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Abstract—The goal of this work was to use data-driven 
methods to automatically detect and isolate faults in the J-
2X rocket engine. It was decided to use decision trees, since 
they tend to be easier to interpret than other data-driven 
methods. The decision tree algorithm automatically “learns” 
a decision tree by performing a search through the space of 
possible decision trees to find one that fits the training data 
(with the hope that this tree will also generalize to new 
data). The particular decision tree algorithm used is known 
as C4.5. Simulated J-2X data from a high-fidelity simulator 
developed at Pratt & Whitney Rocketdyne and known as the 
Detailed Real-Time Model (DRTM) was used to “train” and 
test the decision tree. Fifty-six DRTM simulations were 
performed for this purpose, with different leak sizes, 
different leak locations, and different times of leak onset. 
To make the simulations as realistic as possible, they 
included simulated sensor noise, and included a gradual 
degradation in both fuel and oxidizer turbine efficiency. A 
decision tree was trained using 11 of these simulations, and 
tested using the remaining 45 simulations. In the training 
phase, the C4.5 algorithm was provided with labeled 
examples of data from nominal operation and data including 
leaks in each leak location. From the data, it “learned” a 
decision tree that can classify unseen data as having no leak 
or having a leak in one of the five leak locations. In the test 
phase, the decision tree produced very low false alarm rates 
and low missed detection rates on the unseen data. It had 
very good fault isolation rates for three of the five simulated 
leak locations, but it tended to confuse the remaining two 
locations, perhaps because a large leak at one of these two 

locations can look very similar to a small leak at the other 
location.1,2
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1. INTRODUCTION 
The J-2X rocket engine will be tested on Test Stand A-1 at 
NASA Stennis Space Center (SSC) in Mississippi. A team 
including people from SSC, NASA Ames Research Center 
(ARC), and Pratt & Whitney Rocketdyne (PWR) is 
developing a prototype end-to-end integrated systems health 
management (ISHM) system that will be used to monitor 
the test stand and the engine while the engine is on the test 
stand [1]. The prototype will use several different methods 
for detecting and diagnosing faults in the test stand and the 
engine, including rule-based, model-based, and data-driven 
approaches. SSC is currently using the G2 tool [2] to 
develop rule-based and model-based fault detection and 
diagnosis capabilities for the A-1 test stand. This paper 
describes preliminary results in applying the data-driven 
                                                           
1 U.S. Government work not protected by U.S. copyright. 
2 IEEEAC paper #1408, Version 1, Updated November 1, 2008 
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approach to detecting and diagnosing faults in the J-2X 
engine. 

The conventional approach to detecting and diagnosing 
faults in complex engineered systems such as rocket engines 
and test stands is to use large numbers of human experts. 
Test controllers watch the data in near-real time during each 
engine test. Engineers study the data after each test. These 
experts are aided by limit checks that signal when a 
particular variable goes outside of a predetermined range. 
The conventional approach is very labor intensive. Also, 
humans may not be able to recognize faults that involve the 
relationships among large numbers of variables. Further, 
some potential faults could happen too quickly for humans 
to detect them and react before they become catastrophic. 
Automated fault detection and diagnosis is therefore 
needed. 

One approach to automation is to encode human knowledge 
into rules or models. Another approach is use data-driven 
methods to automatically learn models from historical data 
or simulated data. Our prototype will combine the data-
driven approach with the model-based and rule-based 
approaches. This paper focuses on the data-driven approach. 

2. THE J-2X ENGINE  

 
Figure 1 - The J-2X rocket engine 

The J-2X is a rocket engine currently under development at 
Pratt & Whitney Rocketdyne [3]. It will be fueled by liquid 
hydrogen and liquid oxygen. It will be used as the second-
stage engine on NASA’s Ares I crew launch vehicle [4] and 
Ares V cargo launch vehicle [5]. It is derived from the J-2 
engine, which served as the second- and third-stage engines 
on the Saturn V launch vehicle. It will have a total thrust in 
vacuum of 294,000 pounds, and a specific impulse of 448 
seconds. It will be 15 feet tall and will weigh 5,450 pounds. 
The J-2X engine is shown in Figure 1. The first flight of the 
J-2X is scheduled for 2013 on the unmanned Ares I-Y 
vehicle.  

3. TEST STAND A-1  
SSC operates several rocket engine test stands. Each test 
stand provides a structure strong enough to hold a rocket 
engine in place as it is fired, and a fuel feed system to 
provide fuel to the engine. Test stand A-1 is a large test 
stand that is currently used to test the space shuttle's main 
engines, and will be used to test the J-2X [6]. It can 
withstand a maximum dynamic load of 1.7 million pounds 
of force. It provides liquid hydrogen and liquid oxygen to 
the engine being tested, and has numerous sensors on its 
fuel feed system. Test Stand A-1 is shown in Figure 2. 

 

Figure 2 - Test Stand A-1 

4. THE J-2X DETAILED REAL-TIME MODEL 
We used data from a high-fidelity physics-based simulator 
to train and test the data-driven algorithms. The physics-
based model chosen for this project is the J-2X Detailed 
Transient Model or DTM. The J-2X DTM, as the name 
indicates, is a transient model that accurately models all 
phases of engine operation including start, mainstage  
(phase between start and shutdown), and shutdown. The J-
2X DTM simulates processes describing rocket engine 
operation including heat transfer, fluid flow, combustion 
and valve dynamics. Flowrates, pump speeds, temperatures 
and pressures are modeled as time dependent differential 
equations that are updated at a high rate, typically 2000 Hz. 
Property tables, valve characteristics and turbomachinery 
efficiency and performance curves are also incorporated in 
the DTM. DTM’s are used to develop safe start and 
shutdown sequences and for anomaly resolution. The J-2X 
DTM builds on a long history of DTM’s supporting most 
major Pratt & Whitney Rocketdyne (PWR) rocket engines. 
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The J-2X DTM underwent modification to enable it to run 
in “real-time” mode. In real-time mode, the DTM will 
respond in real world clock time to external stimuli such as 
changes in valve position and engine inlet conditions. The 
latter will comprise the interface to the test stand model. 
Advances in computer processor technology have made the 
real-time mode possible, due to the fast update rate required 
to maintain numeric stability. Faster update rates imply 
smaller time steps, which result in smaller errors, which 
result in greater stability.  Real-time performance is 
achieved if a model advances in time (step time) at the same 
rate as a wall clock. If a processor can perform all 
calculations in a step time or less, then the model is real-
time capable. The step time should also be consistent and 
set to the longest measured step time corresponding to the 
longest logical path.  Shorter frames are then padded as 
needed to provide a consistent step time. The J-2X DTM, or 
any DTM for that matter, was not optimized for real-time 
operation. Changes that were required include streamlining 
model code, limiting or eliminating model diagnostic 
output, and fixing the step time. The J-2X DTM currently 
uses a variable step time to maintain numeric stability so 
deterministic timing is not possible. Real-time DTM 
operation is required when real-time communication with 
other system components is required such as hardware-in-
the-loop testing or for online monitoring of an engine and 
test stand. Near real-time operation has been demonstrated 
indicating full real-time operation is feasible in the near 
future. The modified DTM now has the designation J-2X 
Detailed Real-Time Model or DRTM. 

The DRTM was modified to enable failure mode 
simulation. Failure modes are modeled as changes to the 
flowpath of the DRTM (e.g. leaks) or modification of 
engine parameters (e.g. turbine efficiency) representative of 
failure signatures. Sensor characteristics, such as lag and bit 
toggle, and process noise were also modeled to better 
replicate engine operation.  A simulation of cavitation due 
to low inlet pressure was also added to the DRTM as the 
primary test stand/engine interface fault mode. As the inlet 
pressure falls below a certain level, the propellant begins to 
vaporize and pump performance drops dramatically. 

5. DATA-DRIVEN FAULT DETECTION AND 
DIAGNOSTICS 

In our previous work [7, 8], we used unsupervised anomaly 
detection algorithms to automatically detect faults in Space 
Shuttle Main Engine data. Unsupervised anomaly detection 
algorithms are trained using only nominal data. They learn a 
model of the nominal data, and signal an anomaly when 
new data fails to match the model. They are useful when 
few examples of failure data are available. For a rocket such 
as the Space Shuttle Main Engine, very few examples of 
failures exist in the historical data. Unsupervised anomaly 
detection algorithms are therefore useful when using 
historical data as training data. For the J-2X, no real data is 

available yet, since the engine has not been built yet. 
However, we do have a high-fidelity physics-based 
simulator that can simulate faults. We therefore decided to 
use supervised learning. When used for fault detection and 
diagnostics, supervised learning algorithms take as input 
data from nominal operation and from each failure mode. 
They learn a model that is able to distinguish between the 
nominal data and the data for each fault mode. They are 
able to go beyond the capabilities of unsupervised anomaly 
detection algorithms by identifying the fault mode, rather 
than just detecting anomalies. 

We decided to use a decision tree learning algorithm 
because the decision trees learned by these algorithms are 
much easier for human experts to interpret than the models 
produced by some competing algorithms such as neural 
networks or support vector machines. Having engineering 
experts examine the decision trees is very helpful for 
verifying them before deploying them. The decision tree 
algorithm automatically “learns” a decision tree by 
performing a search through the space of possible decision 
trees to find one that fits the training data. The particular 
decision tree algorithm used is known as C4.5 [9]. 

6. RESULTS 
In the first experiment, two DRTM simulations were used 

to train a decision tree. The two simulations each had a leak 
at the same location, but the leaks were of two different 
sizes and started at two different times. The simulations 
included simulated sensor noise, and included a gradual 
degradation in both fuel and oxidizer turbine efficiency. The 
simulations also included all four modes, and lasted 500 
seconds. The internal timestep was 0.00005 seconds, and 
the timestep in the recorded data was 0.02 seconds. The 
decision tree learning algorithm was provided with 31 
simulated sensor values for each time step. The resulting 
tree had 14 nodes. The tree decides whether or not there is a 
leak at the one location at which the leaks were simulated. 
Engineering experts on our team examined the tree and 
concluded that it makes sense. Only five of the 31 sensors 
appear in the tree, indicating that the learning algorithm 
determined that is possible to accurately detect the leak 
using only those five sensors. 

A third DRTM simulation was used to test the tree. This 
simulation had a leak at the same location but again with a 
different size and at a different time. When applied to this 
test set, the tree was 99.9957% accurate (meaning that 
99.9957% of the time, the tree correctly identified whether 
there was or was not a leak), which is extremely high 
accuracy. Only one timestep was classified wrong. 

A second set of experiments was performed using 56 
DRTM simulations as follows: 
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Table 1. False Alarm Rates 
 leak location      
 3 4 7 8 9 total
false alarm rate 0.0032% 0.0011% 0.0000% 0.0029% 0.0000% 0.0072%

Table 2. Missed detection rates. 
leak location 

Missed detection rate 3 4 7 8 9
0.01 17.92% 18.69% 25.05% 49.71% 30.03%
0.03 0.02% 0.19% 23.74% 54.73% 29.09%
0.05 0.02% 0.12% 0.06% 40.90% 18.35%
0.07 0.00% 0.01% 0.05% 5.77% 6.94%

0.1 0.00% 0.01% 0.04% 16.91% 0.22%
0.12 0.01% 0.02% 0.06% 12.06% 0.04%
0.15 0.01% 0.02% 0.05% 6.57% 0.01%
0.17 0.00% 0.02% 0.02% 2.96% 0.00%

0.2 0.00% 0.03% 0.00% 1.92% 0.00%
0.22 0.00% 0.02% 0.00% 0.05% 0.00%

leak area (sq in) 

0.25 0.01% 0.01% 0.02% 0.62% 0.00%
 

• Five leak locations 

• Eleven simulations for each leak location, with 
eleven different leak sizes 

• One simulation with no leak 

• Each simulation was 500 seconds, and the time at 
which the leak started ranged from 50 to 400 
seconds. 

A C4.5 decision tree was trained using 11 of these 
simulations (two for each leak location plus one with no 
leak), and tested on the remaining 45 simulations. The 
resulting decision tree has 12,289 nodes, and is thus too big 
to be easily comprehended by humans. We can offer two 
possible explanations for the large number of nodes. The 
first explanation is that C4.5 is overfitting. This hypothesis 
is supported by the fact that the tree had a lower error rate 
on the training data than it did on the test data. The second 
explanation is that the decision function being learned 
cannot be represented using a decision tree with axis-
parallel cuts; C4.5 therefore learns a “stairstep” function 
consisting of many nodes. 

The decision tree decides whether there is no leak or a leak 
at a particular location (out of the five locations). Table 1 
shows the false alarm rates for this decision tree. The false 
alarm rates in the table answer the following question: Of 
all the time steps that do not have a leak, for what 
percentage does the decision tree incorrectly report a leak in 

each location? The total false alarm rate of 0.0072% is 
considered to be very good. 

Table 2 shows the missed detection rates for the same tree. 
The missed detection rates in the table answer the following 
question: Of all the time steps that have a leak of the given 
size at the given location, for what percentage of the time 
steps does the decision tree fail to detect the leak? It can be 
seen that at leak locations 3 and 4, the tree performs very 
well for leaks of size 0.03 square inches or greater. For 
leaks at location 7, the tree performs well for leaks of size 
0.05 square inches or greater. For leaks at location 9, the 
tree performs well for leaks of size 0.1 square inches or 
greater. But for leaks at location 8, the tree does not do a 
good job of detecting the leak until the size of the leak 
reaches 0.22 square inches. This reflects the fact that leak 
location 8 produces the smallest leak rates for a given leak 
area. 

Table 3 shows the misisolation rate for the same tree. The 
misisolation rates in the table answer the following 
question: Out of all the time steps in which a leak of a 
particular size at a particular location occurs, how often is it 
misidentified as being at a different location? It can be seen 
that the decision tree does a good job of isolating leaks of 
size 0.1 square inches or larger for locations 3, 4, and 7, but 
not for locations 8 or 9. More light is shed on misisolation 
by the confusion matrix, which is shown in Table 4. 
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Table 4. Confusion Matrix. 

Table 3. Misisolation rates. 
leak location 

Misisolation rate 3 4 7 8 9
0.01 82.02% 23.15% 9.23% 0.50% 18.89%
0.03 99.97% 0.90% 2.68% 2.17% 63.99%
0.05 99.91% 0.55% 0.05% 2.39% 61.17%
0.07 64.24% 0.35% 0.19% 1.49% 47.77%

0.1 0.73% 0.43% 0.40% 16.02% 2.57%
0.12 0.83% 0.54% 0.51% 19.66% 8.74%
0.15 0.00% 0.33% 0.30% 34.85% 2.48%
0.17 0.00% 0.00% 0.36% 26.11% 2.64%

0.2 0.22% 0.19% 0.00% 46.41% 0.67%
0.22 1.13% 1.11% 0.57% 5.05% 1.13%

leak area (sq in) 

0.25 0.49% 1.64% 0.36% 58.48% 0.38%

no leak 3 4 7 8 9 <-classified as 
474581 15 5 0 14 0 no leak

4 51745 67796 413 17 136 3
2243 1800 109719 164 2815 322 4
6210 1995 100 97651 1258 61 7

29748 2788 1444 13 61028 23797 8
14564 1141 1123 127 34542 54756 9

The confusion matrix answers the following question: 
When there is a leak at a particular location (or no leak), 
how often does the decision tree say that there is a leak at a 
particular location (the correct location or an incorrect 
location)? The first row is false alarms, the first column is 
missed detections, and the rest of the matrix is 
misidentifications (except for the diagonal). (Note: The 
confusion matrix and the false alarm rate table were 
calculated using only test data, while the missed detection 
matrix and misisolation matrix were calculated using both 
training and test data (in order to include every leak size in 
the set). Because of this difference, the first column of the 
confusion matrix does not equal the total missed detections 
in the missed detection matrix.) The matrix shows that 
locations 8 and 9 are often confused with each other, 
explaining the high misisolation rates for those two 
locations. A possible explanation for this confusion is that a 
small leak at location 8 could look like a large leak at 
location 9. 

7. RELATED WORK 
Much of the previous work in fault detection for rocket 
engines has used unsupervised anomaly detection 
algorithms. This work has relied on historical data for 
training purposes, and the historical data has generally not 
contained enough examples of faults to adequately train a 

supervised learning algorithm such as C4.5. The work 
described in this paper is different in that we now have a 
high-fidelity simulator (the DRTM) that can provide 
training data for many different fault cases, which has 
enabled us to use a supervised learning approach. 

Martin et al. [10] presents a comparison of six unsupervised 
anomaly detection algorithms. They ran all six algorithms 
using Space Shuttle Main Engine data from four space 
shuttle flights and two test stand firings for training, and 
eight shuttle flights and four test stand firings for validation. 
Although they acknowledge that they do not have enough 
data to make statistically significant comparisons of the 
relative performance of the six algorithms, they conclude 
that the algorithm with the best accuracy appeared to be 
either Orca [11] or the one-class Support Vector Machine, 
depending on how they classify ground truth in the 
validation data. 

Park et al. [12] applied the BEAM (Beacon-based 
Exception Analysis for Multi-Missions) system to anomaly 
detection in SSME data. BEAM has nine components that 
use nine different approaches to anomaly detection, 
including both supervised and unsupervised approaches. 
The work reported in the referenced paper only used one of 
the nine components: the Dynamical Invariant Anomaly 
Detector (DIAD), which is an unsupervised anomaly 
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detection algorithm. Park et al. trained DIAD using data 
from 16 nominal tests, and tested it using data from seven 
tests that contained known failures. It detected all of the 
major failures in these seven tests, although it missed some 
minor failures and had some false alarms. 

Iverson [13, 14] describes an unsupervised anomaly 
detection algorithm known as the Inductive Monitoring 
System (IMS) and its use in a Space Shuttle application. 
After the STS-107 Space Shuttle Columbia disaster, Iverson 
applied IMS to data from four temperature sensors inside 
the Shuttle’s wings. He trained it using data from five 
previous Space Shuttle flights, and then tested it using STS-
107 data. It detected an anomaly in data from the 
temperature sensors on the Shuttle’s left wing shortly after 
the foam impact, suggesting in retrospect that with the aid 
of IMS, flight controllers might have been able to detect the 
damage to the wing much sooner than they did. More 
recently, IMS has been deployed to the Mission Control 
Center at NASA Johnson Space Center, where it is being 
used to monitor live data from the International Space 
Station. 

Srivastava [15] describes a system that performs 
unsupervised anomaly detection in sequences of discrete 
data using envelope detection methods and dynamic Hidden 
Markov Models. This system has been applied to data from 
the switches in an aircraft cockpit. In this application, it 
detects anomalies in the sequence of switch flips made by 
the pilot, including detecting if the switches are flipped in 
an unusual order. For example, it can detect if the pilot 
lowers and raises the landing gear multiple times, instead of 
just once (as is usually the case in the training data). 

Many of the existing approaches to supervised learning for 
systems health monitoring have used artificial neural 
networks to model the system. Artificial neural networks are 
a type of nonlinear model based loosely on the neural 
structure of the brain, in which the weights of the 
connections among neurons are automatically adjusted to 
maximize the fit of the model to the training data [16]. Guo 
and Musgrave [17] applied neural networks to sensor 
validation for the SSME. He and Shi [18] found that support 
vector machines produced better accuracy than artificial 
neural networks when applied to a pump diagnosis problem. 
One disadvantage of neural network approaches is that most 
humans are unable to understand or interpret the neural 
network models. Support vector machines suffer from 
similar lack of comprehensibility, but models based on 
decision trees are generally easier to understand, and 
therefore more likely to be accepted by human experts. 

8. CONCLUSIONS 
High-fidelity simulated J-2X data was used to train a 
decision tree for fault detection and fault isolation. Testing 
the tree on a separate set of simulated data showed that the 

tree has very low false alarm rates. It has very low missed 
detection rates for leaks of size 0.1 square inches or larger 
at four of the five locations, and adequate missed detection 
rates for leaks of size 0.2 square inches or larger at the fifth 
location. The tree almost always correctly isolates leaks of 
size 0.1 square inches or larger for three of the five 
locations, but tends to confuse the remaining two locations.  

The decision tree described here was delivered to SSC for 
integration with G2 at Test Stand A-1. 
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