of available connec-

tions, it is sensible to define a graceful degradation strategy in order to maximise the

spacecraft’s remaining functionality. A simple approach is to rank all signals in order of

CHAPTER 6. RECONFIGURABLE MANIFOLDS 135

importance, with signals toward the end of the list simply being disconnected if insuffi-

cient connectivity is available, though more sophisticated approaches may allow greater

levels of recovery:

Routing signals on a less-ideal sub-manifold Normally, for example, digital data would

be routed through dedicated digital switch networks. In the event that insufficient

digital switching capacity remains, it is potentially feasible to route signals through

spare capacity in other switch networks, e.g. via MEMS switching that would nor-

mally be used for microwave signals or via high speed analogue routes.

Multiplexing Manifolds could potentially be equipped with multiplexing hardware, in

order that multiple low speed signals could be routed through a single connection.

Though this may degrade any signals carried in this way, it may still be preferable

to disconnecting signals entirely.

Emergency backup routing As an extension to the multiplexing approach, in an emer-

gency backup routes could be established by non-standard means, such as via low

power local digital radio links.

6.5 Discussion

At the time of writing, this technology is at a relatively early stage of development; never-

theless, it is possible to determine the following advantages of reconfigurable manifolds

over conventional fixed-architecture spacecraft wiring harnesses:

Cost Reduction Since a reconfigurable manifold does not need to be designed from-

scratch for each satellite, considerable cost reductions in terms of initial design,

validation and verification are likely.

Reduction in Time To Launch (Responsive Space) Reduced design effort has a direct

effect in terms of calendar time, potentially helping reduce a design process that is

conventionally measured in years to just weeks or even days.

Possibility for Re-purposing After Launch If a spacecraft is no longer required for its

initial purpose, given a modular design, it is quite likely that it could be re-purposed

after launch at very low cost. For example, an imaging satellite with excess com-

munications bandwidth could, assuming it has enough fuel, be shifted to another

orbit to act as a communications relay.

CHAPTER 6. RECONFIGURABLE MANIFOLDS 136

Disaster Recovery Now legendary, the recovery of Apollo 13 after an explosion that

deprived the command module of all three of its fuel cells and its entire oxygen

reserve, with all crew alive and unhurt [138], was a direct consequence of heroic

efforts to jury-rig the lunar lander’s oxygen systems in order to keep the crew alive.

A conventional satellite has no astronauts with a kit of spare parts available to

make repairs – typically, failures tend to be terminal. A reconfigurable manifold

offers great potential for jury-rigging the craft, either from Earth or possibly au-

tonomously, so as to allow it to continue with some or all of its mission.

Mass reduction By sharing redundant wiring capacity across all subsystems, the total

amount of copper necessary is reduced considerably in comparison with modular-

redundant conventional wiring. At approximately $30,000 per kg to low earth

orbit, even small savings can have considerable consequences in terms of cost.

The responsive space paradigm makes it essential for plug-and play concepts that

are now ubiquitous in desktop computing (e.g. PCI [2], USB [6] and FireWire/IEEE

1394 [66, 67, 68]) to be migrated to satellite architectures. Though in some cases these

technologies may be used directly (USB, in particular, is currently in use in satellites),

digital networking alone is insufficient. The reconfigurable manifold approach, however,

allows similar results to be achieved for almost all kinds of signal.

Chapter 7

SET Immunity in Delay-Insensitive

Circuits

The work described in this chapter was

previously published in [132].

7.1 Introduction

Most digital electronics is designed assuming a synchronous model; a single global clock

signal drives the clock inputs of every flip flop in the system, and unclocked feedback

loops are outlawed. Synchronous circuits are relatively easy to reason about, which

greatly simplifies the circuit design process. Signals can be thought of as only ever

changing in lock-step with each other, and since the clock rate is typically assumed to

be slow enough to encompass worst-case propagation delays, this makes that gates can

be assumed to behave in exactly the way that Boolean logic predicts.

The real world, however, is fundamentally asynchronous. Even something so simple

as a push button exhibits the characteristic that it can change state at any time, requiring

designers to be very careful when constructing appropriate interface circuits. Intuition

based on the synchronous model tends to break down due to the need to consider timing

information that is continuous in nature. Formal reasoning is generally difficult, so en-

gineers often use inexact discrete time simulations that often miss possible pathological

behaviour.

Abstract interpretation [42, 43], introduced in Section2.2.1, provides a sound formal

framework that allows abstractions of concrete systems to be reasoned about and, ideally,

proven correct. In particular, the technique is very good for enabling continuous, possi-

bly infinitary, behaviour in the concrete world to be modeled finitely. In [130] (see also

Chapter 3), we introduced transitional logic, an abstract interpretation technique resem-

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 138

bling a multi-valued logic that is capable of supporting reasoning about asynchronous

behaviour of combinational circuits.

7.1.1 Majority Voting Circuits

Most safety critical and mission critical systems depend upon modular redundancy in

order to engineer high reliability. Typically, majority voting logic is used to arbitrate

between the outputs of redundant subsystems, as shown in Fig. 7.1.

The original concept of voting logic appears to be due to John von Neumann [143],

and has been widely implemented in terms of digital electronics, analogue electronics

and also mechanically.

A typical 3-way voting circuit implements the Boolean function shown in Table 7.1.

a b c V3(a, b, c)

F F F F

F F T F

F T F F

F T T T

T F F F

T F T T

T T F T

T T T T

Table 7.1: Truth table for 3-way voting logic

7.1.1.1 Analogue Voting Logic

Fig. 7.2 shows a typical implementation based on analogue electronics. In this circuit,

the inputs are assumed to be driven to ground representing F, or driven to the positive

rail when representing T. A resistor network ‘sums’ these voltages, the result of which is

then compared with a reference voltage in order to recover a rail-to-rail Boolean output.

The voltages at the inputs of the comparator for all combinations of the input are shown

as follows:

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 139

Voting

Logic

Redundant

Subsystem

Redundant

Subsystem

Redundant

Subsystem

Input

Output

Subsystem

Input

Output

Non-redundant

subsystem

Vulnerable to single

point failure

Tolerant of transient or permanent

failure of one subsystem

3-way multiple

redundancy

Figure 7.1: Comparison of non-redundant and 3-way redundant subsystems

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 140

Output

a

b

c
Voltage

Comparator

Ra

Resistor values Ra must be equal.

Resistor values Rb must be equal.

Vsupply

Ground (0V)

Ra

Ra

Rb

Rb

Figure 7.2: Analogue majority voting circuit

a b c Sum Voltage Reference Voltage Output

F F F Ground 1
2
× Vsupply F

F F T
1
3
× Vsupply

1
2
× Vsupply F

F T F
1
3
× Vsupply

1
2
× Vsupply F

F T T
2
3
× Vsupply

1
2
× Vsupply T

T F F
1
3
× Vsupply

1
2
× Vsupply F

T F T
2
3
× Vsupply

1
2
× Vsupply T

T T F
2
3
× Vsupply

1
2
× Vsupply T

T T T Vsupply
1
2
× Vsupply T

Note that the output of the comparator is T iff the sum voltage exceeds the reference

voltage, and that this circuit implements exactly the required Boolean function.

Analogue voting circuits are quite popular due to their simplicity and inherent radia-

tion hardness – resistors are not easily degraded by radiation, and voltage comparators

can be built from extremely robust large geometry bipolar transistors. However, as shown

in Fig. 7.3, the usually generous noise margins of familiar logic families are eroded signif-

icantly: 3-way voting implies a best-case margin of just 1
6
×Vsupply. 5-way voting implies a

margin of 1
10

× Vsupply, so overshoot, ringing due incorrect termination, resistor tolerance

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 141

Vsupply

Time

2/3

1/2

1/3

Ground

Overshoot due to limited

signal bandwidth and/or imperfect

termination

Poor Noise

Margins

Thermal and pickup noise

Figure 7.3: Analogue majority voting noise margins

errors and thermal noise all place limits on effective reliability and create some tricky

design challenges. Choosing appropriate resistor values can also be problematic – small

values will enable faster switching, but the current paths created between the power rails

causes power drain and heating of the resistors themselves. Larger values reduce current

requirements, but dynamic performance inevitably suffers.

7.1.1.2 Digital Voting Logic

a

b

c

Output

Figure 7.4: Digital majority voting circuit

Fig. 7.4 shows a purely digital implementation that also implements the necessary

majority voting function. Building a voting circuit from CMOS gates inherits the basic

advantages of the underlying technology; current requirements are essentially propor-

tional to switching rate, with (usually) negligible quiescent leakage current. Switching

speed is inherently fast, again due to the properties of the implementation technology,

and will typically exceed that of a typical analogue implementation very considerably.

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 142

However, since the gates themselves are vulnerable to radiation damage and single event

effects (SEEs), reliability may suffer.

The circuit of Fig. 7.4 may be equivalently expressed1 as

V3(a, b, c)
def
= (a ∧ c) ∨ (a ∧ b) ∨ (b ∧ c).

7.1.2 Analysis by the Karnaugh Map Technique

The traditional approach to analysing the dynamic behaviour of such a circuit typically

involves drawing a Karnaugh map of the function, and marking it with ‘cubes’ represent-

ing each of the product terms (in this case, a ∧ c, a ∧ b and b ∧ c). The Karnaugh map for

this function is shown in Fig. 7.5.

a

b

c

T

TT T

F F F

F

Figure 7.5: Karnaugh map for (a ∧ c) ∨ (a ∧ b) ∨ (b ∧ c)

Any particular assignment of the inputs corresponds to exactly one square of the

grid; in Fig. 7.5, the black bars represent the relevant input being T. For example,

the top left corner square represents a = F, b = T, c = F, and the square representing

a = T, b = T, c = T is located second from the left on the bottom row. Changes to

the inputs may be visualised as movement within the grid, so with b and c static, a

transitioning from F to T represents a move from some square on the top row to the

square directly below it on the bottom row. To anyone unfamiliar with Karnaugh maps,

the order of the squares in the grid seems unusual at first, but is deliberately arranged

in order that a change to any single input causes a grid movement of exactly one square

left, right, up or down2.

1Note that this circuit possesses an unusual symmetry, in that ∧ and ∨ may be interchanged, giving
(a∨c)∧(a∨b)∧(b∨c), without affecting functionality in terms of the Boolean function that is implemented.
This symmetry turns out not to extend to dynamic behaviour, however – see also Section 7.1.5.

2Note that the grid is toroidal and wraps around in all axes, so corresponding squares on opposite edges
are effectively adjacent.

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 143

The utility of Karnaugh maps can be demonstrated by a simple example. The Boolean

function described by the truth table shown in Table 7.1 can be equivalently implemented

as

(a ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (b ∧ c).

Though this ostensibly implements the same function as (a ∧ c) ∨ (a ∧ b) ∨ (b ∧ c), the

Karnaugh map is different, as shown in Fig. 7.6.

a

b

c

T

TT T

F F F

F

Figure 7.6: Karnaugh map for (a ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (b ∧ c)

In the original circuit, with a = T and b = T, switching c from T to F remains within

the cube representing the term a ∧ b. In the modified circuit, this switching requires

jumping between one area, represented by a∧c and b∧c, to the disjoint area representing

a ∧ b ∧ ¬c. Such cases are normally interpreted by electronic designers as a warning of

possible glitches (static hazards).

Returning to the original circuit represented by the Karnaugh map shown in Fig. 7.5,

it appears that a, b and c should be hazard-free, and from simple analysis of the truth

table (or indeed the Karnaugh map), it also seems that errors on any single input will not

affect the output. A näıve designer might therefore conclude that such a voting circuit is

hazard-free, and will provide immunity to both stuck-at faults and single event transients

on the output of any one subsystem.

7.1.3 Analysis by Transitional Logic

In this section, we will analyse the circuit shown in Fig. 7.4 by means of the transitional

logic ℘(T) from Chapter 3. The Karnaugh map technique, as described in Section 7.1.2,

does not provide specific ways of modeling stuck-at or SET faults. They may, however,

be straightforwardly modeled as ⊙F, ⊙T and ⊛ in ℘(T), as follows:

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 144

⊙F(Xn)
def
= F0

⊙T(Xn)
def
= T0

⊛(Xn)
def
= X0..n+1

⊛(t̂)
def
=

⋃

t∈t̂

⊛(t)

The functions ⊙F and ⊙T model permanent failures that manifest as inputs that are

permanently stuck at F or T respectively. The ⊛ function models the effect of a cosmic ray

impact – the signal may be unaffected3, may gain one extra pulse, or have any number

of existing pulses masked by the SET.

It makes sense to begin by modeling a correctly functioning circuit, with no SETs or

stuck-at faults, so that its behaviour can be compared with modeled faults. In normal

operation, the inputs a, b and c are assumed to track each other’s values, possibly with

some timing skew. We therefore consider the two steady states, a = b = c = F0 and

a = b = c = T0, and the clean transitions a = b = c = ↑0 and a = b = c = ↓0 as

representing the behaviour that we are most concerned about. Simple calculation gives

the results show in Table 7.2. These results support the engineer’s intuition that follows

a b c V3(a, b, c)

F0 F0 F0 F0

T0 T0 T0 T0

↑0 ↑0 ↑0 ↑0

↓0 ↓0 ↓0 ↓0

Table 7.2: Behaviour of correctly functioning circuit

from Karnaugh map analysis. Table 7.3 shows the corresponding result for a stuck-

at fault on one input4 – so far, the simplistic analysis of the previous session remains

predictive.

The results for the SET model, shown in Table 7.4, are unexpected. Where a, b and

c are steady, the circuit does not pass on SETs, as one might hope. However, during a

transition of the inputs, not only can the SET get through, but in worst case, two glitch

pulses may be introduced – something that very much contradicts the ‘obvious’ results

3i.e., ∀t ∈ T . t ∈ ⊛({t}), which follows trivially since n ∈ 0..n + 1 for all n ≥ 0
4Since the circuit is symmetric with respect to all possible permutations of its inputs, we model faults

on input a but can be confident that these results also apply to faults on b or c. Sanity check calculations
(not shown here) confirm this assumption.

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 145

a b c V3(⊙F(a), b, c) V3(⊙T(a), b, c)

F0 F0 F0 F0 F0

T0 T0 T0 T0 T0

↑0 ↑0 ↑0 ↑0 ↑0

↓0 ↓0 ↓0 ↓0 ↓0

Table 7.3: Behaviour of circuit with one stuck-at fault

a b c V3(⊛(a), b, c)

F0 F0 F0 F0

T0 T0 T0 T0

↑0 ↑0 ↑0 ↑0..2

↓0 ↓0 ↓0 ↓0..2

Table 7.4: Behaviour of circuit with one SET

of the traditional approach. Though the prediction of the transitional logic analysis is

not intuitively obvious, the correctness5 and completeness6 of its predictions have been

proven mathematically (see Section 3.4.1). Nevertheless, a little patience with pencil

and paper makes it possible to identify combinations of timing delays that can indeed

demonstrate this result in practice.

7.1.3.1 Extension to 5-way Voting Logic

A significant and well-known problem with the Karnaugh map approach is that, when

the number of inputs exceeds four, diagrams start to require more than two dimensions.

At a pinch, it is possible to represent extra dimensions by drawing multiple tables, but

this is difficult and rather error-prone. The transitional logic approach does not suffer

from such limitations. Extending the design approach of the circuit shown in Fig. 7.4 to

five inputs is relatively straightforward, resulting in the following expression:

V5(a, b, c, d, e)
def
= (a ∧ b ∧ c) ∨ (a ∧ b ∧ d) ∨ (a ∧ b ∧ e) ∨ (a ∧ c ∧ d) ∨ (a ∧ c ∧ e)

∨(a ∧ d ∧ e) ∨ (b ∧ c ∧ d) ∨ (b ∧ c ∧ e) ∨ (b ∧ d ∧ e) ∨ (c ∧ d ∧ e)

Stuck-at faults are tolerated as expected, with up to two stuck inputs being tolerated. SET

analysis results are shown in Table 7.5. 5-way voting logic, like its 3-way counterpart, is

5The prediction includes all possible behaviour, though may include some impossible behaviour, i.e., it
may in a formal sense be regarded as an overapproximation.

6The prediction includes all possible behavior, and all predicted behaviours can happen.

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 146

a, b, c, d, e V5(a, b, c, d, e) V5(⊛(a), b, c, d, e)

F0 F0 F0

T0 T0 T0

↑0 ↑0 ↑0..6

↓0 ↓0 ↓0..6

Table 7.5: SET behaviour of 5-value voting logic

susceptible to allowing SETs through during transitions on its inputs. The analysis shows

that, in worst-case, a single SET pulse may manifest as up to six pulses at the output;

though more tolerant of stuck-at faults, it appears that 5-way voting logic may in fact be

significantly less tolerant of SETs.

7.1.4 A Possible Solution?

The expression V3(⊛(↑0), ↑0, ↑0) can be interpreted as modeling a situation where the

three inputs of the voting circuit at some unspecified time transition from F to T, with an

SET superimposed on one of the inputs at some, again unspecified, time. Recalling that

expressions in the transitional logic essentially reflect extremes of behaviour that may be

caused under the union of all possible timing relationships, it follows that constraining

the timing relationships that are allowed may similarly constrain possible behaviour.

Constraining the inputs to switch one at a time in a predetermined sequence, perhaps

as a consequence of an externally imposed communications protocol, can restrict what

behaviours are possible. We may therefore view the input protocol as a sequence of

well-defined states and transitions7, as described in Table 7.6.

a b c V3(a, b, c) V3(⊛(a), b, c) V3(a,⊛(b), c) V3(a, b,⊛(c))

F0 F0 F0 F0 F0 F0 F0

F0 F0 ↑0 F0 F0..1 F0..1 F0

F0 F0 T0 F0 F0..1 F0..1 F0

F0 ↑0 T0 ↑0 ↑0..2 ↑0..1 ↑0..1

F0 T0 T0 T0 T0 T0..1 T0..1

↑0 T0 T0 T0 T0 T0..2 T0..2

T0 T0 T0 T0 T0 T0 T0

Table 7.6: SET behaviour 3-value voting logic with sequencing

7This approach breaks the symmetry between a, b and c, so ⊛(a), ⊛(b) and ⊛(c) must be considered
separately

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 147

The results can easily be verified to be correct, but are nonetheless disappointing.

Extending this approach to the 5-way voting circuit V5 yields similar results, as shown in

Table 7.7.

a b c d e V5(a, b, c, d, e) V5(⊛(a), b, c, d, e) V5(a,⊛(b), c, d, e) V5(a, b,⊛(c), d, e) V5(a, b, c, ⊛(d), e) V5(a, b, c, d, ⊛(e))

F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0

F0 F0 F0 F0 ↑0 F0 F0 F0 F0 F0 F0

F0 F0 F0 F0 T0 F0 F0 F0 F0 F0 F0

F0 F0 F0 ↑0 T0 F0 F0..1 F0..1 F0..1 F0 F0

F0 F0 F0 T0 T0 F0 F0..1 F0..1 F0..1 F0 F0

F0 F0 ↑0 T0 T0 ↑0 ↑0..3 ↑0..3 ↑0..1 ↑0..1 ↑0..1

F0 F0 T0 T0 T0 T0 T0 T0 T0..1 T0..1 T0..1

F0 ↑0 T0 T0 T0 T0 T0 T0 T0..3 T0..3 T0..3

F0 T0 T0 T0 T0 T0 T0 T0 T0 T0 T0

↑0 T0 T0 T0 T0 T0 T0 T0 T0 T0 T0

T0 T0 T0 T0 T0 T0 T0 T0 T0 T0 T0

Table 7.7: SET behaviour of 5-value voting logic with sequencing

From examination of Tables 7.6 and 7.7 in comparison with Tables 7.4 and 7.5, it is

clear that the 5-way voting circuit has improved worst-case behaviour, but there is no

significant advantage in imposing this sequential protocol on a 3-way voting regime.

7.1.5 Duality of V3 and V
′
3

Recalling the definition for V3,

V3(a, b, c)
def
= (a ∧ c) ∨ (a ∧ b) ∨ (b ∧ c)

an alternative implementation,

V
′
3(a, b, c)

def
= (a ∨ c) ∧ (a ∨ b) ∧ (b ∨ c)

is widely assumed to be equivalent (dual), because ∧ and ∨ can be interchanged without

affecting the Boolean function that the circuit implements. This assumption does not

hold with regard to dynamic behaviour.

Theorem 7.1.1. V3 and V
′
3 are not equivalent. Proof by counterexample:

V3(⊛(F0), F0, ↑0)

= V
′
3(F0..1, F0, ↑0)

= (F0..1 ∧ ↑0) ∨ (F0..1 ∧ F0) ∨ (F0 ∧ ↑0)

= F0..1 ∨ F0 ∨ F0

= F0..1

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 148

whereas

V
′
3(⊛(F0), F0, ↑0)

= V
′
3(F0..1, F0, ↑0)

= (F0..1 ∨ ↑0) ∧ (F0..1 ∨ F0) ∧ (F0 ∨ ↑0)

= ↑0..1 ∧ F0..1 ∧ ↑0

= F0..2.

Note that inverting all inputs and the output restores duality, i.e.,

∀a ∈ ℘(T), b ∈ ℘(T), c ∈ ℘(T) . V3(a, b, c) = ¬V
′
3(¬a,¬b,¬c)

but this is just a consequence of the fact that de Morgan’s law holds for the transitional

logic, rather than any special property of this particular circuit.

7.2 Generalising the Result

It is clear from the preceding sections that 3- and 5-input majority voting circuits are

not immune to SETs. In this section, we generalise this result in order to show that SET

immunity cannot be guaranteed by any possible delay-insensitive circuit.

Definition 7.2.1. SET Immunity. A SET-immune circuit should be able to function correctly

(i.e., not pass on a SET pulse to its output or outputs) when an arbitrarily chosen input is

subjected to a SET, which itself may occur at any time and persist for any (finite) duration.

More formally,

Immune(f ♯)
def
=∀i ∈ [1, k] ∀(x1, . . . , xk) ∈ (℘(T))k .

f ♯(x1, . . . , xi−1,⊛(xi), xi+1, . . . , xk) = f ♯(x1, . . . , xk)

where f ♯ : (℘(T))k → ℘(T).

Corollary 7.2.1. SET sensitivity. Since a genuinely SET-immune circuit must be immune

for all possible combinations of inputs, it follows that a single counter-example is sufficient

to show that a given circuit is not SET immune.

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 149

Definition 7.2.2. Refinement. Given the traces t ∈ T, u ∈ T, t̂ ∈ ℘(T) and û ∈ ℘(T),

t < u
def≡ Val(t) = Val(u) ∧ Subs(t) ≥ Subs(u)

t ≻ u
def≡ Val(t) = Val(u) ∧ Subs(t) > Subs(u)

t̂ < û
def≡ (∀t ∈ t̂, u ∈ û . Val(t) = Val(u)) ∧ MaxSubs(t̂) ≥ MaxSubs(û)

t̂ ≻ û
def≡ (∀t ∈ t̂, u ∈ û . Val(t) = Val(u)) ∧ MaxSubs(t̂) > MaxSubs(û)

where Val : T → {F, T, ↑, ↓}, Subs : T → N and MaxSubs : ℘(T) → N were defined in

Section 3.4 as follows:

Val(Xn)
def
= X

Subs(Xn)
def
= n

MaxSubs(t̂)
def
= max

t∈t̂
(Subs(t))

Note that t̂ ≻ û implies t̂ 6= û.

Lemma 7.2.1. Given any trace t ∈ T, ⊛t ≻ t. Proof:

1. Expand ⊛t ≻ t to ⊛Xn = X0..n+1 ≻ Xn.

2. Since ∀n ∈ N . n + 1 > n, the proof follows from Definition 7.2.2.

Lemma 7.2.2. The operators ⊛ and ¬ commute under composition, i.e., ⊛ ◦ ¬ = ¬ ◦ ⊛.

Proof by cases:

1. ⊛(¬Fn) = ⊛Tn = T0..n+1 = ¬F0..n+1 = ¬(⊛Fn).

2. ⊛(¬Tn) = ⊛Fn = F0..n+1 = ¬T0..n+1 = ¬(⊛Tn).

3. ⊛(¬↑n) = ⊛↓n = ↓0..n+1 = ¬↑0..n+1 = ¬(⊛↑n).

4. ⊛(¬↓n) = ⊛↑n = ↑0..n+1 = ¬↓0..n+1 = ¬(⊛↓n).

Corollary 7.2.2. Negation is linear and strictly increasing, i.e., ¬(⊛x) ≻ ¬x. Proof:

1. From Lemma 7.2.2, ¬(⊛x) = ⊛(¬x), so ⊛(¬x) ≻ ¬x.

2. Rewriting ¬x as y gives ⊛y ≻ y, so the proof follows as a consequence of Lemma 7.2.1.

Corollary 7.2.3. SET sensitivity of ¬. Proof:

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 150

1. Since ¬(⊛x) ≻ ¬x, it follows that ¬(⊛x) 6= ¬x, therefore ¬ is SET-sensitive for all

x ∈ T.

Lemma 7.2.3. Transmission line delay is linear and strictly increasing, i.e., ∆(⊛x) ≻ ∆x.

Proof:

1. Since ∆ is an identity function with respect to ℘(T), we can rewrite ∆(⊛x) ≻ ∆x as

⊛x ≻ x.

2. The proof follows from Lemma 7.2.1.

Corollary 7.2.4. SET sensitivity of ∆. Proof:

1. Since ∆(⊛x) ≻ ∆x, it follows that ∆(⊛x) 6= ∆x, therefore ∆ is SET-sensitive for all

x ∈ T.

Lemma 7.2.4. The operators ⊛ and � commute under composition, i.e., ⊛ ◦ � = � ◦ ⊛.

Proof:

1. �(⊛Xn) = �X0..n+1 = X0..n+1 = ⊛X0..n = ⊛(�Xn).

Corollary 7.2.5. Inertial delay is linear and strictly increasing, i.e., �(⊛x) ≻ �x. Proof:

1. From Lemma 7.2.4, �(⊛x) = ⊛(�x), so ⊛(�x) ≻ �x.

2. Rewriting �x as y gives ⊛y ≻ y, so the proof follows as a consequence of Lemma 7.2.1.

Corollary 7.2.6. SET sensitivity of �. Proof:

1. Since �(⊛x) ≻ �x, it follows that �(⊛x) 6= �x, therefore � is SET-sensitive for all

x ∈ T.

Lemma 7.2.5. Linearity of ∧: (⊛x) ∧ y < x ∧ y. Proof by cases8:

1. F0 is a zero with respect to ∧, e.g., x ∧ F0 = F0 = (⊛x) ∧ F0.

2. Where n > 0, (⊛x) ∧ Fn ≻ x ∧ Fn.

3. Where n ≥ 0 and X ∈ {T, ↑, ↓}, (⊛x) ∧ Xn ≻ x ∧ Xn.

Corollary 7.2.7. Linearity of ∨: (⊛x) ∨ y < x ∨ y. Proof:

1. T0 is a zero with respect to ∨, e.g., x ∨ T0 = T0 = (⊛x) ∨ T0.

2. Where n > 0, (⊛x) ∨ Tn ≻ x ∨ Tn.

8For brevity, we do not list all cases in detail

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 151

3. Where n ≥ 0 and X ∈ {T, ↑, ↓}, (⊛x) ∨ Xn ≻ x ∨ Xn.

Note that ∧ and ∨ are dual and are related by a de Morgan’s law, e.g., a ∧ b =

¬(¬a ∨ ¬b).

Corollary 7.2.8. SET sensitivity of ∧ and ∨. For the specific case where one or both of a and

b in a ∧ b or a ∨ b are zeros, the circuit is SET-insensitive. In all other cases, SET sensitivity

follows from strictly-increasing linearity. Since only one counter-example is required to show

SET sensitivity, it can be concluded that both ∧ and ∨ are SET sensitive.

Theorem 7.2.1. SET immunity cannot be guaranteed for any possible delay-insensitive

circuit. Proof:

1. From Corollary 7.2.4, we know that ∆ is SET-sensitive, and from Lemma 7.2.3 we

know that it is also linear and strictly increasing with respect to subscripts.

2. Corollary 7.2.6 shows that � is SET-sensitive, and from Corollary 7.2.5 it is linear

and strictly increasing.

3. From Corollary 7.2.3, ¬ is SET-sensitive, and from Corollary 7.2.2 it is linear and

strictly increasing.

4. Lemma 7.2.5 and Corollary 7.2.7 show that ∧ and ∨ are linear, though only strictly

increasing for non-zero values.

5. Corollary 7.2.8 shows that ∧ and ∨ are SET-sensitive.

6. Given an arbitrary expression constructed by composition of ∧,∨,¬,� and ∆, linearity

follows from structural induction, and given that it is always possible to choose values

for variables other than the group-theoretic zeros F0 and T0, e.g., by choosing values

from ℘(T\{F0, T0}), it follows that all such circuits are SET-sensitive.

7.3 Related Work

Voting logic was first introduced in 1956 by John von Neumann[143] as a means of

constructing reliable circuits (‘organisms’ in his original terminology) from unreliable

components.

NASA’s Office of Logic Design maintains an excellent on-line resource [77] that covers

many aspects of digital design for aerospace applications.

CHAPTER 7. SET IMMUNITY IN DELAY-INSENSITIVE CIRCUITS 152

7.4 Discussion

The work reported in this chapter started with an attempt to create a simple example,

whereby transitional logic could be used to prove the correctness of a well-understood

circuit that would be familiar to most engineers. Finding that this circuit, unexpectedly,

was not in fact able to guarantee to reject single-event transients was surprising, though

the result did make sense on closer examination. Our finding that the same limitation

extends to all possible delay insensitive circuits has some troubling consequences; a prac-

tical SET-immune technology must therefore either be constructed from hardened gates

that can never glitch in response to a SET, or must employ some kind of delay-sensitive

SET rejection approach. It is interesting to note that both of these approaches are used

in aerospace electronics – the widely used RAD6000 and RAD750 radiation hardened

PowerPC processors are built using a radiation hardened standard cell technology with

internally redundant gates constructed at the transistor level, and it is also common prac-

tice to low-pass filter the output of critical voting logic circuits, particularly those used

for applications such as triggering of rockets or explosive bolts.

Part IV

Conclusions

Chapter 8

Conclusions

“I’m at the foot of the ladder. The LM footpads are only depressed

in the surface about one or two inches. Although the surface appears

to be very very fine grained, as you get close to it, it’s almost like

powder. Now and then it’s very fine. I’m going to step off the LM now.

That’s one small step for man, one giant leap for mankind.”

– Neil Armstrong, 20th July 1969 [138] pp. 261.

This thesis has been primarily concerned with the application of two major techniques

from program analysis and transformation, specifically abstract interpretation and partial

evaluation, to digital electronics. Abstract interpretation was applied to the analysis of

asynchronous digital circuits, and partial evaluation was applied to synchronous circuits.

The resulting techniques were then applied to open problems in spacecraft design in

collaboration with NASA Ames and the US Air Force Office of Scientific Research, Space

Vehicles Directorate.

8.1 Contributions

Our primary contributions are summarised as follows:

Transitional Logics. The work described in Chapter 3 represents a first application of

abstract interpretation to the analysis of asynchronous circuits. Our abstract do-

main resembles a multi-valued logic and supports algebraic reasoning – soundness

CHAPTER 8. CONCLUSIONS 155

proofs for the logic’s operators guarantee the correctness of any predictions that

are made.

Achronous Analysis. As a spin-off from of an attempt to relate our transitional logics to

pre-existing related work, we define a class of related achronous analyses, which

adopt an independent attribute model whilst abstracting away relative timing in-

formation.

1st Futamura Projection in Hardware. In Chapter 4, we demonstrate the first example

in hardware of a 1st Futamura projection, whereby a small CPU is partially evalu-

ated against a ROM program image, with the effect of compiling the program into

low-level hardware.

FPGA repair with SAT solvers. In work carried out in conjunction with NASA Ames, in

Chapter 5 we demonstrate the first application of SAT solvers to the generation of

work-around FPGA bit streams that can, in principle, allow an FPGA to continue

to operate after it has sustained permanent latch-up damage from a cosmic ray

impact.

Reconfigurable Manifolds. In work carried out in conjunction with the US Air Force

Office of Scientific Research, Space Vehicles Directorate, in Chapter 6 we investigate

the feasibility of constructing self-configuring, self-repairing, reconfigurable wiring

harnesses for spacecraft.

SET Immunity in Delay-Insensitive Circuits. In Chapter 7, we apply techniques from

Chapter 3 to conclude the negative result that, in general, SET immunity is not

possible for any delay-insensitive circuit, however it might be constructed.

Some lesser contributions that occurred as indirect consequences of the main body of

work are summarised as follows:

HarPE Hardware Description Language. Initially implemented to support the experi-

mental work on hardware partial evaluation that was reported in Chapter 4. HarPE

also proved invaluable in allowing the straightforward generation of non-clausal

SAT problems. The code is in the public domain [127].

NNF-WALKSAT Non-Clausal SAT Solver. Also placed in the public domain [128], the

NNF-WALKSAT solver (see also Appendix B.1) was implemented to support the

work described in Chapter 5.

CHAPTER 8. CONCLUSIONS 156

SET Immunity in 3-way and 5-way Voting Circuits. Though later generalised to encom-

pass all possible DI circuits, Chapter 7 formally analyses the behaviour of voting

circuits that are subjected to single-event transients and to permanent latch-up fail-

ures, concluding that whilst they are (as expected) immune to permanent latch-up

faults, they are not immune to SETs except at times well-removed from transients

on any input.

Non-equivalence of (a ∧ c) ∨ (a ∧ b) ∨ (b ∧ c) with (a ∨ c) ∧ (a ∨ b) ∧ (b ∨ c). In Section 7.1.5,

we prove that this widely-assumed duality does not hold when dynamic behaviour

is properly accounted for.

8.2 Conclusion

The work described in this thesis began with an attempt to bring some of the advantages

of modern program analysis and transformation techniques to hardware engineering.

Initially, this was largely a theoretical endeavour, resulting in the chapters of Part II of

this thesis. An internship with the Robust Software Engineering group at NASA Ames

during the summer of 2004 provided a clear direction, which effectively set the frame-

work for the remainder of the work. A later collaboration with AFOSR consolidated this

further – what otherwise might have remained an entirely abstract project found a real

application. In particular, our SET immunity results were received with some dismay,

because the space engineering community had long hoped for a generic technique that

might combat radiation hardening problems once-and-for-all, and our work showed that,

at least for DI circuits, this is not possible.

There can be little doubt that program analysis and transformation techniques have

a lot to offer the hardware world, though the main ‘customers’ for this, at least in the

short- to medium-term, are likely to come from the safety- and mission-critical systems

world. Space electronics is a particularly extreme case, so it is perhaps not surprising that

we have found the most enthusiastic support for our work from that community. Never-

theless, our techniques are generally applicable, and with the erosion of noise margins

that is a natural consequence of Moore’s Law’s ever-decreasing device geometries, we

conjecture that all VLSI devices of significant complexity will eventually require design

techniques that are currently only needed for radiation-hardened circuits.

Chapter 9

Future Work and Open Questions

“It may have been small for Neil but it was a big one for a little fella like me.”

– Alan Shepard’s first words on stepping onto

the lunar surface, 5th February 1971.

Many opportunities for further work became apparent during the course of the work

described within this thesis. For clarity, these ideas are summarised here on a per-chapter

basis.

9.1 Transitional Logics

Generalisation of Refinement and Equivalence. In Section 3.7, we define refinement

and equivalence relations on circuits. It appears to be possible to generalise this defi-

nition of refinement and equivalence to any abstract domain that is itself amenable to

abstract interpretation.

A Transitional-Logic-Based Simulator. We have already demonstrated that our tech-

nique is potentially useful for logic simulation [131] – implementing a simulator whose

underlying model is a transitional logic is an appropriate next step. Such a simulator

would be capable of detecting possible hazards occurring within time slices that might

otherwise be missed by a conventional discrete-time simulator.

CHAPTER 9. FUTURE WORK AND OPEN QUESTIONS 158

Semi-achronous Analysis. In terms of capturing more analyses and their interrelation-

ships within the abstract interpretation framework, it is desirable to be able to express

limited timing knowledge à la Burch [30] within a non-achronous abstract model that

sits somewhere between our existing ℘(S) and ℘(T).

Gentzen-style Proof System. We experimented with a simple Gentzen-style proof sys-

tem for the 11-value clean/static transitional logic – it would seem possible to extend

this to the more accurate ℘(T), thereby potentially allowing our abstract model to be

used by an automated theorem prover.

Investigating the Group-Theoretic Properties of Transitional Logics. If one regards

our transitional logics as abstract algebras, they appear to be semirings. It seems that

whenever a signal is forked (i.e., whenever a variable appears more than once in an

expression), behaviour is in some respects degenerate, though in other cases the famil-

iar Boolean identities still hold for our logics. This has suggestive parallels with linear

logic [61], which perhaps deserve closer examination.

9.2 Partial Evaluation of Synchronous Circuits

Automated Retiming/Pipelining. The timing information in Section 4.4 indicates that

increasing worst-case path delays place a limit on the level of speedup that can be

achieved with loop unrolling. Such circuits would almost certainly gain significantly in

performance if they were pipelined and/or retimed [39], so it would be highly desirable

to develop a technique that achieves this automatically, perhaps by bit-level transforma-

tion of the circuit. This would appear to be relatively straightforward for combinational

circuits (and hence also any fully-unrolled synchronous circuit), but pipelining partially

unrolled circuits appears to be non-trivial.

Partial Evaluation of Asynchronous Circuits. Performing PE on asynchronous circuits

is fundamentally more difficult than the equivalent transformation of synchronous cir-

cuits. Rewrite rules that are perfectly safe when applied to synchronous circuits may

alter the dynamic behaviour of asynchronous circuits [131, 130], introducing dangerous

glitch states that could cause the circuit to function erratically, if at all. Restricting a

partial evaluator only to known, safe, rewrite rules is one possible way forward which is

likely to be suitable for specialisation, but no straightforward equivalent to loop unrolling

appears to exist.

CHAPTER 9. FUTURE WORK AND OPEN QUESTIONS 159

Register Transfer Level Partial Evaluation. Our work has concentrated on gate-level

PE, which has significant advantages in terms of theoretical simplicity and generality. In

principle, it should also be possible to perform partial evaluation at the register transfer

level, or at the level of Verilog or VHDL source code.

Applying Abstract Interpretation to Hardware Partial Evaluation. Abstract interpre-

tation [42, 43] is often used in combination with PE, usually to determine whether or

not it is appropriate to unroll loops. Applying similar techniques, such as representing

values as convex polyhedra, may make it possible, for example, to optimise a soft core

CPU against a particular program without performing full loop unrolling – the CPU’s ar-

chitecture could be retained, with hardware required for unused instructions optimised

away.

Extending HarPE. The current implementation of HarPE supports experimental work

(as in Section 4.6) quite well, but is not yet suitable for production quality hardware

design. Extending its capabilities to better match the architecture and capabilities of

contemporary target platforms (FPGAs, ASICs, etc.) would be required in order to make

it suitable for commercial use.

PE of an Existing Soft Core. In Section 4.6.3.3, partial evaluation of a very simple

microprocessor was demonstrated. Attempting a similar experiment based on an existing

soft core CPU, rather than a purpose-built example, is a logical next step. Repeating the

full unrolling experiment would be of particular interest.

Power Consumption. The effects of partial evaluation on power consumption are cur-

rently unknown. Combinational specialisation is likely to result in savings proportional

to the proportion of gates that are eliminated, though the effect of loop unrolling on

power is harder to predict and may prove to be specific to a particular circuit.

9.3 Repairing Cosmic Ray Damage in FPGAs with Non-

clausal SAT solvers

Extending the Approach to Asynchronous Circuits. The approach described in Chap-

ter 5 assumes an underlying clocked synchronous model. We hope to apply similar

techniques to the synthesis and manipulation of a wider class of circuits whose dy-

namic characteristics are critical, e.g., self-timed circuits and globally asynchronous lo-

CHAPTER 9. FUTURE WORK AND OPEN QUESTIONS 160

cally synchronous (GALS) circuits. Transitional logics are capable of reasoning about

asynchronous circuits, and also about such circuits’ behaviour in response to SEUs and

permanent latch up faults. An approach, similar to that described in Chapter 5, but using

our more accurate logics may make it feasible to automatically repair FPGA-based circuits

whose asynchronous behaviour is more critical than those relying upon the synchronous

model assumed here.

Evaluating Non-Clausal SAT. Our finding that non-clausal SAT solvers appear to work

better for FPGA synthesis has also been noted by Greaves [62]. Finding out exactly why

this is the case may be useful both within our own problem domain and also in the wider

SAT solver community.

Combining Boolean SAT with Genetic Algorithms. The Boolean SAT expression nec-

essary for local resynthesis can also be used to check the validity of solutions that have

been arrived at by other means, including those generated by genetic algorithms, so it

is possible that a combined approach may offer further benefits. The architectural simi-

larity between our NNF-WALKSAT algorithm and simulated annealing is suggestive that

useful results may be found in this area.

9.4 Reconfigurable Manifolds

Supporting Many-to-Many Connectivity with Permutation Networks. By their na-

ture, permutation networks assume that inputs and outputs will be paired on a 1 : 1

basis. However, some kinds of signal, particularly power busses, would benefit from a

facility for being connectable to multiple end points. A trivial approach would be to

connect two permutation networks in series, with a ladder of switches between adjacent

wires of the connection between the networks: the first manifold would group signals

together that need to be commoned, and the switch ladder would connect them together.

Finally, the second permutation network would rearrange the connections to suit the de-

sired wiring plan. A more elegant solution involving a single permutation network whose

swap nodes have an ability to short their outputs together may also be feasible, though

a proof that this approach is universally applicable (and, of course, less costly than the

dual-network and switch ladder approach) would be beneficial.

Constructing and Trialling a Practical Reconfigurable Manifold. Many, if not all of

the prerequisites for the practical construction of satellites based upon reconfigurable

manifold technology are well-established, so the problem is primarily one of systems

CHAPTER 9. FUTURE WORK AND OPEN QUESTIONS 161

integration rather than difficult original R&D. The next step, given appropriate funding

and the necessary political will, is to design and construct a practical implementation

and, hopefully, to test it in space.

9.5 SET Immunity in Delay-Insensitive Circuits

A Methodology for Constructing SET-Immune Circuits. From our work, we know

that SET immunity can not be achieved by any possible delay-insensitive circuit design

approach. Nevertheless, a design methodology that could guarantee SET-immunity can

be very realistically described as being the holy grail of the space electronics community1.

It seems clear that no achronous model is likely to provide a solution, but this does not

rule out the possibility that a more accurate model that takes relative timing into account

might be an answer. If achievable, the resulting technique would also be immediately

applicable to the design of future deep submicron VLSI circuits, which must overcome

effects similar to SETs that are purely a consequence of poor noise margins.

1Discussions between the author and AFOSR engineers at Kirtland AFB in December 2005 made this
abundantly clear.

Part V

Appendices

Appendix A

Extended Logics

A.1 Transitional Logics

Note that for reasons of brevity tables for ∨ are omitted for some of the larger logics in this

appendix; all however obey de Morgan’s law, so ¬ and ∧ are sufficient to completely derive

∨ in such cases.

5-value (T5)

¬
F T

T F

↑ ↓
↓ ↑
⋆ ⋆

∧ F T ↑ ↓ ⋆

F F F F F F

T F T ↑ ↓ ⋆

↑ F ↑ ↑ ⋆ ⋆

↓ F ↓ ⋆ ↓ ⋆

⋆ F ⋆ ⋆ ⋆ ⋆

∨ F T ↑ ↓ ⋆

F F T ↑ ↓ ⋆

T T T T T T

↑ ↑ T ↑ ⋆ ⋆

↓ ↓ T ⋆ ↓ ⋆

⋆ ⋆ T ⋆ ⋆ ⋆

9-value (T9)

¬
F0 T0

F? T?

T0 F0

T? F?

↑0 ↓0

↑? ↓?

↓0 ↑0

↓? ↑?

⋆ ⋆

∧ F0 F? T0 T? ↑0 ↑? ↓0 ↓? ⋆

F0 F0 F0 F0 F0 F0 F0 F0 F0 F0

F? F0 F? F? F? F? F? F? F? F?

T0 F0 F? T0 T? ↑0 ↑? ↓0 ↓? ⋆

T? F0 F? T? T? ↑? ↑? ↓? ↓? ⋆

↑0 F0 F? ↑0 ↑? ↑0 ↑? F? F? ⋆

↑? F0 F? ↑? ↑? ↑? ↑? F? F? ⋆

↓0 F0 F? ↓0 ↓? F? F? ↓0 ↓? ⋆

↓? F0 F? ↓? ↓? F? F? ↓? ↓? ⋆

⋆ F0 F? ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

∨ F0 F? T0 T? ↑0 ↑? ↓0 ↓? ⋆

F0 F0 F? T0 T? ↑0 ↑? ↓0 ↓? ⋆

F? F? F? T0 T? ↑? ↑? ↓? ↓? ⋆

T0 T0 T0 T0 T0 T0 T0 T0 T0 T0

T? T? T? T0 T? T? T? T? T? T?

↑0 ↑0 ↑? T0 T? ↑0 ↑? T? T? ⋆

↑? ↑? ↑? T0 T? ↑? ↑? T? T? ⋆

↓0 ↓0 ↓? T0 T? T? T? ↓0 ↓? ⋆

↓? ↓? ↓? T0 T? T? T? ↓? ↓? ⋆

⋆ ⋆ ⋆ T0 T? ⋆ ⋆ ⋆ ⋆ ⋆

APPENDIX A. EXTENDED LOGICS 164

13-value (T13)

¬
F0 T0

F+ T+

F? T?

T0 F0

T+ F+

T? F?

↑0 ↓0

↑+ ↓+

↑? ↓?

↓0 ↑0

↓+ ↑+

↓? ↑?

⋆ ⋆

∧ F0 F+ F? T0 T+ T? ↑0 ↑+ ↑? ↓0 ↓+ ↓? ⋆

F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0

F+ F0 F? F? F? F? F? F? F? F? F? F? F? F?

F? F0 F? F? F? F? F? F? F? F? F? F? F? F?

T0 F0 F? F? T0 T+ T? ↑0 ↑+ ↑? ↓0 ↓+ ↓? ⋆

T+ F0 F? F? T+ T? T? ↑? ↑? ↑? ↓? ↓? ↓? ⋆

T? F0 F? F? T? T? T? ↑? ↑? ↑? ↓? ↓? ↓? ⋆

↑0 F0 F? F? ↑0 ↑? ↑? ↑0 ↑? ↑? F? F? F? ⋆

↑+ F0 F? F? ↑+ ↑? ↑? ↑? ↑? ↑? F? F? F? ⋆

↑? F0 F? F? ↑? ↑? ↑? ↑? ↑? ↑? F? F? F? ⋆

↓0 F0 F? F? ↓0 ↓? ↓? F? F? F? ↓0 ↓? ↓? ⋆

↓+ F0 F? F? ↓+ ↓? ↓? F? F? F? ↓? ↓? ↓? ⋆

↓? F0 F? F? ↓? ↓? ↓? F? F? F? ↓? ↓? ↓? ⋆

⋆ F0 F? F? ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

A.2 Static/Clean Logics

Logics in this section marked * are also transitional, due to their inclusion of ↑ and ↓
states.

3-value (T3)

¬
C C

S S

⋆ ⋆

∧ C S ⋆

C ⋆ C ⋆

S C S ⋆

⋆ ⋆ ⋆ ⋆

∨ C S ⋆

C ⋆ C ⋆

S C S ⋆

⋆ ⋆ ⋆ ⋆

5-value (T5)

¬
F T

T F

C C

S S

⋆ ⋆

∧ F T C S ⋆

F F F F F F

T F T C S ⋆

C F C ⋆ C ⋆

S F S C S ⋆

⋆ F ⋆ ⋆ ⋆ ⋆

∨ F T C S ⋆

F F T C S ⋆

T T T T T T

C C T ⋆ C ⋆

S S T C S ⋆

⋆ ⋆ T ⋆ ⋆ ⋆

7-value* (T7)

¬
F T

T F

↑ ↓
↓ ↑
C C

S S

⋆ ⋆

∧ F T ↑ ↓ C S ⋆

F F F F F F F F

T F T ↑ ↓ C S ⋆

↑ F ↑ ↑ ⋆ ⋆ ⋆ ⋆

↓ F ↓ ⋆ ↓ ⋆ ⋆ ⋆

C F C ⋆ ⋆ ⋆ C ⋆

S F S ⋆ ⋆ C S ⋆

⋆ F ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

∨ F T ↑ ↓ C S ⋆

F F T ↑ ↓ C S ⋆

T T T T T T T T

↑ ↑ T ↑ ⋆ ⋆ ⋆ ⋆

↓ ↓ T ⋆ ↓ ⋆ ⋆ ⋆

C C T ⋆ ⋆ ⋆ C ⋆

S S T ⋆ ⋆ C S ⋆

⋆ ⋆ T ⋆ ⋆ ⋆ ⋆ ⋆

APPENDIX A. EXTENDED LOGICS 165

11-value* (T11)

¬
F0 T0

F? T?

T0 F0

T? F?

↑0 ↓0

↑? ↓?

↓0 ↑0

↓? ↑?

C C

S S

⋆ ⋆

∧ F0 F? T0 T? ↑0 ↑? ↓0 ↓? C S ⋆

F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0

F? F0 F? F? F? F? F? F? F? F? F? F?

T0 F0 F? T0 T? ↑0 ↑? ↓0 ↓? C S ⋆

T? F0 F? T? T? ↑? ↑? ↓? ↓? ⋆ ⋆ ⋆

↑0 F0 F? ↑0 ↑? ↑0 ↑? F? F? ⋆ ⋆ ⋆

↑? F0 F? ↑? ↑? ↑? ↑? F? F? ⋆ ⋆ ⋆

↓0 F0 F? ↓0 ↓? F? F? ↓0 ↓? ⋆ ⋆ ⋆

↓? F0 F? ↓? ↓? F? F? ↓? ↓? ⋆ ⋆ ⋆

C F0 F? C ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ C ⋆

S F0 F? S ⋆ ⋆ ⋆ ⋆ ⋆ C S ⋆

⋆ F0 F? ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

15-value* (T15)

¬
F0 T0

F+ T+

F? T?

T0 F0

T+ F+

T? F?

↑0 ↓0

↑+ ↓+

↑? ↓?

↓0 ↑0

↓+ ↑+

↓? ↑?

C C

S S

⋆ ⋆

∧ F0 F+ F? T0 T+ T? ↑0 ↑+ ↑? ↓0 ↓+ ↓? C S ⋆

F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0

F+ F0 F? F? F? F? F? F? F? F? F? F? F? F? F? F?

F? F0 F? F? F? F? F? F? F? F? F? F? F? F? F? F?

T0 F0 F? F? T0 T+ T? ↑0 ↑+ ↑? ↓0 ↓+ ↓? C S ⋆

T+ F0 F? F? T+ T? T? ↑? ↑? ↑? ↓? ↓? ↓? ⋆ ⋆ ⋆

T? F0 F? F? T? T? T? ↑? ↑? ↑? ↓? ↓? ↓? ⋆ ⋆ ⋆

↑0 F0 F? F? ↑0 ↑? ↑? ↑0 ↑? ↑? F? F? F? ⋆ ⋆ ⋆

↑+ F0 F? F? ↑+ ↑? ↑? ↑? ↑? ↑? F? F? F? ⋆ ⋆ ⋆

↑? F0 F? F? ↑? ↑? ↑? ↑? ↑? ↑? F? F? F? ⋆ ⋆ ⋆

↓0 F0 F? F? ↓0 ↓? ↓? F? F? F? ↓0 ↓? ↓? ⋆ ⋆ ⋆

↓+ F0 F? F? ↓+ ↓? ↓? F? F? F? ↓? ↓? ↓? ⋆ ⋆ ⋆

↓? F0 F? F? ↓? ↓? ↓? F? F? F? ↓? ↓? ↓? ⋆ ⋆ ⋆

C F0 F? F? C ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ C ⋆

S F0 F? F? S ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ C S ⋆

⋆ F0 F? F? ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

A.3 Logics from Related Work

Boolean logic (B)

¬
F T

T F

∧ F T

F F F

T F T

∨ F T

F F T

T T T

Ternary logic (B3)

¬
F T

T F

⋆ ⋆

∧ F T ⋆

F F F F

T F T ⋆

⋆ F ⋆ ⋆

∨ F T ⋆

F F T ⋆

T T T T

⋆ ⋆ T ⋆

APPENDIX A. EXTENDED LOGICS 166

Quaternary logic

¬
F T

T F

↑ ↓
↓ ↑

∧ F T ↑ ↓
F F F F F

T F T ↑ ↓
↑ F ↑ ↑ ⋆

↓ F ↓ ⋆ ↓

∨ F T ↑ ↓
F F T ↑ ↓
T T T T T

↑ ↑ T ↑ ⋆

↓ ↓ T ⋆ ↓

Appendix B

Non-Clausal SAT Solvers for Hardware

Analysis

The work presented in this appendix was carried out in support of our work on the

automated repair of cosmic ray damage in FPGAs that was reported in Chapter 5. It is

included in the interests of completeness, and is presented as an appendix in order to

avoid distraction from the narrative content of the body of the thesis.

Our non-clausal SAT solver, NNF-WALKSAT, was implemented from scratch because

existing clausal SAT libraries were found to be unsatisfactory, and also due to the lack of a

publicly available non-clausal alternative. Our approach is not claimed as novel, though

its implementation is new – extending WALKSAT to encompass non-clausal problems was

previously suggested by Walser in 1997 [144].

B.1 NNF-based Non-Clausal SAT Solvers

An NNF-compliant SAT solver was implemented as a C++ library for the purposes of sup-

porting experimentation on FPGA bit stream synthesis and repair (see also Chapter 5).

NNF-GSAT Initially, the relatively simple GSAT algorithm [114] was adopted. Though

originally intended for use with CNF problems, it was relatively straightforward to adapt

the algorithm for use with NNF. In outline, the algorithm works as follows:

1. Initialise the variables to random initial values

2. Check to see whether the current variable values satisfy the expression completely.

If so, a solution has been found, so the loop terminates.

APPENDIX B. NON-CLAUSAL SAT SOLVERS FOR HARDWARE ANALYSIS 168

3. For each variable, flip its state (i.e., change 0 to 1 and vice-versa), then note the

number of subexpressions that are satisfied (i.e., evaluate to 1) as a consequence.

Return each variable to its initial state after each count.

4. Choose the variable that most increases the number of satisfied subexpressions,

then flip it permanently.

5. If a predetermined number of attempts has been exceeded, go back to step 1, oth-

erwise go to step 2.

In practice, this algorithm is a little too simplistic, and requires some extra heuris-

tics in order to prevent it from becoming trivially stuck in local minima. Initial results

indicated that, though slow, GSAT was actually surprisingly effective, given its extreme

simplicity.

NNF-WALKSAT In order to improve upon the performance of NNF-GSAT, the WALKSAT

algorithm [112] was similarly adapted for use with NNF. The basic WALKSAT algorithm

may be summarised as follows:

1. Choose a clause at random that is currently unsatisfied

2. Depending on whether a random number exceeds the current temperature param-

eter, either:

(a) Randomly choose a variable that appears within the clause and flip it, or

(b) Attempt flipping each variable that appears within the clause in turn, noting

the number of unsatisfied clauses that result in each case, then choose the one

flip that results in the lowest number of unsatisfied clauses. This is referred to

hereinafter as a greedy flip.

WALKSAT is superficially similar to GSAT, but due to the need on each iteration only

to enumerate the variables within a single clause rather than all unbound variables in the

entire expression, it is generally much faster whilst retaining roughly equivalent power.

As with GSAT, the basic WALKSAT algorithm is intended for use with expressions in CNF,

so it was necessary to extend and modify it to deal with the more general NNF case.

The resulting SAT solver, is able to solve the majority of our test cases rapidly, even

where multiple stuck-at faults were simulated. The basic WALKSAT algorithm required

some modifications and extra heuristics, due to a bad tendency to get stuck in local

minima. The extensions we used are summarised as follows:

APPENDIX B. NON-CLAUSAL SAT SOLVERS FOR HARDWARE ANALYSIS 169

Supporting terms as well as clauses In an expression in CNF, one single outer term

encapsulates possibly many clauses, and clauses may only contain variables or their

negations, not terms. NNF relaxes this somewhat, in that terms may contain clauses

and vice-versa, with the only significant restriction in comparison with general

Boolean expressions being the requirement that negation may only appear adjacent

to a variable.

In NNF-WALKSAT, we perform a preprocessing stage, whereupon for each term

and each clause, the list of variables contained within them is cached. Variables

that appear directly within a term are regarded as equivalent to singleton clauses

containing only that variable.

Pre-optimisation of the NNF expression A simple pre-optimisation pass is performed

first, such that clauses that are of the form a ∨ ¬a ∨ b ∨ . . . are replaced with true,

terms of the form a ∧ ¬a ∧ b ∧ . . . are replaced with false, then any remaining

constants are evaluated out and folded into the expression.

Giving clauses close to the root preference When randomly selecting a clause, prefer-

ence is given to clauses that appear close to the root of the expression tree, on the

basis that such variables are more likely to have a wide impact, so it is appropriate

to try to make an estimate of their value early.

Super-flips We add a third kind of flip, in addition to random flips and greedy flips. A

super-flip requires trying all possible combinations of variables, then selecting the

combination resulting in the best score. Since this algorithm has a complexity of

O(2N), it makes sense to set a fairly low upper limit on the number of variables

to which it can be applied – in our current implementation, super-flips are only

attempted for clauses with 8 variables or less.

Super-flips do not appear to make a big difference to many problems, but in some

cases they appear to make it possible to find a solution quickly when the standard

algorithm gets stuck for a long time, even when the probability of performing a

super-flip is very small. A useful heuristic appears to be to have the probability p

2N

of performing a super-flip, where p is an empirically-derived constant1.

Dynamic control of the temperature parameter The original WALKSAT algorithm sug-

gests choosing between random and greedy flips with a probability of approxi-

mately 0.5. Our finding was that this does not work for expressions in NNF –

though random flips are essential for avoiding local minima, they often signifi-

cantly increase the number of unsatisfied clauses in the expression as a whole. We

1Our implementation uses p = 1.

APPENDIX B. NON-CLAUSAL SAT SOLVERS FOR HARDWARE ANALYSIS 170

found that a random flip probability in the range 0.01..0.1 normally works, but

found that the ideal value was highly dependent on the expression being solved. If

the probability is too low, the solver gets stuck in local minima, but if it is too high,

the algorithm does not converge on a solution at all.

Our implementation dynamically varies the temperature in accordance with the

following heuristics:

1. If the most recent flip reduced the number of unsatisfied clauses, reduce the

temperature exponentially.

2. If the same variable is flipped twice in succession, suggesting that a local min-

imum has been encountered, increase the temperature by a (fairly large) ad-

ditive constant.

3. Otherwise, very gradually move the temperature toward a default (small)

value (0.001 in our implementation).

This approach works well for most of the SAT problems we have examined – early

in the run, the temperature is kept very low by rule 1, which makes it possible to

converge quickly on a possible result. In many cases, a solution will fall out of

this initial attempt immediately. However, if the SAT solver gets stuck in a local

minimum, this frequently results in the same variable being toggled repeatedly –

rule 2 picks up on this, increasing the temperature, thereby pushing the variable

bindings away from the minimum.

Retries Whenever a set of variable bindings is found that results in an improvement to

the number of unsatisfied clauses, a snapshot of these bindings is taken for later

use. If no improvement beyond this snapshot is seen for a predetermined number

of attempts (1000 in our implementation), the last snapshot reverted to, giving the

search procedure another attempt at finding an improved result. In a significant

proportion of cases, this leads to a solution being found after a small number of

retries.

Restarts If retrying does not succeed after a large number of attempts (5 in our imple-

mentation), this generally means that the solver is stuck in a local minimum that it

can not climb out of by normal means. In this case, we reset the variable bindings

to new, unrelated values then start again. By experimentation, it was found that

determining these values according to the following algorithm is beneficial:

1. Initially, set all variables to 0

APPENDIX B. NON-CLAUSAL SAT SOLVERS FOR HARDWARE ANALYSIS 171

2. On the first restart, set all variables by counting the number of times that

each appears negated and non-negated, choosing a value likely to satisfy the

greatest number of clauses in each case

3. On the second restart, set all variables to 1

4. On all subsequent restarts, set all variables randomly

This can be visualised as initially trying one extreme of the problem space, then a

case roughly in the middle of the problem space, then the other extreme, and then

finally trying cases at random until a solution is found.

This approach works well as a general purpose SAT solver, although in our appli-

cation we find it beneficial to first attempt an initial variable set initialised to the

existing FPGA bit stream – in many cases, this proves to be a considerable speedup,

whilst also increasing the percentage of successful runs.

Bibliography

[1] Annual SAT competition. Web site: http://www.satcompetition.org/.

[2] PCI special interest group web site. http://www.pcisig.com/.

[3] SAT Live! Web site: http://satlive.org/.

[4] SystemC web site. http://www.systemc.org/.

[5] SystemVerilog web site. http://www.systemverilog.org/.

[6] Universal serial bus specification. Revision 2.0, http://www.usb.org/, 2000.

[7] Excalibur Device Overview Data Sheet, V2.0. Altera, 2002. DS-EXCARM-2.0.

[8] Quartus II Development Software Handbook, V4.0. Altera, 2004.

[9] Actel web site. Actel, 2006. http://www.actel.com/.

[10] AD8116 - 200 MHz, 16 × 16 Buffered Video Crosspoint Switch. Analog Devices,

2006. http://www.analog.com/en/prod/0,2877,768

[11] High Performance Crossbar Switch for Virtex-II and Virtex-II Pro FPGAs. Xilinx,

2006. www.xilinx.com/esp/xbarswitch.htm.

[12] ABRAMOV, S. A., AND GLÜCK, R. Principles of inverse computation and the uni-

versal resolving algorithm. In The Essence of Computation, Complexity, Analysis,

Transformation: Essays Dedicated to Neil D. Jones on occasion of his 60th birthday,

T. Æ. Mogensen, D. A. Schmidt, and I. H. Sudborough, Eds., no. 2566 in Lecture

Notes in Computer Science. Springer-Verlag, 2002, pp. 269–295.

[13] AJTAI, M., KOMLÓS, J., AND SZEMERÉDI, E. An O(n log n) sorting network.

Combinatorica 3(1) (1983), 1–19.

[14] ARVIND. Bluespec: A language for hardware design, simulation, synthesis and

verification (Invited Talk),. In First ACM and IEEE International Conference on

Formal Methods and Models for Co-Design (MEMOCODE’03) (2003), p. 249.

BIBLIOGRAPHY 173

[15] BAKER, D. N., MASON, G. M., FIGUEROA, O., COLON, G., WATZIN, J. G., AND

ALEMAN, R. M. An overview of the Solar, Anomalous, and Magnetospheric Particle

Explorer (SAMPEX) mission. IEEE Transactions on Geoscience and Remote Sensing

31 (May 1993), 531–541.

[16] BATCHER, K. E. Sorting networks and their applications. In Proc. AFIPS Spring

Joint Computer Conference 32 (1968), pp. 307–314.

[17] BENEŠ, V. E. Proving the rearrangeability of connecting networks by group calcu-

lations. Bell System Tech. J., 45 (1975), 421–434.

[18] BERRY, G. Esterel on hardware. Philosophical transactions of the Royal Society of

London A 339 (1992), 87–104.

[19] BERRY, G. The constructive semantics of Pure Esterel. Available from

http://www.esterel-technologies.com/, 2000.

[20] BERRY, G. The foundations of Esterel. In Proof, Language and Interaction: Essays

in honour of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte, Eds. MIT Press,

2000.

[21] BIERE, A., CIMATTI, A., CLARKE, E. M., STRICHMAN, O., AND ZHU, Y. Bounded

model checking. Advances in Computers 58 (2003).

[22] BJESSE, P., CLAESSEN, K., SHEERAN, M., AND SINGH, S. Lava: Hardware design

in Haskell. In International Conference on Functional Programming (1998), ACM

Press.

[23] BLANCHET, B., COUSOT, P., COUSOT, R., FERET, J., MAUBORGNE, L., MINÉ, A.,

MONNIAUX, D., AND RIVAL, X. Design and implementation of a special-purpose

static program analyser for safety critical real-time embedded systems. In The

Essence of Computation: Complexity, Analysis, Transformation. Essays dedicated to

Neil D. Jones, LNCS 2566, T. Mogensen, D. A. Schmidt, and I. H. Sudborough, Eds.

Springer Verlag, 2002.

[24] BLUESPEC. Bluespec ESL synthesis extensions web site.

http://www.bluespec.com/products/ESLSynthesisExtensions.htm.

[25] BOHRINGER, K. F. A docking system for microsatellites based on microelectrome-

chanical system actuator arrays. Tech. Rep. AFRL-VS-TR-2000-1099, US Air Force

Research Laboratory, Space Vehicles Directorate, September 2000.

BIBLIOGRAPHY 174

[26] BREI, D., AND CLEMENT, J. Proof-of-concept investigation of active velcro for

smart attachment mechanisms. Tech. Rep. AFRL-VS-TR-2000-1097, US Air Force

Research Laboratory, Space Vehicles Directorate, September 2000.

[27] BREI, D., AND CLEMENT, J. Velcro for smart attachment mechanisms. Tech. Rep.

AFRL-VS-TR-2001-1104, US Air Force Research Laboratory, Space Vehicles Direc-

torate, August 2001.

[28] BRZOZOWSKI, J. A., AND ÉSIK, Z. Hazard algebras. Formal Methods in System

Design 23, 3 (2003), 223–256.

[29] BRZOZOWSKI, J. A., AND GHEORGIU, M. Gate circuits in the algebra of transients.

EDP Sciences (2004). To appear.

[30] BURCH, J. R. Delay models for verifying speed-dependent asynchronous circuits.

In Proc. ICCD (1992), IEEE, pp. 270–274.

[31] CASPI, P., PILAUD, D., HALBWACH, N., AND PLAICE, J. LUSTRE: a declaritive

language for programming synchronous systems. In Proc. 14th ACM Conference

on Principles of Programming Languages (1987), ACM Press, pp. 178–188.

[32] ÇAM, H. Rearrangeability of (2n − 1)-stage shuffle-exchange networks. SIAM J.

Comput. 32, 3 (2003), 557–585.

[33] CELOXICA. Handel-C language reference manual. Available from

http://www.celoxica.com/.

[34] CHAPIRO, D. M. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis,

Stanford University, October 1984.

[35] CLAESSEN, K., SHEERAN, M., AND SINGH, S. The design and verification of a

sorter core. In Proc. CHARME’01, LNCS 2144 (2001), Springer-Verlag.

[36] CLARKE, A. C. Peace time uses for V2. Letters to the Editor, Wireless World (Febru-

ary 1945), 58.

[37] CLEMENT, J. W., AND BREI, D. E. Proof-of-concept investigation of Active Velcro

for smart attachment mechanisms. In In Proc. 42nd AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics, and Materials Conference and Exhibit (2001).

AIAA Paper 2001-1503 (AIAA Accession number 25238).

[38] CLOS, C. A study of non-blocking switching networks. Bell System Technical Jour-

nal 32, 2 (1953), 406–424.

BIBLIOGRAPHY 175

[39] CONG, J., AND WU, C. FPGA synthesis with retiming and pipelining for clock

period minimization of sequential circuits. In Proceedings of the 34th annual con-

ference on Design automation conference (1997), ACM Press, pp. 644–649.

[40] COOK, S. The complexity of theorem proving procedures. In Proc. 3rd Annual

ACM Symposium on Theory of Computing (1971), pp. 151–158.

[41] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. Chapter 27: Sort-

ing networks. In Introduction to Algorithms. MIT Press and McGraw-Hill, 1990,

pp. 704–724.

[42] COUSOT, P., AND COUSOT, R. Abstract interpretation: a unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In

Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages (Los Angeles, California, 1977), ACM Press, New

York, NY, pp. 238–252.

[43] COUSOT, P., AND COUSOT, R. Systematic design of program analysis frameworks.

In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (San Antonio, Texas, 1979), ACM Press, New

York, NY, pp. 269–282.

[44] CUNNINGHAM, P. A. Verification of Asynchronous Circuits. PhD thesis, University

of Cambridge, 2002.

[45] CYTRON, R., FERRANTE, J., ROSEN, B., WEGMAN, M., AND ZADECK, F. Efficiently

computing static single assignment form and the control dependence graph. ACM

Transactions on Programming Languages and Systems 13, 4 (1991), 451–490.

[46] DAVIS, M., LOGEMANN, G., AND LOVELAND, D. A machine program for theorem

proving. Communications of the ACM 5, 7 (July 1962), 394–397.

[47] DAVIS, M., AND PUTNAM, H. A computing procedure for quantification theory.

Journal of the ACM 7, 3 (July 1960), 201–215.

[48] DEAN, M., WILLIAMS, T., AND DILL, D. Efficient self-timing with level-encoded

2-phase dual-rail (LEDR). In Advanced Research in VLSI (1991), C. H. Séquin, Ed.,

MIT Press, pp. 55–70.

[49] DENNARD, R. Field effect transistor memory. US Patent No. 3,387,286, 1968.

[50] DIJKSTRA, E. W. A note on two problems in connexion with graphs. Numerische

Mathematik 1 (1959), 269–271.

BIBLIOGRAPHY 176

[51] ESTEREL TECHNOLOGIES. The Esterel v7 reference manual – initial ieee standardi-

sation proposal. Available from http://www.esterel-technologies.com/, November

2005.

[52] FORTE DESIGN SYSTEMS. Corporate web site. http://www.forteds.com/.

[53] FOUST, J. Smallsats and standardization. The Space Review (2005).

[54] FUTAMURA, Y. Partial evaluation of computation process – an approach to a

compiler-compiler. In Systems, Computers, Control (1971), vol. 2 issue 5, pp. 45–

50.

[55] GAUBATZ, D. A. Logic Programming Analysis of Asynchronous Digital Circuits. PhD

thesis, University of Cambridge, 1991.

[56] GIACOBAZZI, R., AND MASTROENI, I. Domain compression for complete abstrac-

tions. In Fourth International Conference on Verification, Model Checking and Ab-

stract Interpretation (VMCAI’03) (2003), vol. 2575 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 146–160.

[57] GIACOBAZZI, R., AND QUINTARELLI, E. Incompleteness, counterexamples and

refinements in abstract model-checking. In Proc. 8th International Static Analy-

sis Symposium (SAS’01) (2001), vol. 2126 of Lecture Notes in Computer Science,

Springer-Verlag, pp. 356–373.

[58] GIACOBAZZI, R., AND RANZATO, F. Completeness in abstract interpretation: A do-

main perspective. In Proc. of the 6th International Conference on Algebraic Method-

ology and Software Technology (AMAST’97) (1997), M. Johnson, Ed., vol. 1349 of

Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 231–245.

[59] GIACOBAZZI, R., AND RANZATO, F. Refining and compressing abstract domains.

In Proc. of the 24th International Colloquium on Automata, Languages, and Pro-

gramming (ICALP’97) (1997), R. G. P. Degano and A. Marchetti-Spaccamela, Eds.,

vol. 1256 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 771–

781.

[60] GIACOBAZZI, R., RANZATO, F., AND SCOZZARI, F. Making abstract interpretations

complete. Journal of the ACM 47, 2 (2000), 361–416.

[61] GIRARD, J.-Y. Linear logic. Theor. Comput. Sci. 50 (1987), 1–102.

BIBLIOGRAPHY 177

[62] GREAVES, D. J. Direct synthesis of logic using a SAT solver. Unpublished research

note, available at http://www.cl.cam.ac.uk/users/djg/wwwhpr/dslogic.html,

2004.

[63] GUCCIONE, S. A., LEVI, D., AND SUNDARARAJAN, P. JBits: A Java-based interface

for reconfigurable computing. In Proc. 2nd Annual Military and Aerospace Ap-

plications of Programmable Devices and Technologies Conference (MAPLD) (1999),

NASA, available at http://klabs.org/mapld/index.htm.

[64] GUSSENHOVEN, M., MULLEN, E., AND BRAUTIGAM, D. Improved understanding of

the Earth’s radiation belts from the CRRES satellite. IEEE Trans. on Nuclear Science

43, 2 (April 1996), 353–368.

[65] HYMANS, C. Checking safety properties of behavioral VHDL descriptions by ab-

stract interpretation. In 9th International Static Analysis Symposium (SAS’02)

(2002), vol. 2477 of Lecture Notes in Computer Science, Springer, pp. 444–460.

[66] IEEE P1394 WORKING GROUP. IEEE Std 1394-1995 High Performance Serial Bus.

IEEE, 1995.

[67] IEEE P1394A WORKING GROUP. IEEE Std 1394a-2000 High Performance Serial

Bus – Amendment 1. IEEE, 2000.

[68] IEEE P1394B WORKING GROUP. IEEE Std 1394b-2002 High Performance Serial

Bus – Amendment 2. IEEE, 2002.

[69] IEEE P1800 WORKING GROUP. IEEE Std 1364-2005 Verilog Hardware Description

Language. IEEE, 2005.

[70] IEEE P1800 WORKING GROUP. IEEE Std 1800-2005 System Verilog: Unified Hard-

ware Design, Specification and Verification Language. IEEE, 2005.

[71] JENSEN, T. P. Clock analysis of synchronous dataflow. In Proc. PEPM’95 (1995),

ACM Press, pp. 156–167.

[72] JONES, N., GOMARD, C., AND SESTOFT, P. Partial Evaluation and Automatic Pro-

gram Generation. Englewood Cliffs, NJ, Prentice Hall, 1993.

[73] JONES, N. D., AND MUCHNICK, S. Complexity of flow analysis, inductive assertion

synthesis, and a language due to Dijkstra. In 21st Symposium on Foundations of

Computer Science (1980), IEEE, pp. 185–190.

[74] JONES, S. L. P. Haskell 98 report (Special Issue). J. Funct. Program. 13, 1 (2003).

BIBLIOGRAPHY 178

[75] JOSHI, P. B. On-orbit asssembly of a universally interlocking modular spacecraft

(7225-020). Tech. Rep. NASA SBIR 2003 Solicitation Proposal 03- II F5.03-8890,

NASA, 2003.

[76] KAM, J. B., AND ULLMAN, J. D. Monotone dataflow analysis frameworks. In Acta

Informatica (September 1977), vol. 7, pp. 305–317.

[77] KATZ, R. A scientific study of the problems of digital engineering for space flight

systems, with a view to their practical solution. http://klabs.org/.

[78] KILDALL, G. A. A unified approach to global program optimization. In Proc. POPL

(1973), ACM Press, pp. 194–206.

[79] KLEENE, S. C. Introduction to metamathematics. North Holland, Amsterdam,

1962.

[80] KNAPP, D. W. Behavioural synthesis: digital system design using the Synopsys Be-

havioral Compiler. Prentice Hall, 1996.

[81] KNUTH, D. E. Section 5.3.4: Networks for sorting. In The Art of Computer Pro-

gramming, Volume 3: Sorting and Searching, Third Edition. Addison-Wesley, 1997,

pp. 219–247.

[82] KUNG, D. S. Hazard-non-increasing gate-level optimization algorithms. In Proc.

ICCAD (1992), IEEE, pp. 631–634.

[83] LARCHEV, G., AND LOHN, J. D. Hardware-in-the-loop evolution of a 3-bit multi-

plier. In Proc. 12th Annual IEEE Symposium on Field Programmable Custom Com-

puting Machines, FCCM-2004 (2004), IEEE Computer Society, pp. 277–278.

[84] LAWRIE, D. H. Access and alignment of data in an array processor. IEEE Transac-

tions on Computers 25 (1976), 1145–1155.

[85] LOHN, J. D., LARCHEV, G., AND DEMARA, R. F. Evolutionary fault recovery in a

Virtex FPGA using a representation that incorporates routing. In Proc. IPDPS 2003

(2003), IEEE Computer Society.

[86] LOHN, J. D., LARCHEV, G., AND DEMARA, R. F. A genetic representation for evo-

lutionary fault recovery in Virtex FPGAs. In Proc. ICES 2003, LNCS 2606 (2003),

Springer-Verlag, pp. 47–56.

[87] LOMBARDI, L. Incremental computation. In Advances in Computers, vol. 8, F. Alt

and M. Rubinoff, Eds. New York, Academic Press, 1967, pp. 247–333.

BIBLIOGRAPHY 179

[88] LOMBARDI, L., AND RAPHAEL, B. Lisp as the language for an incremental com-

puter. In The Programming Language Lisp: Its Operation and Applications (1964),

E. Berkeley and D. Bobrow, Eds., Cambridge, MA, MIT Press, pp. 204–219.

[89] LORENTZ, H. A. Electromagnetic phenomena in a system moving with any veloc-

ity less than that of light. Proc. Acad. Science Amsterdam IV (1904), 669–678.

[90] LYKE, J., WILSON, W., AND CONTINO, P. MEMS-based reconfigurable manifold.

In Proc. MAPLD (2005), NASA, available at http://klabs.org/mapld/index.htm.

[91] MCKAY, N., MELHAM, T., SUSANTO, K. W., AND SINGH, S. Dynamic specialisation

of XC6200 FPGAs by partial evaluation. In IEEE Symposium on FPGAs for Custom

Computing Machines (1998), K. L. Pocek and J. M. Arnold, Eds., IEEE Computer

Society, pp. 308–309.

[92] MCKAY, N., AND SINGH, S. Dynamic specialisation of XC6200 FPGAs by partial

evaluation. In Field-Programmable Logic and Applications: From FPGAs to Comput-

ing Paradigm: 8th International Workshop, FPL’98, Estonia, 1998 (1998), R. W.

Hartenstein and A. Keevallik, Eds., vol. 1482 of Lecture Notes in Computer Science,

Springer-Verlag, pp. 298–307.

[93] MCPHERSON, D. A., AND SCHOBER, W. R. Spacecraft charging at high altitudes:

The SCATHA satellite program. In Proc. AIAA Symposium on Spacecraft Charging

by Magnetospheric Plasmas (1996), vol. 47 of Progress in Astronautics and Aero-

nautics, MIT Press, pp. 15–30.

[94] MEALY, G. H. A method for synthesizing sequential circuits. In Bell System Tech-

nical Journal (1955), vol. 34, pp. 1045–1079.

[95] MONNIAUX, D. Abstract interpretation of probabilistic semantics. In Seventh Inter-

national Static Analysis Symposium (SAS’00) (2000), vol. 1824 of Lecture Notes in

Computer Science, Springer-Verlag, pp. 322–339. Extended version on the author’s

web site, currently http://www.di.ens.fr/ monniaux/.

[96] MONNIAUX, D. An abstract Monte-Carlo method for the analysis of probabilistic

programs (extended abstract). In 28th Symposium on Principles of Programming

Languages (POPL ’01) (2001), ACM Press, pp. 93–101.

[97] MONNIAUX, D. Analyse de programmes probabilistes par interprétation abstraite.

Thèse de doctorat, Université Paris IX Dauphine, 2001. Résumé étendu en

français. Contents in English.

BIBLIOGRAPHY 180

[98] MOORE, S., MULLINS, R., AND TAYLOR, G. The Springbank test chip. In Proc.

12th UK Async. Forum (June 2002).

[99] MORELLI, G. Coralled: Get hold of wire delays. Electronic Design News, September

25, 2003, pp. 37–46.

[100] MOY, J. RFC 2328: OSPF Version 2. IETF (1998).

[101] MYCROFT, A. Completeness and predicate-based abstract interpretation. In Proc.

ACM conf. on Partial Evaluation and Program Manipulation (1993), pp. 179–185.

[102] MYCROFT, A., AND JONES, N. D. A relational framework for abstract interpreta-

tion. In Lecture Notes in Computer Science: Proc. Copenhagen workshop on programs

as data objects (1984), vol. 215, Springer-Verlag.

[103] MYCROFT, A., AND SHARP, R. W. Hardware synthesis using SAFL and applica-

tion to processor design. In Lecture Notes in Computer Science: Proc. CHARME’01

(2001), vol. 2144, Springer-Verlag.

[104] NIELSON, F., NIELSON, H. R., AND HANKIN, C. Principles of Program Analysis.

Springer-Verlag, 1999.

[105] OPEN SYSTEMC INITIATIVE. Draft Standard SystemC Language Reference Manual.

OSCI, April 2005. Available from http://www.systemc.org/.

[106] PAGE, I., AND LUK, W. Compiling Occam into FPGAs. In FPGAs, W. Moore and

W. Luk, Eds. Abingdon EE&CS Books, 1991, pp. 271–283.

[107] REKHTER, Y., LI, T., AND HARES, S. RFC 4271: a Border Gateway Protocol 4

(BGP-4). IETF (2006).

[108] RINTANEN, J. Improvements to the evaluation of quantified boolean formulae. In

Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,

IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages

(1999), T. Dean, Ed., Morgan Kaufmann, pp. 1192–1197.

[109] RØINE, P. T. Building fast bundled data circuits with a specialized standard cell

library. In Proc. International Symposium on Advanced Research in Asynchronous

Circuits and Systems (November 1994), pp. 134–143.

[110] SANGUINETTI, J., AND PURSLEY, D. High-level modeling and hardware implemen-

tation with general purpose languages and high-level synthesis. In Proc. Ninth

IEEE/DATC Electronic Design Processes Workshop (2002).

BIBLIOGRAPHY 181

[111] SCHMITT, O. H. A thermionic trigger. Jour. Sci. Instr. 15, 1 (1938), 24.

[112] SELMAN, B., KAUTZ, H., AND COHEN, B. Noise strategies for improving local

search. In Proc. 12th National Conference on Artificial Intelligence, AAAI’94 (1994),

vol. 1, MIT Press, pp. 337–343.

[113] SELMAN, B., KAUTZ, H., AND COHEN, B. Local search strategies for satisfiability

testing. In Cliques, Coloring, and Satisfiability: Second DIMACS Implementation

Challenge (1996), D. S. Johnson and M. A. Trick, Eds., vol. 26 of DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, AMS.

[114] SELMAN, B., LEVESQUE, H. J., AND MITCHELL, D. A new method for solving hard

satisfiability problems. In Proc. 10th National Conference on Artifical Intelligence,

AAAI’92 (1992), pp. 440–446.

[115] SHAND, B. N. Trust for resource control: Self-enforcing automatic rational con-

tracts between computers. Tech. Rep. UCAM-CL-TR-600, University of Cambridge,

Computer Laboratory, Available via http://www.cl.cam.ac.uk/TechReports/, Aug.

2004.

[116] SHEERAN, M. Puzzling permutations. In Proc. Glasgow Functional Programming

Workshop (1996).

[117] SINGH, S., AND JAMES-ROXBY, P. Lava and JBits: From HDL to bitstream in sec-

onds. In Proc. 9th Annual IEEE Symposium on Field-Programmable Custom Com-

puting Machines (FCCM’01) (2001).

[118] SPARSØ, J., AND FURBER, S., Eds. Principles of Asynchronous Circuit Design: A

Systems Perspective. Springer-Verlag, 2002.

[119] STEFFEN, B., JAY, C. B., AND MENDLER, M. Compositional characterisation of

program properties. Informatique Théorique et Applications (AFCET) 26.

[120] STOICA, A., ARSLAN, T., KEYMEULEN, D., DUONG, V., GUO, X., ZEBULUM, R.,

FERGUSON, I., AND DAUD, T. Evolutionary recovery of electronic circuits from

radiation induced faults. In Proc. IEEE Conference on Evolutionary Computation

(2004), IEEE Computer Society.

[121] STONE, H. S. Parallel processing with the perfect shuffle. IEEE Transactions on

Computers 20, 6 (1975), 57–65.

[122] STROUSTRUP, B. The C++ Programming Language, 3rd Edition. Addison-Wesley,

Reading, Massachusetts, USA, 1997.

BIBLIOGRAPHY 182

[123] SUH, J. W., DARLING, R. B., BOHRINGER, K. F., DONALD, B., BALTES, H., AND

KOVACS, G. T. A. SMOS integrated ciliary actuator array as a general-purpose

micromanipulation tool for small objects. IEEE Journal of Microelectromechanical

Systems (1999).

[124] SYNOPSYS. Corporate web site. http://www.synopsys.com/.

[125] SYNOPSYS. System Studio web site. http://www.synopsys.com/products/cocentric studio/.

[126] THIFFAULT, C., BACCHUS, F., AND WALSH, T. Solving non-clausal formulas with

DPLL search. In 10th International Conference on Principles and Practice of Con-

straint Programming (CP-2004) (2004), vol. 3258 of Lecture Notes in Computer

Science, Springer-Verlag.

[127] THOMPSON, S. HarPE web site. http://harpe.findatlantis.com/.

[128] THOMPSON, S. NNF-WALKSAT web site. http://nnf-walksat.findatlantis.com/.

[129] THOMPSON, S. Hardware compilation as an alternative computation architecture.

Master’s thesis, University of Teesside, 1991.

[130] THOMPSON, S., AND MYCROFT, A. Abstract interpretation of combinational

asynchronous circuits. In 11th International Static Analysis Symposium (SAS’04)

(2004), R. Giacobazzi, Ed., vol. 3148 of Lecture Notes in Computer Science,

Springer-Verlag, pp. 181–196.

[131] THOMPSON, S., AND MYCROFT, A. Sliding window logic simulation. In 15th UK

Asynchronous Forum (2004), Cambridge. Available from http://findatlantis.com/.

[132] THOMPSON, S., AND MYCROFT, A. Abstract interpretation in space: SET immu-

nity of majority voting logic. In Proc. APPSEM II Workshop (September 2005).

Available from http//findatlantis.com/.

[133] THOMPSON, S., AND MYCROFT, A. Abstract interpretation of combinational asyn-

chronous circuits (Extended Version). Science of Computer Programming (2006).

To appear.

[134] THOMPSON, S., AND MYCROFT, A. Bit-level partial evaluation of synchronous

circuits. In Proc. ACM SIGPLAN 2006 Workshop on Partial Evaluation and Program

Manipulation (PEPM ’06) (January 2006), ACM Press.

BIBLIOGRAPHY 183

[135] THOMPSON, S., AND MYCROFT, A. Self-healing reconfigurable manifolds.

In Proc. Designing Correct Circuits (DCC ’06) (March 2006). Available from

http//findatlantis.com/.

[136] THOMPSON, S., MYCROFT, A., BRAT, G., AND VENET, A. Automatic in-flight repair

of FPGA cosmic ray damage. In Proc. 1st Disruption in Space Symposium (July

2005). Available from http//findatlantis.com/.

[137] TSEITIN, G. On the complexity of proofs in propositional logics. Automation of

reasoning: classical papers in computational logic 1967–1970 2 (1983). Originally

published 1970.

[138] TURNILL, R. The Moonlandings: an eyewitness account. Cambridge University

Press, 2003.

[139] VANDEVOORDE, D., AND JOSUTTIS, N. M. C++ Templates – The Complete Guide.

Addison-Wesley, 2002.

[140] VELDHUIZEN, T. Using C++ template metaprograms. C++ Report 7, 4 (May

1995), 36–43. Reprinted in C++ Gems, ed. Stanley Lippman, Cambridge Univer-

sity Press.

[141] VELDHUIZEN, T. L. C++ templates as partial evaluation. In Proc. PEPM’99, The

ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Ma-

nipulation, ed. O. Danvy, San Antonio (Jan. 1999), ACM Press, pp. 13–18.

[142] VIENS, M. J. Outgassing data for selecting spacecraft materials online. Web site,

http://outgassing.nasa.gov/.

[143] VON NEUMANN, J. Probabilistic logics and the synthesis of reliable organisms from

unreliable components. Automata Studies (1956), 43–98.

[144] WALSER, J. P. Solving linear pseudo-Boolean constraint problems with local

search. In Proc. 14th National Conference on Artificial Intelligence (1997), AAAI

Press.

Glossary of Terms and Symbols

= Strong equivalence (between traces), 57

D/ ∼ The set of equivalence classes in D with respect to the equivalence relation ∼, 47

≎ Comparability (between traces), 57

Γ Guard expression (in HarPE semantics), 72

∧♯ Abstract AND, 49

�♯ Inertial delay (abstract), 49

¬♯ Abstract NOT, 49

∆♯ Transmission line delay (abstract), 49

α Abstraction function, see Galois connection, 47

β Deterministic abstraction function (typically used to help define α more conveniently),

see Galois connection, 47

⋆ The least upper bound element of a finitary transitional logic, 55

≏ Weak equivalence (between traces), 57

C The value representing ‘unknown, but can never glitch’ in static-clean logics, 55

∧ Concrete AND, 49

∧complete A fully α- and γ-complete version of ∧, constructed by composition with ∆, 52

¬ Concrete NOT, 49

R see concrete time, 43

V
′
3 The dual of V3, constructed by interchanging ∧ and ∨, 147

GLOSSARY OF TERMS AND SYMBOLS 185

γ Concretisation function, see Galois connection, 47

� Inertial delay (concrete), 49

〈. . . 〉 see trace notation, 44

MaxSubs(t̂) Where t̂ is a nondeterministic trace, MaxSubs(t̂) returns the greatest sub-

script, i.e., maxt∈t̂ Subs(t), 57

| Nondeterministic choice operator, 46

⊛ Cosmic ray impact function, 144

S see deterministic signal, 43

S
♯ Isomorphic to T, see Definition 3.3.7, 47

∼ Equivalence relation, 47

S The value representing ‘unknown, but fixed for all time’ in static-clean logics, 55

⊙F Stuck-at false function, 144

⊙T Stuck-at true function, 144

Subs(Xn) Where Xn is a deterministic trace, Subs(Xn) returns n, 56

∆ Transmission line delay (concrete), 49

T see deterministic trace, trace notation, 44

Tc The finite, deterministic abstract domain {F0, F+, T0, T+, ↑0, ↑+, ↓0, ↓+}, 53

T256 The 256-valued transitional logic, defined as ℘(Tc), 53

Ψ the function that maps signals s ∈ S to the set of instants in ℘(R) that represent the

corresponding times of all transitions in s, 43

Val(Xn) Where Xn is a deterministic trace, Val(Xn) returns X, 56

V3 3-way voting logic function, 142

V5 5-way voting logic function, 145

a < b ‘Refines to’ relation, 56

AND gate a logic gate implementing the logic function ∧, 40

GLOSSARY OF TERMS AND SYMBOLS 186

ASIC Application-Specific Integrated Circuit, 94

Absolute timing information timing information that is related directly to real time,

rather than abstracted in some way, 43

Abstract Interpretation a mathematical technique, due to Cousot & Cousot, that sup-

ports correctess proofs for abstraction, 38

Abstract domain From abstract interpretation, the domain D♯ that models reality less

accurately (i.e., that is more abstract), see also Galois connection, 47

Achronous Analysis an analysis technique for asynchronous circuits that abstracts away

notions of absolute time, 40

Achrony assumption A hardware analysis technique in which timing is calculated as-

suming an independent attribute model, 59

Actel Lower volume, niche FPGA manufacturer, specialising in radiation tolerant, one-

time programmable FPGAs, 94

Altera Major FPGA manufacturer, main competitor to Xilinx, also specialising in high

performance SRAM-based COTS FPGAs, 94

Antifuse FPGA A one-time programmable, non-reconfigurable FPGA architecture pio-

neered by Actel, 94

Asynchronous Circuit a digital circuit that is not designed to strictly synchronous design

rules, see also synchronous circuit, 38

Backplane Usually constructed as a PCB, a backplane integrates all of the wiring neces-

sary to connect together cards that are inserted into a card frame. See also passive

backplane., 109

Bit stream The information required to configure an FPGA, 94

CMOS Complementary Metal Oxide Semiconductor, the most common VLSI fabrication

technology, 94

CNF Conjunctive Normal Form, 101

COTS Commercial, Off The Shelf , 94

Card frame A frame into which individual cards (PCBs) may be slotted. Normally, a

backplane at the rear of the card frame is populated with a series of sockets, allow-

ing cards to plug in and function without any need for physical wiring, 109

GLOSSARY OF TERMS AND SYMBOLS 187

Coarse Sun Tracker Often quite simplistic, constructed from photocells pointing in four

directions, a coarse sun tracker’s purpose is to provide a quick-and-dirty estimate

of a satellite’s orientation. Typically, when a satellite is recovering from a failure

that might have caused it to tumble, the coarse sun tracker would be used to help

get the satellite pointing in roughly the correct direction, at which point the star

tracker would take over and help perform fine positioning, 112

Commercial-grade devices General purpose (non military, non radiation hard) devices

sold on the open market, 94

Completeness In abstract interpretation, an abstract prediction may be said to be com-

plete if and only if the concrete model is capable of any possible predicted be-

haviour, 42

Concrete domain From abstract interpretation, the domain D that (usually) more closely

models reality, see also Galois connection, 47

Concrete time is modeled on real time, having properties similar to the real numbers

(continuous, linear and dense), 43

Convex hull A arbitrarily dimensioned generalisation of the bounding box concept, of-

ten used as abstract domains in abstract interpretation, 50

Correctness In abstract interpretation, a correct abstraction faithfully models all be-

haviours of the concrete system, 42

Crossbar Switch See Section 6.2.4.1, 114

DC-DC Converter A DC-DC converter takes an incoming DC supply and synthesises from

it another, often somewhat different, supply rail. DC-DC converters can often step

up voltages as well as step them down. See also voltage regulator, 112

DNF Disjunctive Normal Form, 101

Delay-insensitive circuit an asynchronous paradigm whereby both wires and gates are

considered to have delays (see also speed-independent circuit), 40

Dense continuous time a time model in which time is modeled on the real numbers

(i.e., ∀τ1 ∈ R, τ2 ∈ R . τ1 6= τ2 ⇒ ∃τ3 ∈ R . τ1 < τ3 < τ2), 38

Deterministic signal a total function from real time R to the Booleans B, 43

Deterministic trace A deterministic trace characterises a signal (in S) by retaining tran-

sitions but abstracting away the times at which they occur, 44

GLOSSARY OF TERMS AND SYMBOLS 188

Dynamic hazard A hazard (unintentional short pulse) that may occur at a time that a

signal is switching from true to false or vice-versa, 38

Earth A connection to a metal rod or pipe that is physically buried. Not to be confused

with ground, 94

Explosive bolt Commonly used between the stages of multi-stage rockets, though occa-

sionally used in satellites, explosive bolts contain a small pyrotechnic device that

when electrically triggered shatters the bolt, causing whatever it was previously

fastening to part, 112

Extreme environment An environment that is significantly characteristically different

from Earth ground level room temperature conditions, e.g., high radiation, very

high temperature, very low temperature, high G force, high vibration, hard vac-

uum, etc., 94

FET Field-Effect Transistor, 94

FPGA Field Programmable Gate Array, 94

FPTA Field Programmable Transistor Array, 106, 114

Fault recovery The process by which a system may recover from a transient or perma-

nent failure, 94

Fibonacci series The numeric series generated by xn = xn−2 + xn−1, i.e., 1, 2, 3, 5, 8,

13, 21, 34, . . . , 85

Flight systems Electronic systems in use in an aircraft or spacecraft, 94

GEO Geosynchronous Earth Orbit, a special orbit, quite far out, centred over Earth’s

equator, designed such that the spacecraft’s orbital period is exactly 1 day, causing

it to appear to be in a fixed position in the sky. Used by most communications

and TV broadcast satellites. Also known as a Clarke orbit, after the science fiction

author Arthur C. Clarke who is generally credited as having first proposed the idea,

94

Galois connection Given a pair of partially-ordered domains D and D♯, and a pair of

functions 〈α, γ〉 with types α : D → D♯ and γ : D♯ → D such that α ◦ γ(x̂) ⊑ x̂ and

γ ◦ α(x̂) ⊒ x̂, a (monotone) Galois connection may be said to exist, 47

Galois insertion A Galois connection where α ◦ γ(x̂) = x̂, 47

GLOSSARY OF TERMS AND SYMBOLS 189

GeV/n Giga-electron volts per nucleon (see also eV/n), 10

GeV Giga-electron volts (see also eV), 10

Glitch a (usually unintentional) short pulse, see also static hazard and dynamic hazard,

38

Ground The common voltage reference for both digital and analogue circuits, also known

as 0V (zero volts) or logic false. Not necessarily (though often) connected to earth,

94

HDL see Hardware Description Language, 38

HarPE ‘Hardware Partial Evaluator,’ an experimental hardware description language im-

plemented by the author to aid in experimentation with hardware partial evalua-

tion, 68

Hardware Description Language a language, usually closely syntcatically resembling

a programming language, that is used to represent the design of digital circuits in

order to enable simulation and/or synthesis, 38

IGBT Insulated Gate Bipolar Transistor. Some IGBT devices are capable of switching very

heavy loads – the Toyota Prius hybrid electric vehicle is powered via an IGBT-based

50kW inverter, 114

ISS International Space Station, 94, 107

Independent attribute model an analysis technique whereby (usually abstract) values

are considered independently from each other (see also relational attribute model),

40

Inertial delay a delay function that models the kind of delay exhibited by a typical logic

gate – short pulses may be further shortened or lost (see also transmission line

delay), 40

JPL Jet Propulsion Laboratory, 106

LEO Low Earth Orbit, as used by ISS, Shuttle and most Earth observation satellites, 94

LE FPGA logic element, 84

Leakage current In a CMOS gate, when a transistor is switched off its resistance is

finite, so as a consequence of Ohm’s law, a leakage current flows across the gate

that contributes to the power requirements for the chip as a whole. In the past,

GLOSSARY OF TERMS AND SYMBOLS 190

leakage current in larger geometry CMOS devices was often negligible, but modern

deep submicron devices tend to exhibit worse leakage current characteristics as a

consequence of their extremely small geometries, 141

Limit Switch A mechanical system that involves linear motion will often incorporate

limit switches that provide a simple on/off indication when the limits of travel are

reached, 112

Local Resynthesis Resynthesis of a small area of an FPGA, normally surrounding a fault

that is to be worked around, 98

Logic simulation (usually automated) simulation of digital logic circuits, 38

Logic synthesis the synthesis of digital logic (circuits), usually based on a specification

written in a hardware description language, 38

MEO Mid Earth Orbit, higher than LEO, but lower than geosynchronous orbit. Used by

the Global Positioning System (GPS) satellites, 94

Manifold See Chapter 6, 107

MeV/n Mega-electron volts per nucleon (see also eV/n), 10

MeV Mega-electron volts (see also eV), 10

Model checking a technique whereby mathematical models are automatically checked

to verify whether or not they satisfy particular properties, usually by exhaustive

search of the state space, 38

NNF Negation Normal Form, 101

NOT gate a logic gate implementing the logic function ¬, 40

Non-achronous Analysis an analysis technique that may take into account absolute

time (see also achronous analysis), 40

Non-clausal SAT problem A SAT problem that has not been reduced to CNF, 101

Non-clausal SAT solver A SAT solver that is capable of accepting problems that have not

been reduced to CNF, 101

Nondeterministic trace A nondeterministic signal (in ℘(S)) may be modeled by a set of

deterministic traces (in ℘(T) – see also deterministic trace and Section 3.3.2, 44

OR gate a logic gate implementing the logic function ∨, 40

GLOSSARY OF TERMS AND SYMBOLS 191

Ohm’s law In electronics, the relationship V = I × R between voltage V , current I and

resistance R, 141

Omega Network A type of shuffle network often used in parallel computing, 117

Ordinary delay see transmission line delay, 40

PCB Printed Circuit Board, 109

Partial evaluation See Section 4.1, 62

Passive Backplane A passive backplane typically does not include active components,

though it may include line termination, power regulation, decoupling or other sim-

ilar hardware., 109

Perfect gates a gate (AND/OR/NOT) model that assumes zero delay, 40

Permanent latch-up A common failure mode in CMOS circuits, generally caused when

a charged particle triggers a brief short-to-ground, thereby burning out one or more

FETs, 94

Permutation Network A network, constructed by composing 2-way swap/pass through

nodes that is capable of generating any arbitrary permutation of its inputs, 117

QBF solver A solver for expressions in QBF form (see also SAT solver), 167

QBF Quantified Boolean Formula, 167

RAD6000 A widely used, commercially available, radiation hard processor based on an

early IBM RS/6000 processor design, 94

RAD750 An updated, higher performance alternative to the RAD6000 that is based on a

more recent PowerPC design, 94

Radioisotope Thermoelectric Generator A radioisotope thermoelectric generator ex-

ploits the natural tendency for subcritical quantities of certain radioactive isotopes

to generate large amounts of heat. A thermal gradient set up between the isotope

and a heat sink is typically used to generate power by exploiting the Seebeck effect,

112

Reconfigurable FPGA An FPGA that can be dynamically reconfigured at any time by

uploading a new bit stream, 94

Reconfigurable Manifold See Chapter 6, 107

GLOSSARY OF TERMS AND SYMBOLS 192

Refinement A circuit c1 may be said to refine (be a refinement of) circuit c2 iff c1 pre-

serves all of the steady state and clean (glitch-free) behaviour of c2. Sometimes

also referred to as a hazard non-increasing extension in the asynchronous design

literature, 56

Regulator See voltage regulator, 112

Relational attribute model an analysis technique whereby values may be related to

each other such that they may considered to exist in certain value combinations

but not others (see also independent attribute model), 40

Responsive Space A collective term for a number of technologies and working prac-

tices that, in combination, aim to reduce the time from concept to launch of new

satellites from several years to less than one week., 108

SAT problem Given an arbitrary Boolean expression constructed from ∧, ∨, ¬ and vari-

ables (i.e., no quantifiers or functions), the problem of finding an assignment for

the variables such that the expression evaluates to true is known as a SAT prob-

lem, and is known to be NP-complete. The related problem of proving that no such

assignment exists is thought to be more difficult, and is in co-NP., 101

SAT solver A generic program or library capable of solving SAT problems, 101

Seebeck Effect Effectively the better-known Peltier effect in reverse, the Seebeck effect

is the direct conversion of temperature differentials to electricity, 112

Self-timed circuit an clockless asynchronous design paradigm whereby computation

proceeds at the speed allowed by the arrival of signals, 40

Short to ground A signal path, usually undesired, that causes a large current to flow

from power to ground, 94

Shorthand notation A concise alternative to trace notation – see Section 3.4, 44

Shuffle Network Essentially a degenerate permutation network that is only capable of a

proportion of possible permutations, 117

Single-Event Effect (SEE) The consequential effect on a circuit of a single charged par-

ticle (cosmic ray) impact, 94

Single-Event Transient (SET) A brief pulse, generally of the order of 0.5nS, caused by

a charged particle impact that is not sufficiently energetic to cause permanent dam-

age, 94

GLOSSARY OF TERMS AND SYMBOLS 193

Single-Event Upset (SEU) A single bit error in a register, memory location or flip flop

caused by a charged particle impact, 94

Singleton trace A trace, denoted 〈0〉 or 〈1〉, representing a signal whose value is static

for all time, 44

Solar Panel Satellites operating within the orbit of Mars are typically powered by solar

panels, which appear as ‘wings’ constructed from photovoltaic cells, 112

Solenoid A (usually) open-cored coil that is typically used to apply a force to a magnet

or ferrous rod. Solenoids are in common use in engineering when linear actuation

is required, but the application is not critical enough to require a more complex

solution., 112

Sorting Network A sort algorithm that can be reduced to a statically constructible net-

work of 2-way sort nodes, 117

Soundness (of abstract interpretation) see correctness, 42

Speed-independent circuit an asynchronous paradigm whereby gates have delays, but

wires are assumed to have zero delay (see also delay-insensitive circuit), 40

Star Tracker A navigation device commonly used by satellites and deep space probes

to align themselves. A camera images stars within its field of view, and image

recognition software uses this to determine the satellite’s exact orientation, 112

Static hazard A hazard (unintentional short pulse) that may occur at a time that a signal

should maintain the same state, 38

Static-Clean logic A logic (often, but not necessarily, also a transitional logic) that in-

corporates the logic values S and C, 55

Stuck-at Fault A (usually permanent) failure that presents as a signal that is perma-

nently connected to power or ground, see also permanent latch-up, 94

Synchronous Circuit a digital circuit timed by a single global clock, with no feedback

allowed except via flip-flops, 38

Termination Signals on transmission lines will normally reflect back from an open end –

it is therefore necessary to construct a termination network that has an impedance

matched to that of the transmission line itself. Often this is a simple as a resistor

connected to ground, though active circuitry is sometimes used., 110

GLOSSARY OF TERMS AND SYMBOLS 194

Thermoelectric Generator See radioisotope thermoelectric generator, 112

Torquer bar A metal rod, normally mounted externally on a spacecraft, that generates a

magnetic field when current is passed through it. In Earth orbit, this field interacts

with the Earth’s magnetic field thereby applying a torque to the spacecraft. Often

used in conjunction with gyroscopes and reaction thrusters, torquer bars are in

common use as part of spacecraft navigation systems, 112

Trace notation Traces (in T) are represented by the notation 〈. . . 〉, where a list of

Boolean values represents the values present within a trace, but not the times at

which the transitions occur, 44

Transitional logic a multi-value logic whose values explicitly capture transitions in truth

value, 38

Transmission line delay a delay function that may neither remove or re-order pulses,

named because of its resemblance to a transmission line (impedance-balanced

wire) in analogue electronics (see also inertial delay), 40

Transmission line A transmission line is typically a cable or PCB track, where a signal is

paired deliberately with a corresponding ground, such that the impedance that is

presented at all points along the signal path are, as far as possible, equal. See also

termination., 110

UNSAT A SAT problem with no solution, see also SAT problem, 23

Unregulated Power An unregulated power rail typically does not feature exact control

over its absolute voltage, and in many cases also over noise or ripple characteristics.

See also voltage regulator, 112

VHDL a commonly used hardware description language, 38

VLSI Very Large Scale Integration, 41, 94

Verilog a commonly used hardware description language, 38

Voltage Regulator A voltage regulator takes a (usually greater) DC voltage and derives

from it a carefully controlled DC voltage output, 112

Xilinx Major FPGA manufacturer, with a specialism in high performance SRAM-based

COTS FPGAs, 94

GLOSSARY OF TERMS AND SYMBOLS 195

eV/n Electron volts per nucleon: the kinetic energy gained by an atomic nucleus stripped

of electrons whilst passing through an electrostatic potential difference of 1 volt in

vacuum, 10

eV Electron volt: the kinetic energy gained by an electron whilst passing through an

electrostatic potential difference of 1 volt in a vacuum, 10

de Morgan’s law e.g., ¬(a ∧ b) = (¬a) ∨ (¬b), 40

Index

= (strong equivalence between traces), 57

Xa1|...|an
, 46

Xm..n, 46

≎ (comparability between traces), 57

∆c, 54

Φ-function, 72

∧♯, 48, 49

�♯, 49

¬♯, 48, 49

∨♯, 48

∆♯, 48, 49

α, 15, 47, 49

α-completeness, 51

αc, 53

β, 47

βc, 53

⋆, 55

≏ (weak equivalence between traces), 57

∧, 49

∧complete , 52

¬, 49

R, 43

δ, 44

δmax , 44

δmin , 44

V
′
3, 147

∃, 102

∀, 102

γ, 15, 47, 49

INDEX 197

γ-completeness, 51

γc, 53

�, 49

〈〉, 44

〈0〉, 44

〈1〉, 44

MaxSubs, 57

| (HarPE logical OR operator), 69

| (nondeterministic choice operator), 46

¬c, 54

¬, 44

℘(S), 42, 43, 44, 46

℘(T), 43, 46

℘(Tc), 53

⊛, 144

<, 56, 57

<strict , 57

S, 43

S
♯, 47

∼, 47

�c, 54

⊙F, 144

⊙T, 144

Subs, 56

∆, 49

Tc, 53

T256, 53, 57

Ψ, 43

Val, 56

∨c, 54

V3, 142

V5, 145

∧c, 54

f ♯
best , 51

s(+∞), 44

s(−∞), 44

Fn, 45

INDEX 198

Tn, 45

& (HarPE logical AND operator), 69

13-value transitional logic, 55

3-value Voting Logic

with Sequencing, 146

3-way voting circuit, 138

5-value Voting Logic

with Sequencing, 147

5-value transitional logic, 55

5-way voting logic, 145

9-value transitional logic, 55

Absolute timing information, 43

Absorption laws, 58

Abstract domain, 14, 44

finite versions of, 52

reduced, 54

Abstract interpretation, 13, 38, 42, 58, 137

α-completeness of, 51

γ-completeness of, 51

completeness of, 42, 51

correctness of, 42, 51

Abstraction function, 15

AC coupling, 131

achronous, 40

Achronous analysis, 40, 59

Achrony assumption, 59

Actel, 96

Active Velcro, 125

ADDA, 86

Adder

specialisation of, 83

Adjoined functions, 47

Algebra of transients, 59

Altera, 82

Analogue voting logic, 138

Analysis

achronous, 40, 59

INDEX 199

non-achronous, 40, 59

of hardware, 58

of programs, 58

of synchronous circuits, 60

AND gate, 40–42, 49

correctness and completeness of, 52

Antenna, 111

Apollo, 11

Apollo 12, 6

Apollo programme, 95

Armstrong, Neil, 154

Assignment statement, 63

guarded, 72

Associativity, 58

Asynchronous circuit, 33, 38, 159

bundled data, 34

dual rail, 34

Availability, 99

Backplane, 110

passive, 109, 113

Behaviour

best case, 43

worst case, 43

Binary chaos delay model, 59

Bit, 68, 69, 69, 70

Bit stream, 98, 106

BitReg, 69, 71

Bluespec, 91

Boolean functions on T, 48

Boolean optimisation, 63

Boolean SAT, 23

Brat, Guillaume, 94

Brzozowski, Janusz, 59

Bundled data, 34

Burch, Jerry R., 59

Burch. Jerry R., 158

INDEX 200

C++, 68, 105

Card frame, 109

Centronics, 128

CEV, 6

Charging problem, 9, 124

Cilia, 125

Circuit, 49

3-way voting, 138

asynchronous, 33, 38

combinational, 30, 63

delay-insensitive, 40–42

empty, 82

idealised, 41

majority voting, 138

physical, 41

radiation effects thereon, 35

self timed, 34, 40

slicing of, 103

speed-independent, 40, 41

suicide/fratricide, 104

synchronous, 33, 38, 137

watchdog, 104

Circuit symbols, 50

Clarke orbit, 11

Clarke, Sir Arthur C., 11

Clock edge, 67

Clos network, 119

CLV, 6

CMOS

inverter, 28

memory, 31

NAND gate, 29

CNF, 63, 102

Columbia, 6

Combinational circuit, 30, 63

partial evaluation of, 63, 83

Commutativity, 58

INDEX 201

Completeness, 18, 42, 51

Components

hardware, 40

Computational cost

of HarPE, 87

Concrete domain, 14

Concrete time, 43

Concretisation function, 15

Conrad, Pete, 6

Consistency, 58

Contrapositive law, 58

Control flow construct

compilation of, 71

Control flow merge points, 72

Convex hull, 50, 59

Correctness, 17, 42, 51

Cosmic ray, 2, 11

damage caused by, 94

Cosmic ray impact function, 144

COTS, 95, 96

Counter

Fibonacci series, 84

unrolling of, 84

up, 84

Cousot

Patrick, 47, 58

Radhia, 47, 58

Crossbar switch, 114, 117, 118, 118

analogue, 115

digital, 115

efficiency of, 118

make before break support of, 123

CRRES, 9

CSMA/CD, 131

Cunningham, Paul, 59

Current requirements

of CMOS circuits, 141

INDEX 202

Cycle, 44

D-type flip flop, 69, 71

circuit symbol, 32

Daughter board, 109

de Morgan’s law, 40, 58, 148

Deep space, 7

Delay

completeness of, 51

inertial, 40, 41, 50–52

non-inertial, 41

ordinary, 40

transmission line, 40, 50, 51

Delay element, 42

Delay function, 42

Delay-insensitive circuit, 40–42

Dennard, 31

Dense continuous time, 38

Deterministic

signal, 43, 44

Deterministic trace, 44, 45

DI, 40–42

Digital Electronics, 27

Digital voting logic, 141

Discovery

automatic, 111

Discovery probe circuit, 130

Distributivity, 58

DNF, 63

Domain

abstract, 14, 44

concrete, 14

hierarchy of, 55

Double Negative, 58

DRAM cell, 31

Dual rail, 34

Duality of V3 and V
′
3, 147

Dynamic discovery, 128

INDEX 203

Dynamic testing, 133

Earth

magnetosphere of, 9, 11

Electromagnetic pulse, 10

Electromechanical relay, 116

Else, 72

Embedded language, 68

EMP, 10

Empty circuit, 82

Empty trace, 44

EndIf, 68, 72

EndWhile, 73

EPXA1 development board, 82

Equivalence, 157

in transitional logics, 56

Excalibur EPXA1F484C1, 82

Explosive bolt, 112

Exponential size blowup, 63

External input, 71

External output, 71

Extreme

environments, 94, 107

temperatures, 107

Extreme environment, 2, 7

Fault

detection of, 104

localisation of, 104

recovery from, 94

stuck-at, 94

Fault recovery, 133

protocol, 134

FET

construction of, 28

n-channel, 29

p-channel, 29

Fibonacci series, 85

INDEX 204

counter, 84

Finite abstract domain, 52

Flight systems, 94

Flip flop, 32, 104

D type, 32, 71

JK, 32

S-R, 32

T-type, 32

FPGA, 82, 94, 98, 106, 107, 114

radiation hard, 96

reconfigurable, 94

FPGA repair, 106

FPTA, 106, 114

Full unrolling, 67

Function

Φ, 72

abstraction, 15

adjoined, 47

Boolean, on T, 48

concretisation, 15

cosmic ray impact, 144

identity, 53

stuck-at false, 144

stuck-at true, 144

Futamura projection, 21

G force, 7, 12

G-force, 107

Galileo/Huygens mission, 96

Galois connection, 16, 47

between ℘(T) and T256, 53

Galois insertion, 16, 47

GALS, 33, 159

Gamma ray, 10

Gate, 28

AND, 40–42, 49

NOT, 40, 41, 49

OR, 40, 49

INDEX 205

perfect, 41

Gates

correctness and completeness of, 52

perfect, 40

Gaubatz, Don, 59

Genetic algorithm, 99, 106

Gentzen, 158

GEO, 11

Geostationary Orbit, 11

Geosynchronous Earth Orbit, 11

Glitch, 38

checking, 55

Global Positioning System, 11

GPS, 11

Graceful degradation, 134

Greaves, David, 106

Ground lift, 125

Grounding, 124

GSAT, 25, 167

GSO, 11

Guard stack, 72

Guarded assignment, 72

Gyroscope, 111

Hardware analysis, 58

Hardware components, 40

Hardware Description Language, 68

Hardware reset circuit, 86

HarPE, 68, 105

computational cost of, 87

future extension of, 159

Hasse diagram, 14

Hazard

static, 38

Hazard non-increasing transformation, 56

Hazard-non-increasing gate-level optimisation algorithm, 59

HDL, 68

Heavy ion, 9, 10

INDEX 206

Heuristic search, 101

High reliability, 94

Hymans, Charles, 60

IBM

RS/6000 processor, 95

Idealised circuit, 41

Idempotence, 58

Identity function, 53

If, 68, 72

if-then, 63

if-then-else, 63

IGBT, 116

Impedance, 112

Imperative semantics, 68

Independent attribute model, 18, 49

Inertial delay, 40, 41, 50–52

Inertial line delay

linearity of, 150

SET sensitivity of, 150

Input

external, 71

Instruction set, 86

Int, 70, 70

International Space Station, 11

IntReg, 68, 70, 71

Inverter

CMOS, 28

Ion gun, 9

Ion thruster, 113

ISO C++, 68

ISS, 7, 11, 107

jBits, 122

JMP, 86

Johnston Atoll, 10

JPL, 106

Karnaugh map, 142

INDEX 207

Kildall, 58

Kleene, 19

Kung, David S., 59

Language

embedded, 68

Law of the excluded middle, 58

LDA, 86

LDC, 86

LE, 84

Leakage current, 141

Left shift, 83

LEO, 11

radiation levels, 96

Linear logic, 158

Local resynthesis, 99

as a SAT problem, 101

Local routing, 126

Logic

majority voting, 97, 138

multi-valued, 138

quaternary, 59

simulation of, 38, 55

static-clean, 55

synthesis of, 38

transitional, 38, 137

voting, 94

Logic gate, 28

Logic simulation, 157

Lohn, Jason, 99, 101, 106

Lombardi, 19

Loop

multiple unrollings of, 66

unrolling, 65, 73, 84

while, 65, 68

Low Earth orbit, 11

Machine cycle, 68

INDEX 208

Magnetosphere, 9, 11

Majority voting circuit, 138

Majority voting logic, 97, 138

Make before break, 123

Manifold

reconfigurable, 111

Manifold of manifolds, 113

Mars Exploration Rover mission, 96

Mealy machine, 64

Memory

CMOS, 31

DRAM, 31

SRAM, 31

MEMS, 125

MEMS relay, 113–115

MEO, 11

MER, 96

Microcilia, 125

Mid Earth Orbit, 11

Model checking, 38, 55

Modular redundancy, 109

Monotone data flow frameworks, 58

MOSFET, 116

Motherboard, 109, 110

passive, 113

Multi-valued logic, 138

Multiple redundancy, 94

Multiple unrollings, 66

Multiplexer, 70

Multiplier, 63

n-channel FET, 29

NAND gate

circuit of, 29

CMOS, 29

NASA, 6

NASA Ames, 94, 99, 106

Navstar GPS, 11

INDEX 209

Negation

linearity of, 149

SET sensitivity of, 149

Negation Normal Form, 167

Netlist, 68

Network

crossbar, 117

of arbitrary topology, 117

permutation, 117

NNF, 102, 167

NNF-GSAT, 167

NNF-WALKSAT, 103, 105, 168

NoClause, 106

Noise margin, 141

Non-achronous analysis, 40, 59

Non-clausal SAT, 94, 105

Non-clausal SAT solver, 102, 106

Non-inertial delay, 41

Nondeterminism, 43

Nondeterministic choice, 46

Nondeterministic trace, 44

NOT gate, 40, 41, 49

correctness and completeness of, 52

NP-complete, 24, 98

NRZ, 131

OBDDs, 63

Opportunity, 96

Optical switching, 113

Optimisation

bit-level, 84

of digital logic, 56

OR gate, 40, 49

Orbital altitude, 8

Ordinary delay, 40

Outgassing, 8

Output, 68, 71

INDEX 210

p-channel FET, 29

Partial Evaluation, 19

Partial evaluation, 62, 68

at register transfer level, 159

of a small processor, 85

of asynchronous circuits, 158

of combinational circuits, 63, 64, 83

of synchronous circuits, 64, 84

Passive backplane, 109

PCB, 109

Perfect gate, 40, 41

Permanent latch up, 35

Permanent latch-up, 94, 96, 97

Permutation network, 117, 119

Physical circuit, 41

Pipelining, 158

Power

spacecraft, 112

Power consumption, 159

Power regulation, 110

Power scavenging, 129

Program analysis, 47, 58

Proof system, 158

Propagation delay, 87

Properties of false, 58

Properties of true, 58

Pure-synchronous, 67

Quantifier

existential, 102

universal, 102

Quantifier Elimination, 102

Quartus II, 82, 84, 86

Quaternary logic, 59

Rack, 109

RAD6000, 95

Radiation, 2, 7, 9

INDEX 211

single event effect, 35

single event transient, 35

single event upset, 35

total dose, 35

Radiation damage, 142

Radiation hard FPGA, 96

Radiation levels

in space, 96

RAM, 85

Reconfigurable FPGA, 94

Reconfigurable manifold, 107, 111

Redundancy

modular, 109

within FPGAs, 98

Refinement, 55, 149, 157

in transitional logics, 56

Regulation

power, 110

Relational attribute model, 19

Relay

electromechanical, 114, 116

MEMS, 114, 115

Reset

hardware, 86

Reset logic, 67

Resistance

end-to-end, 112

Responsive space, 108, 111

Restart, 170

Retiming, 158

Retry, 170

Rewrite rule, 63, 64, 103

ROM, 85, 87

Routing

local, 126

systems level, 127

Routing architecture, 117

INDEX 212

RS/6000 processor, 95

RS232, 128

s-m-n theorem (Kleene), 19

S-R flip flop, 32

SAT, 23

clausal, 26

non clausal, 160

non-clausal, 27

solver, 24

SAT problem, 101

definition of, 101

SAT solver, 94, 101, 106

memory requirements of, 102

non-clausal, 102

Satellite, 108

SCATHA, 9

Schmitt trigger, 131

Search

heuristic, 101

SEE, 35

Self timed circuit, 34

Self-

organisation, 111

repair, 111

testing, 111

Self-organisation, 125

Self-timed circuit, 40

Semi-achronous analysis, 158

Semiring, 158

SET, 35, 144

immunity, 148

sensitivity, 148

SET immunity

impossibility of, 151

SEU, 35, 96

Sheeran, Mary, 122

Shepard, Alan, 157

INDEX 213

Shift left, 83

Shorthand notation, 44, 45

Shuffle network, 121

Shuttle, 6, 7

SI, 40, 41

Signal

Deterministic, 43

deterministic, 44

Simulation, 38

Single-event effect, 35

Single-event transient, 35

Single-event upset, 35, 96

Singleton trace, 44

SKIP, 86

Slicing, 103

by connectivity, 103

by coordinate, 103

by heuristic, 103

Solar

maximum, 11

minimum, 11

Solar flare, 9, 10

Solenoid, 112

Sorting network, 120

Soundness, 42

Space Velcro, 125

Specialisation, 65

of adder, 83

Speed-independent circuit, 40, 41

Spirit, 96

Sputnik 1, 6

SRAM cell, 31

SSA form, 72

STA, 86

Star tracker, 111, 113

Starfish Prime, 10

Statement

INDEX 214

assignment, 63

Static hazard, 38

Static single assignment form, 72

Static-clean logic, 55

Stoica, Adrian, 106

STOP, 86

STS-1, 6

Stuck-at false function, 144

Stuck-at fault, 94

Stuck-at true function, 144

Subscript laws, 46

Suicide/fratricide circuit, 104

Sun tracker, 111, 112

Super flip, 169

Switch

crossbar, 118

Switching

make before break, 123

MEMS-based, 107

optical, 113

Symbols

circuit, 50

Synchronous Analysis, 60

Synchronous circuit, 33, 38, 137

general form of, 64

partial evaluation of, 64, 84

pure, 67

Synthesis

of digital circuits, 38

Systems level routing, 127

Telephone networks

circuit switched, 127

Telstar, 10

Temperature

in space, 12

Temperature parameter (in WALKSAT/GSAT), 169

Template library, 68, 105

INDEX 215

Template metaprogramming, 68

Term rewriting, 63

Termination, 110

Thermonuclear warhead, 10

Thor rocket, 10

Time

concrete, 43

Timing simulation

layout aware, 86

Tool chain, 68, 82, 84

Torquer bar, 112

Total dose, 35

Trace

deterministic, 44, 45

empty, 44

nondeterministic, 44

singleton, 44

Transitional logic, 38, 137

13-value, 55

5-value, 55

9-value, 55

identities of, 58

refinement and equivalence, 56

static-clean, 55

Transmission line delay, 40, 50, 51

linearity of, 150

SET sensitivity of, 150

Types

of HarPE variables, 69

UART, 130

Unified approach to global program optimization (Kildall), 58

Unrolling, 65, 73

full, 67

simple counter, 84

Up counter, 84

US Air Force, 108

INDEX 216

Vacuum, 2, 7, 107

Van Allen belt, 9–11

electrons/protons trapped therein, 9

Velcro, 125

Venet, Arnaud, 94

Verilog, 38, 82

bit-level, 84

gate-level, 68

VHDL, 38

Vibration, 107

VLSI, 32, 41

von Braun, Wernher, 2, 6

von Neumann, John, 138, 151

Voting logic

5-way, 145

analogue, 138

digital, 141

W49 thermonuclear warhead, 10

WALKSAT, 25, 105, 168

Walsh, Toby, 106

Watchdog circuit, 104, 129

While, 73

loop, 65, 68

Wiring harness, 109

Xilinx, 96, 122

