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Abstract—Prognostics is an emerging concept in condition 

based maintenance (CBM) of critical systems. Along with 
developing the fundamentals of being able to confidently 
predict Remaining Useful Life (RUL), the technology calls for 
fielded applications as it inches towards maturation. This 
requires a stringent performance evaluation so that the 
significance of the concept can be fully exploited. Currently, 
prognostics concepts lack standard definitions and suffer from 
ambiguous and inconsistent interpretations. This lack of 
standards is in part due to the varied end-user requirements 
for different applications, time scales, available information, 
domain dynamics, etc. to name a few issues. Instead, the 
research community has used a variety of metrics based largely 
on convenience with respect to their respective requirements. 
Very little attention has been focused on establishing a common 
ground to compare different efforts. This paper surveys the 
metrics that are already used for prognostics in a variety of 
domains including medicine, nuclear, automotive, aerospace, 
and electronics. It also considers other domains that involve 
prediction-related tasks, such as weather and finance. 
Differences and similarities between these domains and health 
maintenance have been analyzed to help understand what 
performance evaluation methods may or may not be borrowed. 
Further, these metrics have been categorized in several ways 
that may be useful in deciding upon a suitable subset for a 
specific application. Some important prognostic concepts have 
been defined using a notational framework that enables 
interpretation of different metrics coherently. Last, but not the 
least, a list of metrics has been suggested to assess critical 
aspects of RUL predictions before they are fielded in real 
applications. 
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I. INTRODUCTION 
rognostics is emerging at the forefront of Condition 
Based Maintenance (CBM) of critical systems giving 

rise to the term Prognostic Health Management (PHM). We 
define prognostics to be the detection of a failure precursor 
followed by the prediction of remaining useful life (RUL). 
There are major challenges in building a successful 
prognostics system that can be deployed in field applications 
[1]. Research efforts are focusing on developing algorithms 
that can provide a RUL estimate, generate a confidence 
bound around the predictions, and be integrated with 
existing diagnostic systems. A key step in successful 
deployment of a PHM system is prognosis certification. 
Since prognostics is still considered relatively immature (as 
compared to diagnostics), more focus so far has been on 
developing prognostic methods rather than evaluating and 
comparing their performances. Tests are conducted based on 
specific requirements to declare the goodness of the 
algorithms but little or no effort is made to generalize the 
performance over a variety of other situations. Hence, there 
is no direct way of comparing different efforts if one needs 
to identify the most suitable algorithm among several. This 
calls for a set of general metrics that can be used in a 
standardized manner. Furthermore, different users of 
prognosis have different requirements; hence these metrics 
should be tailored for each end user (customer based 
verification) [2]. This poses a conflicting requirement to the 
idea of generalization of metrics. This confusion has 
prevailed for some time in the CBM/PHM community and 
there is a need to classify various metrics into categories 
catering to different requirements. We have attempted here 
to evaluate the verification process such that it can provide a 
structure for how to choose performance metrics for specific 
tasks and also compare an algorithm with other competing 
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ones. 
In this paper we provide a concise review of a variety of 

domains that involve prediction tasks of some kind. All 
these domains have fielded prognostics or forecasting 
applications and have, therefore, implemented performance 
metrics that evaluate and compare one system with another. 
These metrics have been consolidated and categorized into 
several categories based on different criteria that will be 
useful to the CBM/PHM community. For the sake of 
consistency and clear description, a notational framework 
has been introduced and included along with basic 
prognostics-related terms and definitions. The various 
metrics collected have been briefly explained and discussed 
with respect to how they can be of use to PHM applications. 
Several suggestions have been made for possibly useful 
PHM tailored metrics that may be used to evaluate and 
compare different algorithms in a standardized manner. 
Finally, several ideas have been discussed that can lead to 
newer metrics to evaluate other important prognosis aspects. 

II. MOTIVATION 
For end-of-life predictions of critical systems, it becomes 

imperative to establish a fair amount of faith in the 
prognostic systems before incorporating their predictions 
into the decision-making process. A maintainer needs to 
know how good the prognostic estimates are before he/she 
can optimize the maintenance schedule. Without any 
reasonable confidence bounds a prediction completely loses 
its significance. Confidence bounds are a function of 
uncertainty management capabilities of an algorithm 
whereas performance metrics provide a means to establish 
sanity of any claims regarding such confidence bounds. 
Therefore, these algorithms should be tested rigorously and 
evaluated on a variety of performance measures before they 
can be certified. Furthermore, metrics help establish design 
requirements that must be met. In the absence of 
standardized metrics it has been difficult to quantify 
acceptable performance limits and specify crisp and 
unambiguous requirements to the designers. Standardized 
metrics will provide a lexicon for a quantitative framework 
for requirements and specifications. 

There are a number of other reasons that make 
performance evaluation important. In general three broad 
categories namely, scientific, administrative, and economic, 
have been identified that include most reasons to carry out 
performance evaluations [3]. Performance evaluation allows 
comparing different schemes numerically and provides an 
objective way to measure how changes in training, 
equipment or prognostics models (algorithms) affect the 
quality of predictions. This provides a deeper understanding 
from the research point of view and yields valuable 
feedback for further improvements. One can identify 
bottlenecks in the performance and guide research and 
development efforts in the required direction. As these 
methods are further refined, quantitatively measuring 

improvement in predictions generates scores that can be 
used to justify for research funding in areas where either 
PHM has not yet picked up or where better equipment and 
facilities are needed. These scores can also be translated into 
costs and benefits to calculate Return-on-Investment (ROI) 
type indexes to justify their fielded applications.  

Performance evaluation is usually the foremost step once 
a new technique is developed. In many cases benchmark 
datasets or models are used to evaluate such techniques on a 
common ground so they can be fairly compared. Prognostic 
systems, in most cases, have neither of these options. 
Various research teams have shown how to evaluate their 
algorithms using a set of performance metrics; there have, 
however, been inconsistencies in the choice of such metrics. 
This makes it rather difficult to compare various algorithms 
even if they have been declared successful based on their 
respective evaluations. It is true that prognostic methods are 
application oriented and that it is difficult to develop a 
generic algorithm useful in every situation. Therefore, the 
evaluation methods may need to be different as well. 
Furthermore, the inconsistent use of terminology in different 
applications has led to confusion in even the most basic 
definitions. So far very little has been done to identify a 
common ground when it comes to testing and comparing 
different algorithms. In two surveys of methods for 
prognostics (one of data-driven methods and one of 
artificial-intelligence-based methods) [4, 5], it can be seen 
that there is a lack of standardized methodology for 
performance evaluation and in many cases performance 
evaluation is not even formally addressed. Even the ISO 
standard [6] for prognostics in condition monitoring and 
diagnostics of machines lacks a firm definition of such 
metrics. There must, however, be a way to establish a 
common ground that can give a fair idea of how an 
algorithm fares when compared to others. Therefore, in this 
paper we have attempted to review the various domains 
where prognostics type applications exist and have matured 
to a point of being fielded. We also review the state-of-the-
art in PHM technology and try to structure the verification 
methods in a logical fashion. Finally, we suggest several 
new metrics that can be of use to the prognostic community 
and present some ideas that, we hope, will serve as starting 
points for future discussions. 

III. PROGNOSTICS TERMS AND DEFINITIONS 
In this section we describe some commonly used terms in 

prognostics. Similar terms have been used interchangeably 
by different researchers and in some cases the same term has 
been used to represent different notions. This list is provided 
to reduce ambiguities that may arise by such non-
standardized use. 

A. Assumptions 
 Here prognostics is considered to be the detection of 

failure precursors and the prediction of RUL based 



  

on the current state assessment and expected future 
operational conditions of the system. 

 It is possible to estimate a health index as an 
aggregate of features and conditions 

 RUL estimation is a prediction/ forecasting/ 
extrapolation process. 

 Algorithms under consideration are capable of 
generating a single RUL value for each prediction. 
That is, algorithms that produce RUL distributions 
can be adapted to compress the distribution to a 
single estimated number for comparison purposes.  

 All systems are under continuous monitoring and 
have the measurement capability that can acquire data 
as a fault evolves. 

B. Glossary 
RUL: Remaining Useful Life – amount of time left before 
system health falls below a defined failure threshold 
UUT: Unit Under Test 
i : Index for time instant ti

EOL: End-of-Life - Time index of actual end of life 
EOP: End-of-Prediction – earliest time index, i, when 
prediction has crossed the failure threshold 
0: Time index for time of the birth of the system, t0  
F: Time index for the time when fault occurs, tF

D: Time index at which the fault is detected by diagnostic 
system, tD

P: Time index at which the first prediction is made by the 
prognostic system, tP
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Figure 1. Illustration depicting some important prognostic time definitions 
and prediction concepts. 
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n

: Value of the nth Feature for the lth UUT at time index i 

)(icl
n

: Value of the nth operational condition for the lth UUT 
at time index i 
rl(i): RUL Estimation at time ti given that data is available 
up to time ti for the lth UUT 

)|( jilπ : Prediction at time index i given data up to time tj 
for the lth UUT. Prediction may be made in any domain, e.g. 
feature, health, etc. 

)(ilΠ : Trajectory of predictions at time index i for the lth 
UUT 

)(ihl : Health of system for the lth UUT 

Definition 1 - Time Index: The time in a prognostics 
application can be discrete or continuous. We will use a time 
index i instead of the actual time, e.g., i=10 means t10.  This 
takes care of cases where sampling time is not uniform. 
Furthermore, time indexes are invariant to time-scales. 

Definition 2 - Time of Detection of Fault: Let D be the 
time index (tD) at which the diagnostic or fault detection 
algorithm detected the fault. This process will trigger the 
prognostics algorithm which should start making RUL 
predictions shortly after the fault was detected as soon as 
enough data has been collected. For some applications, there 
may not be an explicit declaration of fault detection, e.g., 
applications like battery health management, where 
prognosis is carried out on a decay process. For such 
applications tD can be considered equal to t0 (time of birth) 
i.e., we expect to trigger prognosis as soon as enough data 
has been collected and not wait for an explicit diagnostic 
flag (Figure 2). 

Definition 3 - Time to Start Prediction: We will 
differentiate between the time when a fault is detected (tD) 
and the time when the system starts predicting (tP). For 
certain algorithms tD = tP but in general tP ≥ tD as these 
algorithms need some time to tune with additional fault 
progression data before they can start making predictions 
(Figure 2). In cases where a data collection system is 
continuously collecting data even before fault detection, 
enough data is already available to start making predictions 
right away and hence tP = tD. 
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Figure 2. Features and conditions for lth UUT 

Definition 4 - Prognostics Features: Let  be a 
feature at time index i, where n = 1, 2, … , N is the feature 
number, and l = 1, 2, … , L is the UUT index (an index 
identifying the different units under test). In prognostics, 
irrespective of the analysis domain, i.e., time, frequency, 
wavelet, etc., features take the form of time series and they 
can be physical variables, system parameters or any other 
quantity that can be computed from measurable variables of 
the system that provides or aides the prognosis. The features 
can be also referred to as a feature vector F

)(if l
n

l(i) of the lth UUT 
at time index i. 

Definition 5 - Operational Conditions: Let  be an )(icl
m



  

operational condition at time index i, where m = 1, 2, … , M 
is the condition number, and l = 1, 2, … , L is the UUT 
index. The operational conditions describe how the system 
is being operated and are sometimes referred to as the load 
on the system. The conditions can also be referred to as a 
vector Cl(i) of the lth UUT at time index i. 

Definition 6 - Health Index: Let  be a health index 
at time index i for UUT l = 1, 2, … , L. h can be considered 
a normalized aggregate of health indicators (relevant 
features) and operational conditions. 

)(ihl

Definition 7 - Ground Truth: Ground truth, denoted by 
the subscript *, represents our best belief of the true value of 
a system variable. In the feature domain  may be 
directly or indirectly calculated from measurements. In the 
health domain,  is the computed health at time index i 
for UUT l = 1, 2, … , L after a run to failure test. This health 
index represents an aggregate of information provided by 
features and operational conditions up to time index i. 

)(* if l
n

)(* ihl

Definition 8 – History Data: History data, denoted by the 
subscript #, encapsulates all the information we know about 
a system a priori. Such information may be of the form of 
archived measurements or EOL distributions, and can refer 
to variables in both the feature and health domains 
represented by  and  respectively. )(# if l

n )(# ihl

Definition 9 - Point Prediction: Let  be a point 
prediction of a variable of interest at time index i given 
information up to time t

)|( jilπ

j, where tj ≤ ti.    for i = EOL 
represents the critical threshold for a given health indicator. 
Predictions can be made in any domain, features or health. 
In some cases it is useful to extrapolate features and then 
aggregate them to compute health and in other cases features 
are aggregated to a health and then extrapolated to estimate 
RUL. 
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Definition 10 - Trajectory Prediction: Let be the 
trajectory of predictions at time index i such that 
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Figure 3. Illustration showing a trajectory prediction. Predictions may 
modify every time instant and hence the corresponding RUL estimate. 
 

Definition 11 - RUL Estimation: Let  be the 
remaining useful life estimation at time index i given that the 
information (features and conditions) up to time index i and 
an expected operational profile for the future are available. 
As shown in Figure 4, prediction is made at time t

)(ir l

i and it 
predicts the RUL given information up to time i for the lth 

UUT RUL will be estimated as . { } izhir
z

l −== 0)(arg)(
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Figure 4. Comparing RUL predictions from ground truth (tp   [70,240], tEOL 
= 240, tEOP > 240). 

IV. FORECASTING APPLICATIONS CLASSIFICATION 
Based on our survey of several forecasting application 

domains, we identified two major classes of forecasting 
applications (see Figure 5).  
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Figure 5. Different categories of the forecasting applications 

 
In one class of applications a prediction is made on a 

continuous basis, and the trend of data is generally non-
monotonic. These predictions may be discrete (e.g. 
forecasting market demand for a particular month) or 
continuous (e.g. variation of temperature over the period of 
next week). Predictions can be quantitative (e.g. prediction 
of exact numbers) or qualitative (e.g. high or low demands) 
in nature. Applications like weather and finance have been 
in existence for quite a while and have matured to a good 
extent. The other class of applications involves the existence 
of a critical threshold such that the system under test is 
declared to have lost a defined degree of functional 
capability (including complete failure) if it crosses the 
threshold. These applications usually can be modeled using 
decay models. Here the task of prognostics is to predict a 
RUL estimate. In some cases, where enough history data 
exists (e.g. medicine) or can be experimentally generated 
(e.g. mechanical systems) for nominal and failure 
conditions, a variety of data-driven or statistical techniques 



  

can be applied. In such situations it is also relatively easy to 
evaluate the performance by comparing the prediction a 
posteriori. However, there are critical applications where 
run-to-failure experiments can not be afforded and very little 
failure history data is available (e.g. aerospace). In such 
cases a variety of methods based on data-driven and model-
based techniques have been proposed. It becomes extremely 
tricky and difficult to assess the performance in such cases 
due to absence of knowledge about the future outcomes. 
Methods are tested on experimental or simulated data and 
are expected to perform on real systems. Unfortunately 
algorithm performance does not always translate 
meaningfully from one dataset to another or one domain to 
another. Therefore, a standard set of metrics independent of 
application domain would be very desirable. 

V. FORECASTING DOMAINS REVIEWED 
In this section we provide a concise assessment of 

prediction performance evaluation methods in various 
domains. Specific relevant performance metrics have been 
listed in the next section. 

A. Aerospace 
The aerospace industry is likely the field with the most 

vibrant research and development activity in systems 
prognostics today. This happened for a good reason – 
systems health inspections on spacecraft and aircraft are 
often difficult and costly, and sometimes impossible. The 
consequences of a premature failure can, however, be dire.  

Prognostic algorithms are beginning to be applied to 
monitoring condition of aircraft structures, avionics, wiring, 
control actuators, power supplies, and propulsion systems. 
Prognostic functionality is being incorporated into the health 
management system of the latest military aircraft (e.g. Joint 
Strike Fighter [7]) and civilian aircrafts, in order to reduce 
the overall lifecycle cost and improve flight readiness. 
Original equipment manufacturers as well as, increasingly, 
small businesses have established dedicated prognostics 
research groups. Active work on aerospace prognostics is 
also being conducted by national governments (including 
research labs in the armed forces and the aerospace 
agencies) as well as academic organizations both in the US 
and elsewhere. 

The aerospace industry has also led in developing the 
metrics to evaluate prognostic algorithms. Most of the 
metrics have, historically, focused on the technical merits of 
prognostic techniques, such as accuracy and precision [1], 
although in recent years more attention have been given to 
those assessing the business merits (ROI[8-10], Total Value 
[11], and others). As the prognostic systems make their way 
into the commercial aerospace sector, they are expected to 
help with maintenance scheduling, optimal operating mode 
determination, and asset purchasing decisions. 

B. Electronics 
Prognostics for electronics is currently less advanced than 

prognostics for mechanical systems. Many researchers in the 
field therefore take their inspiration from previous work in 
mechanical prognostics, and use similar algorithms and 
metrics, including the usual accuracy metrics [12-14]. Some 
of the work in electronics prognostics emphasizes the 
potential cost savings provided by prognostics, and therefore 
relies on cost/benefit metrics such as ROI [8-10], life cycle 
cost [15], and MTBF/MTBUR ratio [16]. Methods used for 
data collection include measuring the temperatures of 
components [17, 18], installing “canaries” (electronic 
devices that are designed to fail before the operational 
devices do) [19], collecting data about operational 
conditions such as vibration [13], usage hours [17], or 
ambient temperature, using strain gauges to measure the 
strain on solder joints [19], and detecting when the 
performance of a system degrades (for example, when more 
correctable errors begin to occur) [18]. 

C. Medicine 
Medicine is a field where diagnostics and prognostics 

have a long tradition. Indeed, medicine has a large body of 
tests and indicators that are used commonly to aid in 
decision-making such as blood pressure and cholesterol 
levels.  The field has come to trust these prognostic 
indicators when they have been subject to the double blind 
clinical trial. While this test is not perfect, it provides a 
metric against which other results can be compared. 
Although prognostics is a common tool in medicine, the 
most significant constraint is the way in which prognostic 
results are measured. Typically, survival rates are quantized 
into increments such that the problem boils down to a 
classification problem [20, 21]. For example, one would 
typically measure the number of cancer survivors past, say, 
10 years, and then assess whether the prediction was correct 
or not. Despite that constraint, there are a number of 
ancillary metrics (e.g., coverage, informativity [22], 
discrimination and calibration [21], accuracy, precision, 
interseparability and resemblance [23], etc.) that have been 
in use which quantify the quality of a prediction in the 
context of a regression problem. In addition, important  
insights are given into how to deal with incomplete data 
[24], and area that is jointly of interest to other fields like 
statistics as well. 

D. Nuclear 
With increasing energy demands nuclear power plants 

play an important role in the energy sector. Average life of a 
nuclear reactor being 20-30 years, efforts are underway to 
extend the life of these reactors using advanced monitoring 
and maintenance techniques. While advanced diagnostics 
has been implemented in the US and Europe, prognostics is 
still at conceptual levels. Most metrics developed so far have 
been to establish a profitable business case rather than 
maturing prognostics itself [25, 26]. Data records like 
overall plant operating efficiency and maintenance, 
machinery repair records, etc. are used to derive cost-benefit 



  

analysis for prognosis. For instance, improved thermal 
efficiency is translated into gas cost savings and increase in 
available capacity translated into savings from not using the 
spare unit, etc. However, the lack of prognostics deployment 
has resulted in very little research in improving the 
prognosis itself and hence not many verification schemes. 

E. Finance 
Forecasting techniques are used in finance and 

economics. These are usually based on statistical methods 
based on regression or time series analysis techniques. 
Performance evaluation methods have developed and 
studied for prediction algorithms within the context of the 
forecasting research [27]. These methods are focused on 
prediction accuracy and model/algorithm selection [28]. 
The prediction accuracy is approached by computing 
statistics over the prediction error. Such statistics infer 
parameters like central tendency and variability by either 
assuming a particular form of the probability distribution of 
the error or by not making any assumptions about the error 
distribution using methods like the median and MAD 
(median absolute deviation) [27-30]. On the other hand, in 
forecasting model selection the intention is to select 
forecasting model/algorithm that performs statistically better 
than a baseline algorithm. Model selection techniques are 
also heavily based on prediction errors [28].  

A few other well-known model selection techniques in 
this domain include the Diebold-Mariano test based on 
average out-of sample error [31], Pearson’s Chi-square test 
on contingency tables, Theil’s U statistics [32] and the time-
distance criterion which measures the models horizontally as 
against the usual vertical methods such as mean and mean 
squared error (MSE). Another set of statistics which is quite 
relevant in this area is related to the direction/sign of 
prediction, i.e., whether there will be an increase or decrease 
in the forecasting variable. This includes confusion rate 
which is the number of falsely predicted changes divided by 
the number of observed changes and the Henriksson and 
Merton test [33] which compares models based on accuracy 
of direction/sign prediction. 

F. Weather 
Forecasting weather patterns has probably been one of 

man's earliest attempts at modeling and prediction, and 
continues to be just as significant today as it was before. 
Various modeling and forecasting methodologies have 
evolved from the study of weather as well as a variety of 
metrics to compare these techniques [34]. However, the 
essence of the widely used metrics can be grouped in two 
categories: those that measure bias or error with respect to a 
baseline [35], and those that measure resolution or the 
ability of the forecast to distinguish between different 
outcomes [36]. The baselines to be used as a basis of 
comparison can also vary between aggregate weather history 
(over the last 10 years, for example), current measurements 
or even reference forecasts. This kind of approach is well 

suited to a field where measurements have improved in 
accuracy but our understanding of weather patterns is still 
evolving. 

Another related application that drew our attention is 
wind mill power prediction where the task of prediction 
matches with prognosis in that it uses different time scales 
depending on specific applications [37]. For instance, 
scheduling of power plants based on 3-10 hrs prediction 
horizon, (2) assessing the value of produced electricity for 
various end users on a prediction horizon of 0-48 hrs, and 
(3) Longer time scales for maintenance planning. 
Performance is usually evaluated using a reference model, 
often referred to as persistence models. Error based metrics 
like Bias, MAE, RMSE, MSE, SDE, Coefficient of 
determination (R2), etc. are the most common ones here as 
well [38]. Also mentioned is a metric called Surplus for a 
given period, which is the sum of all positive prediction 
errors. All errors are determined for k-0 step look ahead. 
Another metric used is cumulated squared prediction errors 
for k-step ahead prediction (k is small for short term and 
large for long term predictions). 

G. Automotive 
Prognostics has recently become a vital part of on-board 

diagnostics (OBD) of the latest vehicles. “The goal of this 
technology is to continually evaluate the diagnostics 
information over time in order to identify any significant 
potential degradation of vehicle subsystems that may cause a 
fault, to predict the remaining useful life of the particular 
component or subsystem and to alert the driver before such a 
fault occurs” [39]. Mostly, the approach consists of trending 
of residuals extracted from diagnostic information [40]. The 
metrics used are mainly accuracy measures like MSE [41] or 
Gaussian pdf overlaps [42]. The overall methodology is 
data-driven and suitable where extensive baseline data is 
available [43].  

VI. PROGNOSTICS METRICS CLASSIFICATIONS 
A variety of prognostics metrics are used in the domains 

reviewed above. Depending on the end use of the prognostic 
information, basic accuracy and precision based metrics are 
transformed into more sophisticated measures. Several 
factors were identified that classify these metrics into 
different classes. In this section we attempt to enumerate 
some of these classifications. 

A. Functional Classification 
The most important classification is based on the 

information these metrics provide to fulfill specific 
functions. In general we identified three major categories, 
namely: (1) Algorithm performance metrics, (2) 
Computational performance metrics, and (3) Cost-benefit 
metrics. As evident from their names these metrics measure 
success based on entirely different criteria. As shown in 
Figure 6, the algorithmic performance metrics can be further 
classified into four major subcategories. 
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B. End User Based Classification 

Prognostics information may be used by different people 
for entirely different purposes. In general, end users of 
prognosis may be classified into the five categories shown in 
Table 1. 
Table 1. Classification of prognostic metrics based on end user requirements 
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Figure 6. Functional classification of prognostics metrics.  

VII. PROGNOSTICS METRICS 

 

A. Algorithmic Performance Metrics 
Most metrics found in our survey fall into the category of 

algorithmic performance evaluators. A concise list of such 
metrics has been included in Table 2. The table is further 
divided into subcategories as identified in Section  VI.A. As 
one can see, accuracy and precision based metrics dominate 
the table. The notion of robustness has been talked about in 
several cases but formal definitions were not found. 
Similarly, trajectory prediction metrics were not explicitly 
defined. Some mention of metrics like similarity measure 
[1] and prediction behavior error [43] have been mentioned 
that may be adapted for trajectory prediction performance 
evaluation. A more detailed description of various metrics 
can be found in the table. 

In general algorithmic performance can be measured by 
evaluating the errors between the predicted and the actual 
RULs. Other metrics use error to quantify various other 
characteristics such as statistical moments, robustness, 

convergence, etc. calculation of error requires availability of 
ground truth data, which is rarely available in many 
situations. In that case history data, if accessible, may be 
utilized to make corresponding inferences. Of course this 
assumes that the current process draws from the history data 
distribution. 

B. Classification Based on Predicted Entity 
Within PHM applications, we identified three major 

classes of the forms of prediction outputs and hence the 
corresponding metrics. Prognostics performance can be 
established based on different forms of the prediction 
outputs, e.g. future health index trajectory at tP, an RUL 
estimate at tP, or a RUL trajectory as it evolves with time. 
Some algorithms provide a distribution over predicted 
entities to establish confidence in predictions. Metrics to 
evaluate such outputs differ in form from those required for 
single value predictions. In other cases such a distribution is 
obtained from multiple UUTs, e.g., from fleet applications. 
The basic form of the metrics used for various categories 
may be similar, but the underlying information conveyed is 
usually different in a statistical sense. Figures 7-9 illustrate 
some representative examples. 

Figure 9. (a) A further assessment can be made on how well an algorithm’s 
RUL estimate evolves over time and converges to the true value as more 
data becomes available. (b) Such RUL trajectories may be accompanied by 
corresponding error bars as well. 

Figure 8. (a) Each prediction in the health domain appears as a point 
prediction in the RUL domain, which then may be compared with ground 
truth (b) RUL predictions may be obtained with corresponding confidence 
limits. 

Figure 7. (a) Predictions are made in the health domain for a single UUT. A 
health trajectory is predicted to consider evolution of fault in the system. (b) 
Predictions can be in the form of distributions with associated confidence 
bounds. 
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Table 2. List of metrics for algorithm performance evaluation*

 

Metric Name Definition Description Range Selected 
References  

Accuracy Based Metrics 

Error )  ()()( * iriri lll −=∆
Error defines the basic notion of deviation from desired output. Most accuracy 
based metrics are derived directly or indirectly from error. 
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Weighs exponentially the errors in RUL predictions and averages over several 
UUTs; where D0 is a normalizing constant whose value depends on the 
magnitudes in the application. 
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Averages the errors in predictions made at all subsequent times after prediction 
starts for the lth UUT. This metric can be extended to average biases over all 
UUTs to establish overall bias. 
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 Exponentially weighs RUL prediction errors through an asymmetric weighting 
function. Penalizes the late predictions more than early predictions. 

(0,∞) 
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score =0 

[1]  

False Positives (FP) 
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FP assesses unacceptable early predictions and FN assesses unacceptable late 
predictions at specified time instances. User must set acceptable ranges (tFN and 
tFP) for prediction. Early predictions result in excessive lead time, which may 
lead to unnecessary corrections. Also note that, a prediction that is late more than 
a critical threshold time units (tc) is equivalent to not making any prediction and 
having the failure occurring. 
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percentage error 
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Averages the absolute percentage errors in the predictions of multiple UUTs at 
the same prediction horizon. Instead of the mean, median can be used to compute 
Median absolute percentage error (MdAPE) in a similar fashion. 

[0,∞) 
Perfect 
score = 0 

[28, 29] 
  

 
* For the sake of conciseness, the references cited here are the ones that may be considered representative of the general field and can be grouped as a comprehensive source for these metrics. 



  

Anomaly correlation 
coefficient (ACC) 
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Measures correspondence or phase difference between prediction and 
observations, subtracting out the historical mean at each point. The anomaly 
correlation is frequently used to verify output from numerical weather prediction 
(NWP) models. ACC is not sensitive to error or bias, so a good anomaly 
correlation does not guarantee accurate predictions. In the PHM context, ACC 
computed over a few time-steps after tP can be used to modify long term 
predictions. However, the method requires computing a baseline from history 
data which may be difficult to come by. 
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Averages the absolute percentage errors in the predictions of multiple UUTs at 
the same prediction horizon. The percentage is computed based on the mean 
value of the prediction and ground truth. This prevents the percentage error from 
being too large for the cases where the ground truth is close to zero. 

[0,∞) 
Perfect 
score = 0 

[28, 30] 
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2)(1)(  Averages the squared prediction error for multiple UUTs at the same prediction 
horizon. A derivative of MSE is Root Mean Squared Error (RMSE). 
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horizon. Using median instead of mean gives median absolute error (MdAE). 
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* these metrics can also be classified into precision based category 
 

Precision Based Metrics 
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where M is the sample mean of the error 

Sample standard deviation measures the dispersion/spread of the error with 
respect to the sample mean of the error. This metric is restricted to the 
assumption of normal distribution of the error. It is, therefore, recommended to 
carry out a visual inspection of the error plots. 
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This is a resistant estimator of the dispersion/spread of the prediction error. It is 
intended to be used where there is a small number of UUTs and when the error 
plots do not resemble those of a normal distribution. 
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score = 0 
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This is a resistant estimator of the dispersion/spread of the prediction error. It is 
intended to be used where there is a small number of UUTs and when the error 
plots do not resemble those of a normal distribution. 
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Perfect 
score = 0 

[45]  



  

      

Robustness Based Metrics 

Reliability diagram, 
Brier Score 
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Reliability Diagram 

The Brier Score computed as 
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2)(1  is a measure of the 

deviation from the diagonal. 

The reliability diagram plots the observed frequency against the predicted 
probability of a random event. In the context of prognostics, an event may be the 
RUL of a system lying within a given time interval, or a health feature crossing 
an alarm threshold within a predetermined time. The prediction of the value of 
RUL is not considered an event. In other words, the problem of prognostics is 
transformed into the classification domain. The occurrence of the event is 
predicted multiple times and the range of probabilities is divided into K bins like 
0-5%, 5-15%, 15-25%, etc. Let us say that nk times out of  a total of N, the 
predicted probability falls in the probability bin k centered around pk and out of 
those nk times, the event occurs mk times, then the corresponding observed 
relative frequency ok is calculated as mk/nk. Reliability is indicated by the 
proximity of the plotted curve to the diagonal. The deviation from the diagonal 
gives the conditional bias. If the curve lies below the line, this indicates over-
forecasting (probabilities too high); points above the line indicate under-
forecasting (probabilities too low). 
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Receiver Operating 
Characteristic 
(ROC) 

 
The area under the ROC curve can be used as 
a score. 

ROC gives a comprehensive overview of the tradeoff between false positives and 
false negatives, as defined in section VIII. The ideal curve would have zero false 
positives and zero false negatives. Such a curve cannot realistically be achieved 
for real-world problems. In addition, tuning the prognostic algorithm such that a 
ROC can be generated may prove difficult in practice (e.g., due to lack of data or 
lack of tuning “parameters”). 
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Measures how sensitive a prognostic algorithm is to input changes or external 
disturbances. Can be assessed against any performance metric of interest. ∆M is 
the distance measure between two successive outputs for metric M’s value and 
∆input is a distance measure between two successive inputs, e.g. failure threshold, 
noise level, available sensor set, sampling rate, etc. 
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C. Computational Metrics 
Most of the publications in the area of prognostic 

algorithms for aerospace make no mention of computational 
performance. Some metrics like complexity [46] and 
specificity [47] have been mentioned that touch upon the 
computational aspects of prognostics. Many authors have 
been able to avoid the question of computational 
performance so far because they have not yet deployed their 
systems. We feel that assessing the computational 
performance of prognostic algorithms is very important, 
especially for applications that intend to monitor real-time 
data to make safety-critical decisions, such as deciding when 
it is necessary to shut down an engine or to land an aircraft 
to perform critical maintenance. In this section, we suggest 
several metrics that could be used to measure computational 
performance of prognostic algorithms, all of which are 
already widely used to measure the computational 
performance of other types of algorithms. 

In theoretical computer science, the worst case 
computational complexity of algorithms is usually described 
using “Big O” notation [48]. This notation describes the 
amount of time needed for the algorithm to run, as a 
function of the size of the input, and does so asymptotically, 
ignoring constant factors. For example, if the time 
performance of an algorithm is O(n2), then the time needed 
to run the algorithm increases quadratically with the size of 
the input. Big O notation allows the comparison of different 
algorithms to be independent from the particular software 
implementations and from the hardware on which the 
algorithms are run. 

To measure the combined performance of an algorithm, 
its software implementation, and the hardware on which it is 
run, one can measure either central processing unit (CPU) 
time or elapsed time. CPU time measures the amount of time 
that the CPU spends executing the software, and does not 
include the time that the CPU spends running other software 
(in a time-shared system), or the time that the CPU spends 
waiting for input or output (I/O). The advantage of 
measuring CPU time instead of elapsed time is that it is 
more repeatable. Elapsed time (also known as “wall-clock 
time”) simply measures the amount of time that it takes for 
an algorithm to run, including I/O time. It is not appropriate 
to use elapsed time as a metric on a time-shared (multi-user) 
system, since in that situation the activities of other users 
can affect the elapsed time. CPU time and elapsed time are 
both appropriate for applications in which the prognostic 
algorithm is run in “batch mode” on recorded data. They can 
answer the question of whether the software will run fast 
enough to produce results within a reasonable amount of 
time. 

For applications in which the data is processed in real-
time, the more relevant question is whether or not the 
software can keep up with the real-time data stream. A 
metric that can be used to answer this question is how many 

samples per time unit the software (running on a particular 
hardware configuration) can handle. For example, an 
application may require the software to be able to process 
real-time sensor data at 100 samples per second (100 Hz). 
These requirements are further stretched by the dimension of 
data points when each sample consists of multiple channel 
data. For prognostics, depending on the length of prediction 
horizon, data processing capabilities may be of greater 
significance from the design and implementation point of 
view. 

Besides time, the other major consideration in 
computational performance is memory space. Often if makes 
sense to separately measure the amount of main memory 
[such as dynamic random access memory (DRAM)] used, 
and the amount of storage (such as disk space or flash 
memory used). In both cases, one can either report the 
asymptotic space complexity using Big O notation, or the 
number of bytes used by a particular implementation. Space 
usage is particularly important in embedded applications, 
such as algorithms run on the flight computer of an aircraft 
or spacecraft, since these on-board computers usually have 
very limited space available. 

D. Cost-benefit Metrics 
The cost-benefit metrics, which appear in Table 3, are 

intended to measure the benefit provided by prognostics. 
They are all influenced by the accuracy with which RUL is 
predicted. For example, in MTBF/MTBUR ratio, the 
denominator, mean time between unit replacements, can be 
increased if RUL can be more accurately predicted. 

Life cycle cost is the sum of acquisition cost and 
operations cost. Adding prognostic capability to an existing 
system causes an increase in acquisition cost, due the cost of 
additional sensors, additional computing hardware, and the 
cost of developing the prognostic system. Operations cost 
will decline if RUL is predicted accurately, resulting in 
fewer components replaced before they need to be replaced, 
and potentially fewer costly failures. Of course, operations 
cost can also increase because of the cost of maintaining and 
operating the prognostic system. So the change in total life-
cycle cost caused by the addition of prognostic capability 
serves as a measure of the net savings gained by adding 
prognostics to the system. 

Return on investment (ROI) goes beyond life-cycle cost 
by also considering the time value of money. The reduction 
in life-cycle cost only tells us whether an investment in 
prognostics resulted in a net savings, without comparing the 
size of the savings with the size of the investment. ROI tells 
us the rate of return on the investment in prognostics, which 
enables the investment in prognostics to be compared with 
other competing investments. 



 

Metric Name Definition Description Selected 
References  

Cost/Benefit 

MTBF/MTBUR 
ratio  

MTBF/MTBUR 
(mean time between failure / mean time between 
unit replacement) 

This metric measures the ratio between how long a component lasts and how long it 
is used before replacing it. Prognostics should enable the reduction of this ratio by 
allowing components to be used longer, until they are closer to failure, which would 
save money. 

[16]  

Life-cycle cost acquisition cost + operations cost 

As a metric, compare the life cycle cost of the system (which includes the cost of 
building it or acquiring it and the cost of operating it) with and without prognostics. 
Total Value is the change in life cycle cost. ROI will be positive if adding 
prognostics reduces life cycle cost. 

[15]  

Return on 
Investment (ROI) gain/investment 

An investment in prognostics is expected to save money on maintenance and 
possibly prevention of downtime or lost hardware over the life of the system. The 
gain is the amount of money saved as a result of using prognostics (that is, the 
reduction in life-cycle cost), and the investment is the cost of developing, installing, 
and maintaining the prognostic system. The ROI (which is usually annualized) can 
be seen as the interest rate that a bond would have to pay to provide the same 
financial return. An investment should only be made if its ROI is at least as high as 
those of other potential investments with similar risk. 

[8-10]  

Technical Value 

))(1()( θφβα ⋅+⋅−−⋅+⋅= iDff PPPIDPTV  

Pf: Probability of a failure mode 
D: overall detection confidence metric 
α: savings realized by fault detection in advance 
I: overall isolation confidence metric 
β: savings realized by isolating a fault in advance 
PD: false positive detection metric 
φ: cost of false positive detection 
PI: false positive isolation metric 
θ: cost of false positive isolation 

The benefits achieved through accurate detection, fault isolation and prediction of 
critical failure modes are weighed against the costs associated with false alarms, 
inaccurate diagnoses/prognoses, and resource requirements of implementing and 
operating specific techniques 

[1, 11]  

Total Value 
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A: acquisition and implementation costs 
O: lifecycle operational and maintenance cost 
Pc: computer resource requirements 
δ: cost of computer systems 
 

Describes the value of a PHM technology in a particular application as the 
summation of the benefits it provides over all the failure modes that it can diagnose 
or prognose less the implementation cost, operation and maintenance cost, and 
consequential cost of incorrect assessments 

[1, 11]  

Table 3. List of metrics based on economic aspect of prognosis 

 
 

 



  

VIII. DISCUSSION 
A survey of a wide variety of domains reveals that some 

metrics are common to most applications whereas some are 
very domain specific. In this section we discuss few issues 
that may be important to keep in mind before using these 
metrics to evaluate prognostic performance. 

A. Use of Statistics in Prognostics 
From a theoretical point of view, RUL of a system can be 

considered a random variable and the prediction of an 
algorithm can be seen as estimating the RUL ground truth. 
The study of estimators is generally concerned with the 
estimation of location (central tendency), spread (dispersion) 
and shape of the distribution and a performance assessment 
is made between the estimated moments and predicted 
quantities. In prognostics, to arrive at the correct 
(representative of the population) RUL estimates either a 
large number of experiments should be run or an analytical 
method should be devised. However, in the absence of both, 
as is often the case, a comparison is conveniently made 
between the ground truth data and the predicted quantities. 
One should be careful while interpreting such results as a 
good performance in a particular experiment does not 
guarantee the overall success of the algorithm when applied 
to similar systems. Therefore, a prediction algorithm should 
be tailored to minimize the statistical bias and spread 
instead. Prediction accuracy metrics aim to quantify any bias 
from sample data and a smaller spread is desired, which is 
minimized through typical methods for standard error 
minimization.  

Some metrics make assumptions about the probability 
distribution of the error and use the standard estimators like 
mean and variance in such cases. One should also keep in 
mind that only in cases where prediction error resembles a 
Gaussian distribution metrics like sample mean and sample 
standard deviation may be applied directly. In other cases 
where samples size is small or outliers presence is 
suspected, more resistant metrics like median, MAD, MdAD 
etc. must be employed to make meaningful inferences. 

B. What Can be Borrowed from Diagnostics 
Metrics, previously used for diagnostics, can be modified 

to be used in prognostics by applying the appropriate 
modifications. Modifications of some metrics like false 
positives, false negatives, and the receiver operating 
characteristics (ROC) curve have been described in Table 2. 
we illustrate in this section how the false positive and false 
negative concepts from diagnostics can be transformed for 
prognostics.  

One needs to keep in mind that in prognostics, the utility 
of the error is most often not symmetric with respect to zero 
[44]. For instance, if the prediction is too early, the resulting 
early alarm forces more lead-time than needed to verify the 
potential failure, monitor the various process variables, and 
perform a corrective action. On the other hand, if the failure 

is predicted too late, it means that this error reduces the time 
available to assess the situation and take a corrective action. 
The situation deteriorates completely when the failure 
occurs before an end-of-life prediction is made. Therefore, 
given the same error size, it is in most situations preferable 
to have a positive bias (early prediction), rather than a 
negative one (late prediction). Therefore, one needs to 
define a limit on how early a prediction can be and still 
being useful by defining two different boundaries for the 
maximum acceptable late prediction and the maximum 
acceptable early one. Any prediction outside of the 
boundaries can be considered either a false positive (FP) or a 
false negative (FN). In particular, the focus should be on 
two instances of the error, ∆(c), the prediction error at the 
time tc when a critical zone (e.g. within the next mission or 
within next two hours) is reached, and ∆(EOL), the 
prediction error at the time when the failure occurs. Other 
metrics like ROC curve can be then defined based on these 
modified descriptions. Please refer to Table 2 for brief 
descriptions on ROC curve and additional details on the 
false positive and false negative metrics. 

C. Suggestions for New Metrics 
In addition to various metrics used in different domain, a 

list of new prognostics specific metrics and their possible 
formulations have been included in Table 4. Some of these 
metrics like the α-λ metric are completely new, while the 
concepts behind some others like convergence have been 
introduced in literature [43] but have never been as 
rigorously defined as here. However, we feel there are 
several other issues that must be considered and may give 
rise to more metrics as technology matures, some of these 
issues to consider include (but are not limited to): Dataset 
Equivalency (to compare two different datasets), Experiment 
Equivalency (to compute if two experiments are 
comparable), Anticipation Confidence (to express 
confidence in future prediction based on a high confidence 
about the knowledge of future conditions and the accuracy 
of the past predictions), Repeatability (if an algorithm results 
in repeatable predictions), etc. It is difficult, for obvious 
reasons, to suggest metrics that will work in all cases - they 
will necessarily need to be tailored to specific fields or even 
experiment groups - but we hope to at least initiate a 
discussion on the subject.  For instance, a simple dataset 
equivalency metric can take into account the difference in 
composition of the feature vectors, the length of the time 
series, the sampling frequency, and the standard deviation of 
feature values.  An experiment equivalency metric could use 
the condition vectors and compare how the external 
conditions, such as ambient temperature or pressure, 
differed throughout the experiments under consideration.  
The above metrics could, for example, be used to 
supplement or normalize the accuracy-based metric results 
for the different runs of the same algorithm. 



  

 

Table 4. New performance metrics suggested for prognostics in CBM/PHM domain 

Metric 
Name Definition  Description Range 

Proposed New Metrics for Prognostics 

    

Prognostic 
Horizon H(i)=EOP - i 

This metric is mentioned in the “Electronics Prognostics R&D Needs Definition” presentation 
[49], but not explicitly defined.  We suggest the following definition: 

Prognostic Horizon is the difference between the current time index i and EOP utilizing data 
accumulated up to the time index i, provided the prediction meets desired specifications. 

[0, ∞) 

Reduced 
Feature Set 
Robustness 
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where  - a subset of the original feature set f 
and M is a performance metric of interest 

ff ⊂′

Calculates the effect of an arbitrarily reduced feature set on M.  This metric does not make a 
distinction between the essential features of a feature set and the more ancillary ones (as 
pertinent to the algorithm under consideration).    It is simply meant to provide a common 
way to perform quantitative assessment of the consequences of feature (or features) removal.  
For instance, loss of signal from an actuator vibration sensor may make the accuracy of RUL 
estimates unacceptable, while loss of the ambient pressure sensor could still allow useful 
predictions to be made.  In certain fields, such as military aerospace, the tolerance of an 
algorithm to sensor loss is likely to be an important consideration.  

[0, ∞) 
Perfect score = 
0 

Prediction 
Spread 
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Where σ is any precision measure of choice 

This quantifies the variance of prediction over time for any UUT l. It can be computed over 
any accuracy or precision based metric M. 
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Prediction accuracy at specific time instances; e.g., demand accuracy of prediction to be 
within α*100% after fault detection some defined relative distance λ to actual failure. For 
example, 20% accuracy (i.e., α=0.2) halfway to failure after fault detection (i.e., λ =0.5).  
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Relative prediction accuracy at specific time instances 
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M is a performance metric of interest  
L is the length of the reference data set 

Estimates the effect on M from a change in the data set sampling frequency. The estimate is 
done using a reference frequency that can, for example, be the recommended design 
frequency for the particular algorithm 
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Data Frame 
Size 
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Indicates how many consecutive sets of feature values – data frame size - are required to be 
known at any given time for the algorithm to function within the constraints set on nominal 
performance.  Such constraints can be defined using other metrics, such as minimum 
accuracy, maximum false positive rate, or others.  
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Let (xc, yc) be the center of mass of the area under 
the curve M(i). then, the convergence CM can be 
represented by the Euclidean distance between the 
center of mass and (tp, 0), where 
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and M(i) is a non-negative prediction error accuracy 
of precision metric. 

Convergence is defined to quantify the manner in which any metric like accuracy or precision 
improves with time to reach its perfect score. As illustrated below, three cases converge at 
different rates. It can be shown that the distance between the origin and the centroid of the 
area under the curve for a metric quantifies convergence. Lower the distance faster the 
convergence. Convergence is a useful metric since we expect a prognostics algorithm to 
converge to true value as more information accumulates over time. Further, a faster 
convergence is desired to achieve a high confidence keeping the prediction horizon as large 
as possible. 
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 This metric calculates the ratio of the precision over the horizon. It quantifies the spread as 
function of distance to EOL.  

 



  

D. Some Issues to Keep in Mind 
Assessing Multiple Applications- Prognostic applications 

lack sufficiently large datasets (only a few UUTs) in most 
cases, which makes it difficult to arrive at statistically 
significant conclusions. One should be very careful in 
combining performance results obtained from different 
applications while assessing an overall performance metric 
for an algorithm. References from the forecasting domain 
show that MSE based metrics do not work for combining 
results from different applications/processes [50]. These 
metrics are often scale dependent and are not reliable for 
summarizing results from different applications [51, 52]. 

Predictions in Prognostics: A prediction in prognostics is 
always done on a non stationary time series that is often 
heteroscedastic too. The underlying process constantly 
changes since the fault leading to a failure physically alters 
the system as time goes by. This implies that the traditional 
time series prediction methods do not apply directly and the 
same is true for the performance metrics. In the forecasting 
community in general, the selection of performance metric 
has often been a matter of personal choice and usually with 
little/no justification [53]. The use of a particular 
performance metric must be based on several factors like 
reliability, validity, sensitivity to small changes in errors, 
resistance to outliers, and how it relates to the health 
management that the prognostic information will trigger. 
Our survey indicates that there is no single metric that will 
capture all the complexities of an algorithm and that the 
selection of the forecasting method and the evaluation 
metric is always situation dependent as earlier also pointed 
out in [51, 54]. 

Metrics not Based on Error: Although the metrics based 
on prediction error largely dominate the performance 
assessment, it is necessary to transform the prediction error 
into a loss function associated with the decision making 
process (e.g. design specifications, mission planning, 
economic justification, etc.) so that prognostics information 
may be utilized effectively [53, 54]. As enumerated in 
earlier section, other classes of metrics like cost-benefit and 
computational complexity, should be given equal 
importance. 

IX. CONCLUSIONS & FUTURE WORK 
In this paper we have provided a concise review of several 

domains and collected a variety of commonly used metrics 
to evaluate prediction performance. A list of concepts 
specific to CBM/PHM requirements has been compiled and 
these concepts have been molded into a notational 
framework to facilitate unambiguous descriptions. Several 
possible categorizations of these metrics have been provided 
to enhance the understanding of commonalities and 
differences between varied usages of similar methods. 
Towards the end some new metrics have been suggested that 
specifically cater to PHM requirements. Although effort has 
been made to cover most requirements, further refinements 

in concepts and definitions are expected as prognostics 
matures. The intent of this endeavor has been to initiate an 
open discussion within the research community to 
standardize the performance evaluation of prognostic 
systems. We encourage researchers and practitioners in 
systems prognostics to use a standard set of metrics, such as 
the ones presented here, to facilitate comparison of 
alternative approaches and to measure the value provided by 
prognostics. 
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