ILF-SETHEO
Processing Model Elimination Proofs for
Natural Language Output*®

Andreas Wolf, Johann Schumann

Institut fiir Informatik, Technische Universitat Miinchen, D-80290 Munich

e-mail: wolfa,schumann@informatik.tu-muenchen.de

Several powerful automated theorem provers for first order predicate logic
are based on the Model Elimination (ME) calculus (e.g., SETHEO [10], KoMeT
[1]). Unfortunately, the proof generated by such a prover, a closed tableau, is not
suited to a human who really wants to understand the proof. In response to the
need for human readable proofs, the Block Calculus (BC) [4] has been developed
as a variant of Natural Deduction (ND) [6]. Proofs represented in this calculus
can be easily transformed into a natural language form which is reasonably
legible by a human. ILF-SETHEOQ closes the gap between the machine output of
SETHEO (or similar provers?), and the proof structure needed to represent an
equivalent proof in BC. The natural-language output itself is generated by a tool
of the ILF [3] system. Although this transformation of proofs was originally used
within the interactive system ILF, ILF-SETHEO is a stand-alone post-processor
for SETHEO. It takes a ME tableau, as generated by SETHEO, and produces
a natural language proof in INTEX. For details on SETHEO and its calculus see
[10, 9, 7]. In the following, we briefly describe the overall system architecture
of ILF-SETHEO and the basic characteristics of the surrounding ILF system.
Then, we focus on the transformation itself. An example, taken from the TPTP
problem library [12], concludes this system abstract.

ILF. ILF-SETHEO is based on tools from the ILF [3] system. ILF has been
developed at the Humboldt-University, Berlin, as an interactive set of tools to
“Integrate Logical Functions”.

The default calculus used in ILF is the BC as described in [4]. Compared to
the original Natural Deduction calculus, BC is extended with a block structure
which allows proofs and sub-proofs to be linearized in a canonical way. Fur-
thermore, the concept of usable formulae allows formulae to be referenced in a
uniform way. Experience with ILF showed that BC is well suited as a target
calculus for transformations from other logic calculi, and as a basic structure for
natural language output of computer generated proofs [5].

ILF includes specific tools to improve the style of the natural language pre-
sentation, e.g., removal of duplicated formulae, transformation of indirect proofs

* This work is supported by the Deutsche Forschungsgemeinschaft within the Sonder-
forschungsbereich 342, subproject A5 (PARIS) and the Schwerpunkt Deduktion.

2 In fact, an adaption of this tool to other model elimination style provers like KoMeT
[1] is possible with little implementation effort.

into direct ones (if possible), and reordering of inference chains of the proof to
reach optimal readability. For details see [5].

Other approaches [8] extract more complex inference patterns directly from
the machine generated proof. This works well on calculi with many rules like ND
but brings poor results on ME tableaux. ILF provides another way: the original
proof will be transformed into BC at first, followed by a structure analysis of
the transformed proof.

The Transformation. The core of ILF-SETHEO is the transformation [13] of
a given ME tableau into a proof represented in BC. A ME tableau is constructed
by applying four different kinds of inference steps: the ME start-step, extension
steps, reduction steps, and factorization [7] steps.

From the given tableau all structures that can be interpreted as linear chains
of inferences are extracted and represented as blocks in the BC. A ME start step
corresponds to writing down the non-negated formula and creating a new block
containing the assumed formula (negated) and the contradiction (O), marked
“unproven”3. In BC, proofs are generally constructed beginning from facts. So,
the ME extension step is reflected as the application of the rules needed for
Modus Ponens. Reduction steps lead to indirect subproofs. The structure of
the whole proof is preserved in the order of these blocks. Finally, the BC proof
generated this way is enriched with the (optional) ITEX typesetting information
(see below) and sent via e-mail to the automatic ILF-SERVER?. After a few
minutes a BTEX file containing the proof in natural language returns.

Features of ILF-SETHEO include:

— ILF-SETHEO works as a true post-processor for SETHEO. This means that
there is no loss of performance of the prover. Only the generated proof tree
and information about the input clauses is used by ILF-SETHEO.

— ILF supports the construction of large proofs combining several sub-proofs,
even originating from different proof sessions. Therefore management func-
tions are available for unique identification of partial proofs. This facilitates
the combination of several proofs including references to formulae across the
partial proofs (e.g., for the citation of lemmata).

— ILF-SETHEO allows clause names to be specified using the directive
#clausename <name>. Per default, the number of the clause is used.

— The input language of SETHEO only allows predicates, constants and func-
tion symbols to be represented using the ASCII character set. ILF-SETHEO
is able to use all features of IWTEX to display the formulae according to
predefined (but user-definable) declarations (see the example below).

ILF-SETHEO is implemented in perl (300 lines of code) and ECLIPSE-
PROLOG (500 loc, portable PROLOG code)®. The transformation procedure is

3 In BC, each formula is marked by “assumption”, “unproven”, or “proven”.

1 i1f_servOmathematik.hu-berlin.de

5 ILF-SETHEO is available for interested users, but currently not part of the standard
SETHEOQ distribution. Please contact the authors.

also a significant part of ILF.

An Example. The following example is taken from [2] (SET019-3 in the TPTP
[12]). We present the original formulae as a set of clauses in SETHEO input
syntax (1), some lines of the translation table of operators defining the WTEX-
output (2), and the ME tableau, comprising a proof of the given problem as
displayed by SETHEQ’s xptree tool (3). The output of ILF-SETHEO is ap-
pended below. This proof representation has been generated fully automatically
(except for some line-breaks).

#clausename extensionality2 M (3)
i ;i ; - =]]
1n(f(X,Y),X),1n(f().(,Y),3.(),eq(X,Y)< .

#clausename extensionality3

eq(X,Y) <-in(£(X,Y),X),in(£(X,Y),¥).
#clausename subsetl

in(U,Y) <- sub(X,Y),in(U,X). AN
#clausename a_contains_b -
sub(b,a) <- . Zﬁl
#clausename b_contains_a Zﬁl
sub(a,b) <- .
#clausename theorem
<- eq(a,b).

~ In{f{a,n).0)

.0) |[eaca) ~in(f(a,b).a) |[~ subga.n)
InfNr & Infhr 8
red{1.2,1) fac(3.2,2)
. sub(a,b)
entry tteral

in{f(ab),a)
Infrir 4
ren(32,2)

struct 500 not(in(X,Y)) :- x(X)," \\not\\in ",x(Y)
struct 500 in(X,Y) :- x(X)," \\in ",x(Y)

struct 500 eq(X,Y) :- x(X)," \\simeq ",x(Y)
struct 500 f(X,Y) :- "f_{",x(X),",",x(Y),"}"

Conclusions. ILF-SETHEOQ is an indispensable tool for SETHEO in all cases
where there is a need to read and understand the proofs found by SETHEO. Even
for users familiar with ME, this tool helps to structure larger proofs and makes
them understandable (and printable). Its INTEX-post-processing features allows
a proof to be represented in its original, problem-oriented notation, instead of
SETHEOQO’s hard to read ASCII prefix notation. For all kinds of applications of
ATP, where the actual proof is required (and not just a yes/no answer), ILF-
SETHEO is an important tool (e.g., for verification [11]). Its BC is furthermore
suited for combining proofs from different provers.

Future versions of ILF-SETHEO will incorporate important features to fur-
ther enhance the readability of the proofs, such as hiding of technical details (e.
g. low-level equality transformations), introducing lemmata, and further means
to structure a proof.

[1] W. Bibel, S. Briining, U. Egly, and T. Rath. KoMeT, system description. In Proc.
CADE-12, pp. 783-787, Springer, 1994.

[2] R. Boyer, E. Lusk, W. McCune, R. Overbeek, M. Stickel, and L. Wos. Set theory
in first-order logic: Clauses for Godel’s axioms. JAR, 2(3): pp. 287-327, 1986.

[3] B.I. Dahn, J. Gehne, Th. Honigmann and A. Wolf. Integration of Automated
and Interactive Theorem Proving in ILF. In this volume, 1997.

[4] B. I Dahn and A. Wolf. A Calculus Supporting Structured Proofs. Journal for
Information Processing and Cybernetics (EIK), (5-6): pp. 261-276, 1994.

[5] B.I. Dahn and A. Wolf. Natural Language Presentation and Combination of
Automatically Generated Proofs. In Proc. FroCoS’96, pp. 175192, Kluwer, 1996.

[6] G. Gentzen. Untersuchungen iiber das logische Schlieflen. Mathematische
Zeitschrift 39, 1939.

[7] Chr. Goller, R. Letz, K. Mayr, and J. Schumann. SETHEO V3.2: Recent Devel-
opments (System Abstract) . In Proc. CADE-12, pp. 778-782, Springer, 1994.

[8] X. Huang. Reconstructing Proofs at the Assertion Level. In Proc. CADE-12, pp.
738-752, Springer, 1994.

[9] R. Letz, K. Mayr, and C. Goller. Controlled Integration of the Cut Rule into
Connection Tableau Calculi. JAR, (13): pp. 297-337, 1994.

[10] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-Performance
Theorem Prover. JAR, 8(2): pp. 183-212, 1992.

[11] J. Schumann Automatic Verification of Cryptographic Protocols with SETHEO
In this volume, 1997.

[12] G. Sutcliffe, C.B. Suttner, and T. Yemenis. The TPTP Problem Library. In
Proc. CADE-12, pp. 252-266, Springer, 1994.

[13] A. Wolf. A Translation of Model Elimination Proofs into a Structured Natural
Deduction. FLAIRS-97, Daytona Beach, 1997.

A Proof of ILF.
Axiom 1 (subset 1): U€eY + X CY AU € X.
Axiom 2 (extensionality 2): (fxy) € X V(fx,y) €Y VX ~Y.
Axiom 3 (extensionality 3): X ~Y « (fxyv) € X A(fx,v) €Y.
Axiom 4 (

(

Axiom 5 (b contains a): a Cb.

a contains b): b C a.

Theorem. a ~ b.

Proof. We show indirectly that a ~ b. (1)
Let us assume that a # b. (2)
We show indirectly that (fo,5) € a. (3)
Let us assume that (fq,5) & a. (4)

Because of a contains b b C a. Because of subset 1 A g B+ BC CANA¢C.
Therefore by (4) (fa,») & b. Because of extensionality 2 (fas) € A+ A# B A
(fa,B) & B. Therefore by (2) (fa,») € a. This contradicts (4). Thus we have completed
the proof of (3).

Because of b contains a a C b. Because of subset 1 A € B+ C C BAA € C.
Therefore by (3) (fu,) € b. Because of extensionality 3 A ~ B « (fa,B) € AA
(fa,B) € B. Therefore by (3) a ~ b. This contradicts (2). Thus we have completed the
proof of (1). q.e.d.

