Software Tools for Technology Transfer manuscript No
(will be inserted by the editor)

specification. Such errors may not be detected when the an-

swer of the model-checking tool is positive: while a positiv

answer does guarantee that the model satisfies the specifica-

tion, the answer to the real question, namely, whether the sy

tem has the intended behavior, may be different.

The realization of this unfortunate situation has led to the

development of severahnity check$or formal verification

[31]. The goal of these checks is to detect errors in the Byste
LTL Sat|sf|ab|||ty Checking * model or the properties. Sanity checks in industrial toeis a

typically simple, ad hoc tests, such as checking for engblin
ot g Lok - conditions that are never enabled [3@cuity detectiompro-
Kristin Y. Rozier = **, Moshe Y. Vardi vides a more systematic approach. Intuitively, a specifinat

1 NASA Ames Research Center, Moffett Field, California, 9803 IS satisfied vacuously in a model if it is satisfied in some

b non-interesting way. For example, the linear temporaldogi
e-mail:Kristin.Y.Rozier@nasa.gov (LTL) specificationJ(req— ¢grant) (“every requestis even-

2 Rice University, Houston, Texas 77005. tually followed by a grant”) is satisfied vacuously in a model
e-mail:vardi@cs.rice.edu with no requests. While vacuity checking cannot ensure that

whenever a model satisfies a formula, the model is correct,
it does identify certain positive results as vacuous, iasirey
the likelihood of capturing modeling and specification esro
Abstract. We report here on an experimental investigation Several papers on vacuity checking have been published over
of LTL satisfiability checking via a reductionto model check the last few years [2,3,9,29,28,32,36,39], and varioussad
ing. By using large LTL formulas, we offer challenging model trial model-checking tools support vacuity checking [B]3,
checking benchmarks to both explicit and symbolic model All vacuity-checking algorithms check whether a subfor-
checkers. For symbolic model checking, we use CadenceSMMula of the specification does not affect the satisfaction of
NuSMV, and SAL-SMC. For explicit model checking, we use the specification in the model. In the example above, the sub-
SPIN as the search engine, and we test essentially all puliormulareq does not affect satisfaction in a model with no
||C|y available LTL translation tools. Our eXperimentS ks requestsl There iS, however, a poss|b|||w of a vacuoudtresu
in two majorfindings. First, most LTL translation tools aee r that is not Captured by current Vacuity-checking appro&che
search prototypes and cannot be considered industridtyjual |f the specification isvalid, that is, true inall models, then
tools. Second, when it comes to LTL satisfiability checking, model checking this specification always results in a pasiti
the symbolic approach is clearly superior to the explick ap answer. Consider for example the specificafitgfh; — Oby),
proach. whereb; andb, are propositional formulas. b; andb, are
logically equivalent, then this specification is valid andat-
isfied by all models. Nevertheless, current vacuity-chegki
approaches do not catch this problem. We propose a method
for an additional sanity check to catch exactly this sort of
1 Introduction oversight.

Writing formal specifications is a difficult task, which is
Model-checkingtools are successfully used for checking prone to error jUSft as |ImpI§f|fnen_tat|on ?ev;lop)lm:entr]|_s error
whether systems have desired properties [12]. The applicagr%ne' I_—|owever,_f_orrr_1a ver|h|cat|rcl)n toos(;) %r |tte_ Ghﬂh K
tion of model-checking tools to complex systems involves a. ebugging specifications other than standard vacuity ehec

. . : ing. Clearly, if a formal property is valid, then this is cairily
nontrivial step of creating a mathematical model of the SYS"que to an error Similarly, if a formal propertyissatisfiable
tem and translating the desired properties into a formal-spe ’)

ification. When the model does not satisfy the specification,that 's, true 'mo mo.dell, 'Fhen this is also cgrtamly due to an
error. Even if each individual property written by the speci

;nggjgfe r;gi';'r?]g Ifovlvshiaczcocr)?rl?g nt}c/) t:rl]si:fgr?st'i\sl?eﬁzsvgz,[vz\gg}ier is satisfiable, their conjunction may very well be urssati
the system andFt)he: desireg)behaviors Itis often the)éa\se ho flable. Recall that a logical formutais valid if its negation
y ’ "~ ¢ is not satisfiable. Thus, as a necessary sanity check for de-

ever, that there is an error in the system model orinthefbrmabugging a specification, model-checking tools should ensur

* An earlier version of this paper appeared in SPIN 07, that both the §peC|f|cat|oq1 and its negauomp are sf':\.usﬁ?

** Work contributing to this paper was completed at Rice Usitgrcam- able. (For a different approach to debugging specifications
bridge University, and NASA, and was supported in part byRlee Compu- see [1].)
tational Research Cluster (Ada), funded by NSF under Grat8-0421109 A basic observation underlying our work is that LTL sat-

and a partnership between Rice University, AMD and Cray. T . .
P P > o ey . isfiability checking can be reduced to model checking. Con-
The use of names of software tools in this report is for adeueporting

and does not constitute an official endorsement, eithereespd or implied, ~ SIde€r @ formulad_) overa Se'_:)ro_p of atqmic propos_itions. If
of such software by the National Aeronautics and Space Aitrétion. a modelM is universal that is, it contains all possible traces

2 Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Chegig

overProp, then¢ is satisfiable precisely when the modé&l ity [37,38], but is somewhat surprising in the context of LTL

doesnot satisfy ~¢. Thus, it is easy to add a satisfiability- satisfiability in view of [41].

checking feature to LTL model-checking tools. Related software, calletbtt ,> provides an LTL-to-
LTL model checkers can be classifiedeaslicit or sym- Buchi explicit translator testbench and environment fasib

bolic. Explicit model checkers, such as SPIN [30] or SPOT profiling. Thelbtt tool performs simple consistency checks

[17], construct the state-space of the model explicitly and®n @n explicit tool's output automata, accompanied by sam-
search for a trace falsifying the specification [13]. In con- PI€ data when inconsistencies in these automata are dgtecte
trast, symbolic model checkers, such as CadenceSMV [34]43]- Whereas the primary use lbft is to assist developers

NuSMV [10], and VIS [6], represent the model and analyzeOf gxplicit L_TL translators in debugging new tools_or com-
it symbolically using binary decision diagrams (BDDs) [8]. Paring a pair of tools, we compare performance with respect

. to LTL satisfiability problems across a host of differentlso
LTL model checkers follow the automata-theoretic ap- both explicit and symbolic

proach [47], in which the complemented LTL specification

is explicitly or symbolically translated to a Buchi autoimm, e the theoretical background for this work. In Section 3

Wh'ChI IS th%n cohmpos%d |W|thh trl'(e mrc:del undefr] Ve;'f'cat'on;we describe the tools studied here. We define our experimen-
see also [46]. T € model checker then searches for a raqg| method in Section 4, and detail our results in Section 5.
of the model that is accepted by the automaton. All symbothe conclude with a discussion in Section 6

model checkers use the symbolic translation describedlin [1
and the analysis algorithm of [19], though CadenceSMV and

VIS try to optimize further. There has been extensive re$ear 2 Theoretical Background
over the past decade into explicit translation of LTL to au-
tomata[14,15,20-22,27,23,26,42,40,44], but it is diffitu

The structure of the paper is as follows. Section 2 pro-

Linear Temporal Logic (LTL) formulas are composed of a

get a clear sense of the state of the art from a review of th(?. . . .

? finite setProp of atomic propositions, the Boolean connec-
literature. Measuring the performance of LTL satisfiapilit tives—, A, V, and—s, and the temporal connectives(until)
checking enables us to benchmark the performance of LTL RS ' P '

i i R (release)x (also calledD for “next time”), 1 (also called
?Oc;]dg;r;eck|ng tools, and, more specifically, of LTL transla G for “globally”) and ¢ (also calleds for “in the future”).

We define LTL formulas inductively:
We report here on an experimental investigation of

LTL satisfiability checking via a reduction to model check- Definition 1 For every pe Prop, piis a formula. Itp andy
ing. By using large LTL formulas, we offer challenging are formulas, then so are:

model-checking benchmarks to both explicit and symbolic —6 OAY o=y duy o
model checkers. For symbolic model checking, we use Ca- VY xo LR 0%
denceSMV, NuSMV, and SAL-SMC. For explicit model LTL formulas describe the behavior of the variable®nop
checking, we use SPIN as the search engine, and we test egver a linear series of time steps starting at time zero and
sentially all publicly available LTL translation tools. Wese extending infinitely into the future. We satisfy such formu-
a wide variety of benchmark formulas, either generated rantas overcomputationswhich are functions that assign truth
domly, as in [15], or using a scalable pattern (e/d.,; pi)- values to the elements Bfop at each time instant [18].

LTL formulas typically used for evaluating LTL translation

tools are usually too small to offer challenging benchmarksOf the formmt: o — 2P™P. We defingti & (computationt

Note that rea_l spemflcatlons_typlgally consist of many M- time instant ic w satisfies LTL formul®) as follows:
poral properties, whose conjunction ought to be satisfiable

Thus, studying satisfiability of large LTL formulas is quite
appropriate.

Our experiments resulted in two major findings. First,
most LTL translation tools are research prototypes andatann
be considered industrial quality tools. Many of them are-wri
ten in scripting languages such as Perl or Python, which has
a drastic negative impact on their performance. Furthegmor
these tools generally degrade gracelessly, often yielilin . S .
correct resu?ts with r)1/o wgrning.gAmong aﬁ/the exglicit tsgl ° Tl =00 '.f 31. = . su<_:h thatre j = ¢.
we tested, only SPOT can be considered an industrial quality' TIELeIY] 2L mjFo.
tool. Second, when it comes to LTL satisfiability checking, We take mode($) to be the set of computations that satisfy
the symbolic approach is clearly superior to the explicit ap ¢ attime O, i.e.{Tt: ,0F ¢}.
proach. Even SPQT, the best explicit LTL trans]ator IN OUN K automata-theoretic model checking, we represent LTL for
experiments, was rarely able to compete effectively agains. . 1-c using Biichi automata.
the symbolic tools. This result is consistent with the compa
ison of explicit and symbolic approaches to modal satidfiabi * www.tcs.hut.fi/Software/lbtt/

Definition 2 We interpret LTL formulas over computations

i E pfor pe Propif pe (i).

iEdAYIf i Ed andmik .

ik ¢ if i ¥ ¢.

miEx¢if mi+1F¢.

i FE¢uYif 3) >i, such thatiy, j F P andvk,i <k < j,
we havat kE ¢.

o TLiFGRYIf V] >i,if L jF Y, then3k, i <k < j, such
thattt k= ¢.

Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Cheakg 3

Definition 3 A Biichi Automaton (BA) is a quintuple Explicit Automata Construction Tools
(Q.2,5,00,F) where: LTL2AUT ..ot (Daniele—Guinchiglia—Vardj)
e Qs afinite set of states. Implementations (Java, Perl) LTL2Buchi, Wring
e X is afinite alphabet. LTL2BA (C) ..vviiiiiii e (Oddoux—Gastin)
e 5:Qx I — 2Qis the transition relation. LTL2Buchi (Java)........... (Giannakopoulou—Lerda)
e o € Qis the initial state. LTL — NBA (Python)................. (Fritz—Teegen)
e F C Qis a set of final states. Modella (C) (Sebastiani—Tonetta)
SPOT (CHH) vttt e e .
Arun of a Bichi automaton over an infinite wordwwo, w1, | (Duret-Lutz—Poitrenaud—Rebiha—Baarir—Martjnez
Wz,... € Zis a sequence of stateg,qu,Gz,... € Qsuchthat | TMP (SMLOFNJ)c.ovvveeeeeenn.... (Etessani)
Vi > 0, 8(qi,wi) = gi+1. An infinite word w is accepted by | \wring (Perl)................iiii... (Somenzi-Bloem)

the automaton if the run over w visits at least one state in F
infinitely often. We denote the set of infinite words accepted

by an automaton A byd(A). We provide here short descriptions of the tools and their

algorithms, detailing aspects which may account for our re-
A computation satisfying LTL formula@ is an infinite word sults. We also note that aspects of implementation inctudin
over the alphabeX = 2P™P, The next theorem relates the ex- programming language, memory management, and attention
pressive power of LTL to that of Biichi automata. to efficiency, seem to have significant effects on tool perfor
mance.
Theorem 1. [48] Given an LTL formulap, we can construct
a Biichi automaton = (Q,%,3,qo,F) such that/Q| is in _ _ _ _ o
Classical AlgorithmsFollowing [48], the first optimized

O(l¢) 5 — oProp '
2 2 =27°P, and Ly(Ay) Is exactly models). LTL translation algorithm was described in [26]. The basic

This theorem reduces LTL satisfiability checking to optimization ideas were: (1) generate states by demand only

automata-theoretic nonemptiness checkingy sssatisfiable ~ (2) use node labels rather than edge labels to simplify trans
iff model$d) # 0iff Ly,(Ay) # 0. lation to Promela, and (3) useganeralized Bchiacceptance

We can now relate LTL satisfiability checking to LTL condition so eventualities can be handled one at a time. The

model checking. Suppose we havaréversal model Mhat resqlting generalized Biichi automaton ((_BBA) is then “dege
generates all computations over its atomic propositidrat; t €ralized” or translated to a BATL2AUT improved further

is, we have thatt,(M) = (2P™P)®. We now have thatl does ~ ON this approach by using lightweight propositional reasgn
notsatisfy—¢ if and only if ¢ is satisfiable. Thusj is satisfi- t0 generate fewer states [15]. We tested two implementation

able precisely when the model checker finds a counterexanff LTL2AUT, one included in the Java-based LTL2Buchi tool
ple. and one included in the Perl-based Wring tool.

TMP?2[20] andWring 3 [42] each extend LTL2AUT with
three kinds of additional optimizations. First, in tipee-

3 Tools Tested translation optimizationthe input formulais simplified using
Negation Normal Form (NNF) and extensive sets of rewrite
rules, which differ between the two tools as TMP adds rules

In total, we tested twelve LTL compilation algorithms from for |eft-append and suffix closure. Secomdid-translation

ten research tools. To offer a broad, objective picture ef th gptimizatiors tighten the LTL-to-automata translation algo-

current state of the art, we tested the algorithms against se rithms. TMP optimizes an LTL-to-GBA-to-BA translation,
eral different sequences of benchmarks, comparing, wherghile Wring performs an LTL-to-GBA translation utilizing
appropriate, the size of generated automata in terms of nunBoolean optimizations for finding minimally-sized covers.
bers of states and transitions, translation time, modalyais Third, the resulting automata are minimized further during

time, and correctness of the output. post-translation optimizatiaiTMP minimizes the resulting
BA by simplifying edge terms, removing “never accepting”
3.1 Explicit Tools nodes and fixed-formula balls, and applying a fair simuratio

reduction variant based on partial orders produced by-itera
o) tive color refinement. Wring uses forward and backward sim-

The explicit LTL model checker SPIN [30] accepts either y|ation to minimize transition- and state-counts, resigel,
LTL properties, which are translated internally into Biich merges states, and performs fair set reduction via strongly

automata, or Biichi automata for complemented propertiegonnected components. Wring halts translation with a GBA,
(“never claims”). We tested SPIN with Promela (PROcessyhich we had to degeneralize.

MEta LAnguage) never claims produced by several LTL

translation algorithms. (As SPIN'’s built-in translatodismi- 2 We used the binary distribution calledn delayed rans 06
nateq by TMP, we do not show results for this trqnslator.) Thecomp”ationlx%_”nux . bell-labs.com/project/TMP/ - 0
algorithms studied here represent all tools publicly azé 3 Version 1.1.0, June 21, 200%ww.ist.tugraz.at/staff/bloem/

in 2006, as described in the following table: wring.html

4 Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Chegig

LTL2Buchi 4 [27] optimizes the LTL2AUT algorithm by alternating automata, but borrows ideas from all the toets d
initially generating transition-based generalized Biaito- scribed above, including reduction techniques, the usé&of T
mata (TGBA) rather than node-labeled BA, to allow for more BAs, minimizing non-determinism, and on-the-fly construc-
compaction based on equivalence classes, contradictiods, tions. It adds two important optimizations: (1) unlike aher
redundancies in the state space. Special attention taegffigi tools, it uses pre-branching states, rather than posehiag
is given during the ensuing translation to node-labeled BA.states (as introduced in [14]), and (2) it uses BDDs [7] for
The algorithm incorporates the formula rewriting and BA- propositional reasoning.
reduction optimizations of TMP and Wring, producing au-
tomata with .Iess than or equal to the number of states and , Symbolic Tools
fewer transitions.

5 L -
Modella> focuses on minimizing theondeterminisnof Symbolic model checkers describe both the system model

the property automaton in an effort to minimize the size of . } .

and property automaton symbolically: states are viewed as
the product of the property and system model automata dur- X : :)
. e . .~ truth assignments to Boolean state variables and the ti@mnsi
ing verification [40]. If the property automaton is determin

istic, then the number of states in the product automatoln wil relation is defined as a conjunction of Boolean constraints o

be at most the number of states in the system model. Thydairs of current and next states [8]. The model checker uses

reducing nondeterminism is a desirable goal. This is accomz—i BDD-based fix-point algorithm to find fair path in the

plished usingsemantic branchingor branching on truth as- model-automaton product [19]

) . : CadenceSMV [34] and NuSMV?1? [10] both evolved
signments, rather than tiwntact_lc branchingf I.‘TLZAUT' from the original Symbolic Model Verifier developed at CMU
Modella also postpones branching when possible.

[35]. Both tools support LTL model checking via the sym-
bolic translation of LTL to transition systems with FAIR-
NESS constraints, as described in [11]. FAIRNESS con-
straints specify sets of states that must occur infinitely of
ten in any path. They are necessary to ensure that the sub-
formula holds in some time step for specifications of the
form ¢ « P andOy. CadenceSMV additionally implements
heuristics that attempt to further optimize the reductién o
LTL model checking to checking nonemptiness of fair transi-
tion systems, in some cases [5].

SAL!! (Symbolic Analysis Laboratory), developed at
SRI, is a suite of tools combining a rich expression language
with a host of tools for several forms of mechanized formal
analysis of state machines [4]. SAL-SMC (Symbolic Model
Checker) uses LTL as its primary assertion language and di-
rectly translates LTL assertions into Biichi automata,clvhi
are then represented, optimized, and analyzed as BDDs.
SAL-SMC also employs an extensive set of optimizations
during preprocessing and compilation, including partialle
uation, common subexpression elimination, slicing, cdmpi
ing arithmetic values and operators into bit vectors andiyin
“circuits,” as well as optimizations during the direct tstan
tion of LTL assertions into Biichi automata [16].

Alternating Automata Tooldnstead of the direct translation
approach of [48], an alternative approach, basedltarnat-
ing automatawas proposed in [45]. In this approach, the LTL
formula is first translated into an alternating Buchi auéem
ton, which is then translated to a nondeterministic Biichi a
tomaton.

LTL2BA © [23] first translates the input formula into a
very wealkalternating automaton (VWAA). It then uses vari-
ous heuristics to minimize the VWAA, before translatingpit t
GBA. The GBA in turn is minimized before being translated
into a BA, and finally the BA is minimized further. Thus, the
algorithm’s central focus is on optimization of intermedia
representations through iterative simplifications andhan-
fly constructions.

LTL —NBA’ follows a similar approach to that of LTL2
BA [21]. Unlike the heuristic minimization of VWAA used
in LTL2BA, LTL —NBA uses a game-theoretic minimization
based on utilizing a delayed simulation relation for on-tliye
simplifications. The novel contribution is that the simidat
relation is computed from the VWAA, which is linear in the
size of the input LTL formulaheforethe exponential blow-up
incurred by the translation to a GBA. The simulation relatio
is then used to optimize this translation.

4 Experimental Methods
Back to ClassicsSPOT® is the most recently developed

LTL-to-Biichi optimized translation tool [17]. It does nage .
4.1 Performance Evaluation

4 Original Version distributed from http://javapathfinder.

ZF’UFtCZIOrg?-"f“t | /\?#L‘?r‘igipg,om hitp://t.arc.nasa.gov/profile/ We ran all tests in the fall of 2006 on Ada, a Rice University
ira/projects-foois ueh! . " Cray XD1 clustet? Ada is comprised of 158 nodes with 4
Version 1.5.8.1. http://lwww.science.unitn.it/’stonetta/ . .
modella_htm processors (cores) per node for a total of 632 CPUs in pairs
6 Version 1.0; October 2001.http://www.lsv.ens-cachan.fr/ of dual core 2.2 GHz AMD Opteron processors with 1 MB L2
“gastin/ltl2ba/index.php 5)
7 This original version is a prototypenttp://www.ti.informatik. Relgase 10-11-02pmttp://www.ke‘nmt-:m!l.com/smv.html
uni-kiel.de/ fritz/;download:http://www.ti.informat ik. 10 version 2.4.3-zchaffttp:/inusmv.irst.itc.it/
uni-kiel.def fritz/LTL-NBA.zip 11 Version 2.4 http://sal.csl.sri.com

8 Version 0.3http://spot.lip6.friwiki/SpotWiki 12 http:/ircsg.rice.edu/ada/

Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Cheakg 5

cache. There are 2 GB of memory per core or atotal of 8 GB }
of RAM per node. The operating system is SUSE Linux 9.0 od }

with the 2.6.5 kernel. Each ofourtes_tswas run ywth exchisiv Ijowever, in all of our random and counter formulas, there
access to one node and was considered to time out after

hours of run time. We measured all timina data usina the Uni never more than 3 variables. For these small numbers of vari-
tim: coml:nalnd ' u iming using IXables, our (exponentially sized) model is more simple and

contains fewer lines of code than the equivalent lineadgdi
Explicit Tools Each test was performed in two steps. First model. When we did scale the number of variables for the
. i .) ' pattern formula benchmarks, we kept the same model for
we applied fche translation tools to the input LTL formula and gonsistency. The scalability of the universal model we ehos
ran them with the standard flags recommended by the tools

th | dditional f ded t ity that th did not affect our results because all of the explicit tostde
aut OIS’ ptus atny ah : Ilc(;nt? .aanee T g spegfy ?] ?erminated early enough that the size of the universal model
output automaton should be In Fromela. Second, €ach oug, o o) reasonably small. (At 8 variables, our model has 30
put automaton, in the form of a Promataver claim was

. - lines of code, whereas the linearly sized model we show here
checked by SPIN. (SPIN never claims are descriptions of beﬁas 38.) Furthermore, the timeouts and errors we encouhtere
: .) “When testing the explicit-state tools occurred in the L®E-t
as a search engine for each of the LTL transl§t|0n tc_)ols, Itautomaton stage of the processing. All of these tools spent
f[akes_, anever cle_um and checks it for _nonemptlness in Con(':onsiderably more time and memory on this stage, making
junction with an input modet? In practice, this means we

callsoin -2 on the never claim and the universal model to the choice of universal Promela model in the counter and pat-
P o L tern formula benchmarks irrelevant: the tools consisyaatt
compile these two files into a C program, which is then com-

. . e minated before the call to SPIN to combine their automata
piled using gcc and executed to complete the verification run_ .
) with the Promela model.
In all tests, the model was aniversal Promela pro-
gram, enumerating all possible traces oRenp. For exam-

ple, wherProp = {A, B}, the Promela model is: SMV We compare the explicit tools with CadenceSMV and

NuSMV. To check whether a LTL formulis satisfiable, we

bool A,B; model check-¢ against a universal SMV model. For exam-
[* define an active procedure ple, if § = (x (a u b)), we provide the following inputs to
to generate values for A and B */ NuSMV and Cadence SN
active proctype generateValues()
{ dc?: atomic{ A = 0; B = 0: } NuSMV: CadenceSMV:
 atomic{ A = 0; B = 1; } MODULE main module main () {
;atomic{ A =1, B=0;} VAR
matomic{ A=1B=1} a : boolean; a : boolean;
od } b : boolean; b : boolean;
LTLSPEC !(X(a=1 U b=1)) assert !(X(a U h));

We use theatomic {} construct to ensure that the Boolean
variables change value in one unbreakable step. When com-
bining formulas with this model, we also preceeded each for-
mula with anx-operator to skip SPIN’s assignment upon o ,
declaration and achieve nondeterministic variable assign SMV negates the specification, symbolically com-
ments in the initial time steps of the test formulas. Note tha piles ¢ into Ay, and conjoinsA with the universal model.
the size of this model is exponential in the number of atomiclf the automaton is not empty, then SMV finds a fair path,
propositions. It is also possible construct a model thahis | which satisfies the formuld. In this way, SMV acts as both

FAIRNESS FAIR TRUE;
1 }

ear in the number of variables like this a symbolic compiler and a search engine.
bool AB;
: SAL-SMC We also chose SAL-SMC to compare to the ex-
active proctype generateValues() - . L
{ do plicit tools. We used a universal model S|m|I§1r to those for
i . CadenceSMV and NuSMV. (In SAL-SMC, primes are used
;. atomicf A . .
i to indicate the values of variables in the next state.)
wotrue > A =0 temp: CONTEXT =
ootrue > A =1 BEGIN
fi;
if main: MODULE =
Dtrue > B =0 BEGIN
true > B = 1 OUTPUT
fi; a : boolean,
b : boolean

13 An interesting alternative to SPIN's nested depth-firstatealgorithm
[13] would be to use SPOT's SCC-based search algorithm [25]. 15 In our experiments we used FAIRNESS to guarantee that thesimod
14 \We thank Martin De Wulf for asking this question. checker returns a representation of an infinite trace astemxample.

6 Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Chegig

Satisfiability of 2-Variable Random Formulas
INITIALIZATION

a IN {TRUE,FALSE}, 100

b IN {TRUE,FALSE}; 0

TRANSITION 98
[TRUE -->
a' IN {TRUE,FALSE}
%next time a is in true or false
b’ IN {TRUE,FALSE};
%next time b is in true or false

97
96
95

]

END; %MODULE

94

93

92

Percentage of Satisfiable Formulas

formula: THEOREM main |- (((G(F(TRUE)))))
=> (NOT(U(ab)))); o

90 o b b b b b b bl
25 50 75 100 125 150 175 200
Formula length

LU DL LR RN RAEE LEAEE LEASE LEAEE LEARE pasns |

o

END %CONTEXT

SAL-SMC negates the specification, directly trans-
lates ¢ into Ay, and conjoinsA¢ with the universal model. Fig. 1. Satisfiability of 2-Variable Random Formulas
Like the SMVs, SAL-SMC then searches for a counterexam-
ple in the form of a path in the resulting model. There is notbe expanded ten(—¢ @ —) since most of the tools do not
a separate command to ensure fairness in SAL models likenplement thez operator directly. Tools with better initial
those which appear in the SMV models abd%&herefore, formula reduction algorithms performed well in these tests
we ensure SAL-SMC checks for an infinite counterexampleOur experiments showed that most of the formulas of every
by specifying our theorem as {(true) — —¢. length we generated were satisfiable. Figure 1 demonstrates

the distribution of satisfiability for the case of 2-varialan-

4.2 Input Formulas dom formulas.

) Counter Formulas Pre-translation rewriting is highly effec-
We benchmarked the tools against three types of scalable fo[ive for random formulas, but ineffective for structured-fo

mulas: random_formulas, counter formula;, and pattern foriulas [20,42]. To measure performance on scalable, non-
”_‘“'as- Scalability played an |mportantrole|r_1 ourexpentie .anqom formulas we tested the tools on formulas that de-
since the goal was to challenge the tools with large formUIas'scribe n-bit binary counters with increasing values of

and state spaces. All tools were applied to the same formulag; o<e formulas are irreducible by pre-translation rengifi

and the results (satisfiable or unsatisfiable) were compareqmiquely satisfiable, and represent a predictably-sizaté st

The §ymbol|c tools, which were aIways_ In agreement, Werespace. Whereas our measure of correctness for random for-
considered as reference tools for checking correctness.

mulas is a conservative check that the tools find satisfiable

q | q hof th bl formulas to be satisfiable, we check for precisely the unique
Random Formulasin order to cover as much of the problem counterexample for each counter formula. We tested four

Space as posglble, we tested sets of 250 randomIy-ge_neratggnstructions of binary counter formulas, varying two fac-
formulas varying the formula length and number of varlablestors. number of variables and nesting\oé

as in [15]. We randomly generated sets of 250 formulas vary-
ing the number of variabledy, from 1 to 3, and the length
of the formulaL, from 5 up to 65. We set the probability of

choosing a temporal operat@r= 0.5 to create formulas with variables, adding a variable to encode carry bits, whighieli

both a nontrivial temporal structure and a nontrivial Baole . < ihe need far -connectives in the formula. We can nest

structure. Other choices were decided uniformly. We reportx 's to provide more succinct formulas or express the formu-

median running times as the distribution of run times has §_¢ using a conjunction of unnestedsub-formulas.

high variance and contains many outliers. All formulas were Let b be an atomic proposition. Then a computation

generated prior to testing, so each tool was run orstree verb is a word in (Z{b})“) ~ {0 1}(',) By dividing T into

formulas. While we made sure that, when generating a Seglocks of lengthn, we can ViE\;VT[a'\s a sequence ai-

SLIfQ{EhVI\;é Eéivizri‘/irfgr?ggltatr\?; a?oer}r);ﬁg)s/ (xelreen?r‘gqinedn{?;tre- bit yalues, denotin_g the sequence of value_s assumed _by an

ducible, Conversely, subformulas of the fofmg_ had to n-bit counter starting at 0, and incrementing successively
' ' by 1. To simplify the formulas, we represent each block

16 http://sal-wiki.csl.sri.com/index.php/FAQ#Da&AL _haveconstructs Po,b1,....bn-1 as h_aVing t_he most significant bit on the right
for_fairness.3F and the least significant bit on the left. For examplefer2

We can represent a binary counter using two variables: a
counter variable and a marker variable to designate thebegi
ning of each new counter value. Alternatively, we can use 3

Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Cheakg 7

a=1&b=0 a=0&b=0 a=1&b=1 a=0&b=0 and n StepS Iater b iS 1.
4 Ifmislandbis 1thencis 1
T and n steps later b is 0.

5) If there is no carry,

a=1&b=0 then the next bit stays the same n steps later.
6) If there is a carry, flip the next bit
@)\—p\—p n steps later and adjust the carry.
aTosbo: aisbc: alomnos Forn = 4, these properties are captured by the conjunction of

the following formulas.

Fig. 2. Example: 2-bit Binary Counter Automaton (a = marker; b = detn
L (m) && ((m -> ((X(m)) && (X(X('m)))

theb blocks cycle through the values 00, 10, 01, and 11. Fig- gi E);&g?):r(%))g))))))
ure 2 pictures this automaton. For technical convenienee, Wy (ih) g& (X(b)) && (X(X(1b)) && (X(X(X(b)))
use an atomic propositiom to mark the blocks. Thatis, we 3. ((m && b) -> (Ic && XXX(X(0)))))
intendmto hold at poini precisely when = 0 modn. 4, 1 ((m && b) -> (c && X(XXX()))))

For rtto represent an-bit counter, the following proper- 5. [| (¢ && X(Im)) ->
ties need to hold: (X(lc) && (X(b)

1) The marker consists of a repeated pattern of a 1
followed by n-1 O's.

2) The first n bits are 0's. (X(lc) && X(X(X(XX(b)))) &&

g~ - (X(b) ->
3) If the least significant hit is 0,
then it is 1 n steps later and (X('c) && XXXXX(o)))))
the other bits do not change. The counterexample trace for a 4-bit counter with carry
4) All of the hits before and including the first 0 is given in the following table. (The traces wfandb are, of
in an n-bit block flip their values course, the same as for counters without carry.)
in the next block; the other bits do not change. A 4-bit Binary Counter
Forn =4, these properties are captured by the conjunction of m | 1000 1000 1000 1000 1000 1000
the following formulas: b | 0000 1000 0100 1100 0010 1010
1 (m) && ([(m -> ((X(m) && (X(X(m)) c | 0000 1000 0000 1100 0000 1000
&& (X(X(X(m))
&& (XXXXM)M)) m | 1000 1000 1000 1000 1000 1000
2. (h) && (X('h)) && (X(X(b))) && (X(X(X('b))) b | 0110 1110 0001 1001 0101 1101
3. [I((m && 'b) -> c | 0000 1110 0000 1000 0000 1100
(XXX(X(0)) &&
X ((b(S“Q(ngi(x(b)»» . m [1000 1000 1000 1000 1000
i b | 0011 1011 0111 1111 0000
(b > XXX(XEoD))) U m))) c | 0000 1000 0000 1111 0000
4.0 ((m && b) ->
(?&X(z(é(!gg)lri&&& X(XXOKB) Pattern Formulas We further investigated the problem space
m | by testing the tools on the eight classes of scalable forsnula
(Im && b 8& X(X(X(X(b) & defin_ed by [24] to evaluate the performance of explicit state
X((m && (b > XXX(X(b))))) algorithms on temporally-complex formulas.
(b -> X(X(X(X(B)))) U n
m))))))) E(n>:,/\<>pi
. . 2 :
Note that this encod_lng creates formulas of ler@th-). Um=(..(pru p2) U ...) U pn
A more compact encoding results in formulas of len@th). n
For example, we can replace formula (2) above with: /\ (O0p vOOpi+1)
2. () && X((b) && X((b) && X(b))) Us(n) = pr uE U (o Pt U Pn)...)
We can eliminate the use ef-connectives in the formula Cy(n) = \n/ DO pi
by adding an atomic propositianrepresenting the carry bit. i=1
The required properties of anbit counter with carry are as n
follows: Ca(n) = i{\l Opi
1) The marker consists of a repeated pattern of a 1 Q(n) = /\(<>pi vOpi+1)
followed by n-1 0's. n
2) The first n bits are 0's. Sn) = AOp

3)lf mis1and bis 0 thencis 0

8 Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Chegig

5 Experlmental Results Total Processing Time on 2-variable Counter Formulas

Correct Results

3500 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
——— LTL2Buchi
— LTL->NBA
—— Modella
Spot
— TMP [TI2AUT(W)
— Wring
CadenceSMV
NuSMV
SAL-SMC

T™MP

CadenceSMV

Our experiments resulted in two major findings. First, most P

LTL translation tools are research prototypes, not indaistr
quality tools. Second, the symbolic approach is clearlyesup
rior to the explicit approach for LTL satisfiability checkin

3000

2500

5.1 The Scalability Challenge

N
o
o
o

=
u
o
o

Ll e L L L BB |

When checking the satisfiability of specifications we need tq
consider large LTL formulas. Our experiments focus on chal
lenging the tools with scalable formulas. Unfortunatelgsmn 1000
explicit tools do not rise to the challenge. In general, the p
formance of explicit tools degrades substantially as the au 500
tomata they generate grow beyond 1,000 states. This degr TL-5NBA
dation is manifested in both timeouts (our timeout bound was ki O T T O
. 6 7 8 9 1011121314151617 181920
4 hours per formula) and errors due to memory managemen Number of bits in binary counter
This should be contrasted with BDD tools, which routinely
handle hundreds of thousands and even millions of nodes. Fig. 3. Performance Results: 2-Variable Counters
We ”IUStrate_ this first with run-time result_s for co_unte_r Total Processing Time on 2-variable Linear Counter Formula s
formulas. We display each tool's total run time, which is Correct Results
a combination of the tool’s automaton generation time and 1°°% oA
SPIN’s model-analysis time. We include only data points for T
which the tools provide correct answers; we know all counter LTL>NEA CaderkeSMY
formulas are uniquely satisfiable. As is shown in Figures 3 Spot NusMv
and 417 SPOT is the only explicit tool that is somewhat com- Wing
petitive with the symbolic tools. Generally, the explicibts Noane StV
time out or die before scaling to= 10, when the automata SAL-SMC
have only a few thousands states; only a few tools passe
n=_§.
We also found that SAL-SMC does not scale. Figure 5
demonstrates that, despite median run times that are comp
rable with the fastest explicit-state tools, SAL-SMC doet n 2000
scale pash = 8 for any of the counter formulas. No matter
how the formula is specified, SAL-SMC exits with the mes- —LTLzAUHW; Buqhispm
sage “Error: vector too large” when the state space incsease e L L T
from 28 x 8 = 2048 states at = 8 to 2 x 9 = 4608 states at Number of bits in binary counter
n= 9. SAL-SMC'’s behavior on pattern formulas was similar
(see Figures 8 and 13). While SAL-SMC consistently found Fig. 4. Performance Results: 2-Variable Linear Counters
correct answers, avoided timing out, and always exitedegrac
fully, it does not seem to be an appropriate choice for formu- Figure 8 shows performance on tBeclass formulas. Re-
las involving large state spaces. (SAL-SMC has the addedall thatE(n) = Al ; Opi. The minimally-sized automaton
inconvenience that it parses LTL formulas differently tladin representinde (n) has exactly 2 states in order to remember
of the other tools described in this paper: it treats all terap ~ which p;’s have been observed. (Basically, we must declare
operators as prefix, instead of infix, operators.) a state for every combination @’s seen so far.) However,
Figures 6 and 7 show median automata generation anglone of the tools create minimally sized automata. Again, we
model-analysis times for random formulas. Most tools, with see all of the explicit tools do not scale beyand 10, which
the exception of SPOT and LTL2BA, timeout or die before is minimally 1024 states, in sharp contrast to the symbolic
scaling to formulas of length 60. The difference in perfor- tools.
mance between SPOT and LTL2BA, on one hand, and the rest

of the explicit tools is quite dramatic. Note that up to ldngt G - .
A . - raceless DegradatiorMost explicit tools do not behave ro-
60, model-analysis time is negligible. SPOT and LTL2BA g ! xpict v

bustl ddi lessly. When LTL2Buchi has difficult
can routinely handle formulas of up to length 150, while Ca- USty anc cie gracelessly en ucn has driicuty

; . rocessing a formula, it produces over 1,000 lineg@af.
denceSMV and NuSMYV scale past length 200, with run tlmeﬁpang StackOverflowError exceptions. LTL2BA periodi-
of a few seconds. ' :

cally exits with “Command exited with non-zero status 1”
17 wWe recommend viewing all figures online, in color, and maguifi and prints into the Promela file, “Iti2ba: releasing a free

Time in Seconds

SAL-SMC

o

wh
-
5] .

8000

LN L

6000

Wring

4000

— T T 1 1 T 1 17

Time in Seconds

TMP

T T 7

Mo?ella SAL-SMC

Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Cheakg 9

Total Processing Time on 3-variable Counter Formulas Random Formula Analysis: P = 0.5;N = 2
TMP
10000 LTL2AUT(B) 5r | Modella — LTL2AUT(B)
- LTL2AUT(W) = ‘ LTL2AUT(W)
| LTL2BA NusSMV Spot - | LTL2BA
——— LTL2Buchi) o ————— LTL2Buchi
| —— LTL->NBA (9] - \ — LTL->NBA
8000 - Modella &L g4k ———— Modella
2 Spot [} L | | LTL->NBA Spot
| — T™vP £ I J / — T™P
| ———— Wring - - | I — Wring
[} CadenceSMV c L | I/
S 6000 NUSMV 2 3 /
§ [~ SALSMC CadenceSMV g B | | LTL2Buchi
I I {
n | o | | LTL2AUT(B)
= 4000 | A
) s 2}
£ i] - | J
[- 1< | I
L e | [
=] | A
2000 [~ < ot A
3 LTL2AUT(W) s r Y/
gl TMP /' Wring k=l /)y LTL2BA
| Modella /LTL->KBA [B — .
ok /7 S sme = Wring Spot
L1 Pl e A A A Y B B A B B A === TP
1234 8 91011121314151617 18192021 25 50 75 100 125 150
ber of bits in binary counter Formula length
Fig. 5. Performance Results: 3-Variable Linear Counters Fig. 6. Random Formulas — Automata Generation Times

Random Formula Analysis: P = 0.5;N =2

T

block, saw 'end of formula’.” Python traceback errors hin- 6 LTL2AUTE) CadencesMv
der LTL—NBA. Modella suffers from a variety of mem- LTL2AUT(W)

ory errors including*** glibc detected *** double ~—— LTL2Buchi Spot

free or corruption (out): Ox 55ff4008 *** . Some- T Mool

times Modella causes a segmentation fault and other time o

Modella dies gracefully, reporting “full memory” beforeiex N ey LTL2BA

ing. When used purely as a LTL-to-automata translator, SPIN Nusmv

often runs for thousands of seconds and then exits with non

zero status 1. TMP behaves similarly. Wring often triggers

Perl “Use of freed value in iteration” errors. When the trans

lation results in large Promela models, SPIN frequentlidge

segmentation faults during its own compilation. For exampl
SPOT translates the formul&8) to an automaton with 258
states and 6,817 transitions in 0.88 seconds. SPIN analyz¢

the resulting Promela model in 41.75 seconds. SPOT trans o T T T T
lates theE(9) formula to an automaton with 514 states and O T, ul|210|engltr215 150 175 200
20,195 transitions in 2.88 seconds, but SPIN segmentatio

faults when trying to compile this model. SPOT and the SMV
tools are the only tools that consistently degrade gralgeful

they either timeout or terminate with a succinct, desoréti _
message. show an analysis of correctness for random formulas. Here

A more serious problem is that of incorrect results, i.e., W& counted “correct” as any verdict, either “satisfiable” or
reporting “satisfiable” for an unsatisfiable formula or vice Unsatisfiable,” that matched the verdict found by the two
versa. Note, for example, in Figure 8, the size of the automa>SMVs for the same formula as the two SMVs always agree.
ton generated by TMP is independentofvhich is an obvi- We excluded data for any formulas that timed out or triggered
ous error. The problem is particularly acute when the redrn €7TOr messages. Many of Fhe tools show degraded correctness
automatond, is empty (no state). On one hand, an emptyas the formulas scale in size.
automaton accepts the empty language. On the other hand,

SPIN conjoins the Promela model for the never claim with Does Size Matter?The focus of almost all LTL translation
the model under verification, so an empty automaton, whempapers, starting with [26], has been on minimizing automata
conjoined with a universal model, actually acts as a universize. It has already been noted that automata minimization
sal model. The tools are not consistent in their handling ofmay not result in model checking performance improvement
empty automata. Some, such as LTL2Buchi and SPOT, returf20] and specific attention has been given to minimizing the
an explicit indication of an empty automaton, while Modella size of the product with the model [40, 24]. Our results show
and TMP just return an empty Promela model. We have takethat size, in terms of both number of automaton states and
an empty automaton to mean “unsatisfiable.” In Figure 9 wetransitions, is not a reliable indicator of satisfiabilitiyexk-

NusSMvV

w
LB LA SLALLL A AL AL ALANLINL N LI N N O N

Median Model Analysis Time in Spin/SMV (sec)

Fig. 7. Random Formulas — Model Analysis Times

10

Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Chking

(sec)

Median Total Run Time

=
S
A

i
S
%

=
o
°

Lol 1ALl AL S VAL RN LAY AL B R R AL |

—— Wring

Run Times for E-class Formulas

LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella

Spot

TMP

Modella

Wring
LTL2AUT(W)

CadenceSMV
NusMV

SAL-SMC LTL2BA

1 1 1 1 1 | 1

LTL->NBA

, LTL2Buchi

LTL2AUT(B)

NusmMv

CadenceSMV
1 1 1 |

3 4 5 6 7 8 9
Number of variables in formula

10 11 12 13

Random Formula Analysis: P =0.5;N =3

LTL2AUT(B)
| LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella

Spot

TMP

Wring

=
3
T

Proportion of Correct Claims
o
(6]
T

0 N [(NN NN SN NN NN (NN SN NN N
5 10 15 20 25 30 35 40 45 50 55 60 65
Formula length

10°

T T T

[
o
)
LI |

Number of States

=
o
N

T T T

LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella

Number of Automata States for E-class Formulas

Spot

TMP

Wring

Minimum Number of States

3 4 5 6 7
Number of variables in formula

8 9 10

ing run time. Intuitively, the smaller the automaton, theiea

Fig. 8. E-class Formula Data

Fig. 9. Correctness Degradation

Consider also the performance of the tools on random for-
mulas. In Figure 12 we see the performance in terms of size of
generated automata. Performance in terms of run time is plot
ted in Figure 14, where each tool was run until it timed out or
reported an error for more than 10% of the sampled formulas.
SPOT and LTL2BA consistently have the best performance
in terms of run time, but they are average performers in terms
of automata size. LTL2Buchi consistently produces signifi-
cantly more compact automata, in terms of both states and
transitions. It also incurs lower SPIN model-analysis sme
than SPOT and LTL2BA. Yet LTL2Buchi spends so much
time generating the automata that it does not scale nearly as
well as SPOT and LTL2BA.

5.2 Symbolic Approaches Outperform Explicit Approaches

Across the various classes of formulas, the symbolic tools
outperformed the explicit tools, demonstrating fastefqrer
mance and increased scalability. (We measured only com-

it is to check for nonemptiness. This simplistic view, how- bined automata-generation and model-analysis time for the
ever, ignores the effort required to minimize the automatonsymbolic tools. The translation to automata is symbolic and
Itis often the case that tools spend more time construdtieg t is very fast; it is linear in the size of the formula [11].) We
formula automaton than constructing and analyzing theprodsee this dominance with respect to counter formulas in Fig-
uct automaton. As an example, consider the performance afres 3 and 4, for random formulas in Figures 6, 7, and 14,
the tools on counter formulas. We see in Figures 3 and 4 draand forE-class formulas in Figure 8. Faf-class formulas,
matic differences in the performance of the tools on such forno explicit tools could handle = 10, while the symbolic
mulas. In contrast, we see in Figures 10 and 11 that the toolSMV tools scale up tan = 20; see Figure 13. Recall that

do not differ significantly in terms of the size of generateda U(n) = (...(p1 ¢ p2) U ..

.) U pn, so while there is not

tomata. (For reference, we have marked on these graphs tfeeclear, canonical automaton for eddkclass formula, it is

minimum automaton size for ambit binary counter, which

is (2") xn+ 1 states. There aré' humbers in the series of
bits each plus one additional initial state, which is neeed tools occurs with 3-variable linear counter formulas, veher

assure the automaton does not accept the empty string.) SinsPOT outperforms all symbolic tools. We ran the tools on
ilarly, Figure 8 shows little correlation between autonsra
and run time folE-class formulas.

clear that the automata size is exponential.
The only exception to the dominance of the symbolic

many thousands of formulas and did not find a single case in
which any symbolic tool yielded an incorrect answer yet ev-

Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Chechg

11

Number of Automata States for 2-variable Counter Formulas
10° | LTL2AUT(B)
Foo LTL2AUT(W)
r LTL2BA
Foo LTL2Buchi
Fol LTL->NBA
3 1 Modella
10 2 Spot
Foo TMP
g - | Wring
b= - Minimum Number of States
U) B -
5 10? =
5 | .
2 r
E [
=] .
Z -
10'
10° 1 1 |
0 0 1 2 3 4 5 6 7 8 9 10
Number of bits in binary counter

Number of Automata States for 3-variable Random Formulas
90% Correct or Better

300 | LTL2AUT(B)
I LTL2AUT(W)
| LTL2BA
| LTL2Buchi

250 1 LTL->NBA
1 Modella

Spot
1 T™P
200 1 Wring

Number gf States
[
o

100

50

LENNL AL I N L N B |

5 10 15 20 25 30 35 40 45 50 55 60 65
Formula Length

Fig. 10. Automata Size: 2-Variable Counters

Number of Automata States for 2-variable Linear Counter For mulas
10° | LTL2AUT(B)
Foo LTL2AUT(W)
F o1 LTL2BA —T
B 1 LTL2Buchi
Foo LTL->NBA — T
3 | Modella
10°F Spot
Foo TMP
g - | Wring E -
T |- Minimum Number of States
8
0
510’
— -
5 F ~ |
Q r
E [
=] |
Z -
10" =
10° 1 1 1

0 1 2 3 4 5 6 7 8 9 10
Number of bits in binary counter

Fig. 11. Automata Size: 2-Variable Linear Counters

ery explicit tool gave at least one incorrect answer during o
tests.

Number of Automata Transitions for 3-variable Random Formu las

" 90% Correct or Better
10 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
] T™P
1 Wring

T T

10°

= =
o o
2 S
T T \\\HHI T \\\HHI

Number of Transitions

[
(=]
°

5 10 15 20 25 30 35 40 45 50 55 60 65
Formula Length

Fig. 12.State and Transition Counts for 3-Variable Random Formulas

We return to the topic of model checking in the concluding
discussion.

Figures 6, 7, and 14 reveal why the explicit tools gen-
erally perform poorly. We see in the figures that for most
explicit tools automata-generation times by far dominate

The dominance of the symbolic approach is consistentmodel-analysis times, which calls into question the focus i

with the findings in [37,38], which reported on the superi- the literature on minimizing automata size. Among the ex-
ority of a symbolic approach with respect to an explicit ap- plicit tools, only SPOT and LTL2BA seem to have been de-
signed with execution speed in mind. Note that, other than

proach for satisfiability checking for the modal logic In
contrast, [41] compared explicit and symbolic transladioh

Modella, SPOT and LTL2BA are the only tools implemented

LTL to automata in the context of symbolic model checking in C/C++.

and found that explicit translation performs better in tt-
text. Consequently, they advocatieydrid approach, combin-

ing symbolic systems and explicit automata. Note, however® Discussion

that not only is the context in [41] different than here (mlode

checking rather than satisfiability checking), but alsoftre

Too little attention has been given in the formal verificatio

mulas studied there are generally small and translatioa tim literature to the issue of debugging specifications. Weedlgu

is negligible, in sharp contrast to the study we present.herehere for the adoption of a basic sanity check: satisfiability

12 Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Chking

Run Times for U-class Formulas Random Formula Analysis: P =0.5;N =3

0,
. LTL2AUT(E) NuSMV 10 LTL2AUT(R) “90‘“’/0 Correct or Better
10°F LTL2AUT(W) I LTL2AUT(W) [
F LTL2BA 9 LTL2BA
[———— LTL2Buchi o F ————— LTL2Buchi
10k ——— LTL->NBA @ [——— LTL->NBA
3 ———— Modella &L 8F Modela
> F Spot] F Spot
2 .l — TMP E 7F— T™P
—10° ————— Wring [I ——— wiing
[J) F CadenceSMV CadenceSMV c sF
E T NuSMV 8 F
'_102 - SAL-SMC © =
i 2 °F
14 F [=
T ant B O 4F
c I IS F
S0 g 2F
3 F I
= & 1F
10 S I
2 o=
£ 5 M N I Y Y N N S N Y I S N N T Y
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Number of variables in formula Formula length

Number of Automata States for U-class Formulas Random Formula Analysis: P = 0.5;N = 3

90% Correct or Better

3
10°F 1 LTL2AUT(B) 14 LTL2AUT(B)
F LTL2AUT(W) 13E g:ﬁng(W)
r LTL2BA “E)
o 1 LTL2Buchi % LTL2Buchi
I 1 LTL->NBA — F——— LTL->NBA
| 1 Modella N godtella
Spot 2 E TI'\J/IOP
10° |- I TW,\:II:g g 57 Wring
g F = 09F CadenceSMV
2 : o8k NUSMV
S F 2 08F
s [= 07F
s P F
o | < 06F
Qo _— -
E S osF
1l (=} E
Z10F S 04F
N & 03
3 02F
= T E
01F
10° 1) S R R R R T T T S T SR S
2 3 4 5 6 7 8 9 5 10 15 20 25 30 35 40 45 50 55 60 65
Number of variables in formula Formula length
Fig. 13.U-class Formula Data Fig. 14. Automata generation and SPIN Analysis Times for 3-Varidtda-

dom Formulas

checking for both the specification and the complemented
specification. We showed that LTL satisfiability checking ca

be done via a reduction to checking universal models ar]q*nodel checking in general. First, LTL translation tools chee

benchmarked a large array of tools with respect to satisfia; ; : :
o : to be fast and robust. | d t, th I t le-
bility checking of scalable LTL formulas. © D€ Tast and TOLUSt. I our judgment, tis rues out imple

mentations in languages such as Perl or Python and favors

We found that the eXiSting literature on LTL-to-automata C or C++ imp'ementationS. Furthermore, attention needs to
translation prOVideS little information on actual tool fHEF be given to gracefu| degradation. In our experience, tool er
mance. We showed that most LTL translation tools, with theygrs gre invariably the result of graceless degradationtolue
exception of SPQT, are research prototypes, which cannot bgoor memory management. Second, tool developers should
considered industrial quality tools. The focus in the &ter focus on overall performance instead of output size. It has
ture has been on minimizing automata size, rather than eValslIready been noted that automata minimization may not re-
uating overall performance. Focusing on overall perforoean gyt in model checking performance improvement [20] and
reveals a |al‘ge diﬁerence betWeen LTL tl‘anslation t001$. | Specific attention has been given to m|n|m|z|ng the size of
particular, we showed that symbolic tools have a clear edgene product with the model [40]. Still, no previous study of
over explicit tools with respect to LTL satisfiability cheo. |T| translation has focused on model checking performance,

While the focus of our study was on LTL satisfiability leaving a glaring gap in our understanding of LTL model
checking, there are a couple of conclusions that apply tachecking.

References

1.

10.

11.

12.

13.

14.

15.

16.

. R. Bloem, K. Ravi, and F. Somenzi. Efficient decision proce

. R.E. Bryant.
manipulation. IEEE Trans. on Computer$-35(8):677-691, 2.

Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Cheakg 13

G. Ammons, D. Mandelin, R. Bodik, and J.R. Larus. Debug-

ging temporal specifications with concept analysis. PLDI, 18.

Proc. ACM Conf. pages 182-195, 2003.

. R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman,
A. Tiemeyer, and M.Y. Vardi. Enhanced vacuity detection for 19.

linear temporal logic. ICAV, Proc 15th Int'l ConfSpringer,
2003.

. 1. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficietede 20.

tion of vacuity in ACTL formulas.Formal Methods in System
Design 18(2):141-162, 2001.

H. Ruel3, J. Rushby, V. Rusu, H. Saidi, N. Shankar, E. Singer-
man, and A. Tiwari. An overview of SAL. In C. Michael Hol-
loway, editor,LFM 2000: Fifth NASA Langley Formal Methods
Workshop pages 187-196, Hampton, VA, June 2000. NASA
Langley Research Center.

dures for model checking of linear time logic properties. In
CAV, Proc 11th Int’l Confvolume 1633 ofLecture Notes in
Computer Scienggages 222—-235. Springer, 1999.

. R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli

F. Somenzi, A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri,
T. Kukimoto, A. Pardo, S. Qadeer, R.K. Ranjan, S. Sarwary,
T.R. Shiple, G. Swamy, and T. Villa. VIS: a system for verifica
tion and synthesis. IBAV, Proc. 8th Int’l Confvolume 1102 of
Lecture Notes in Computer Sciengages 428-432. Springer,
1996.

Graph-based algorithms for Boolean-fuamcti

1986.

. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J

Hwang. Symbolic model checking: 4D states and beyond.

Information and Computatiqr®8(2):142-170, Jun 1992. 27.
. D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, and.M.Y

Vardi. Regular vacuity. IlCHARME volume 3725 oLNCS

pages 191-206. Springer, 2005. 28.

A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: a new symbolic model checkeit’l J. on Software
Tools for Tech. TransfeR(4):410-425, 2000.

E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look
at LTL model checking. Formal Methods in System Design
10(1):47-71, 1997.

E.M. Clarke, O. Grumberg, and D. Peletlodel Checking
MIT Press, 1999.

C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakaki
Memory efficient algorithms for the verification of temporal

properties. Formal Methods in System Desigh:275—-288, 32

1992.
J-M. Couvreur. On-the-fly verification of linear tempdomic.

In Proc. FM, pages 253-271, 1999. 33

N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved amiata

generation for linear temporal logic. AV, Proc. 11th Int'l 34.

Conf, volume 1633 oL.NCS pages 249-260. Springer, 1999.

L. de Moura, S. Owre, H. Ruef, J. Rushby, N. Shankar,35.

M. Sorea, and A. Tiwari. SAL 2. In Rajeev Alur and Doron

Peled, editorsComputer-Aided Verification, CAV 200blume 36.

3114 of Lecture Notes in Computer Sciengages 496-500,
Boston, MA, July 2004. Springer-Verlag.

. S. Bensalem, V. Ganesh, Y. Lakhnech, C. Mu noz, S. Owre,21'

22. C. Fritz.

17. A. Duret-Lutz and D. Poitrenaud. SPOT: An extensible ehod

checking library using transition-based generalizedBiae-
tomata. INMASCOTS, Proc. 12th Int'l Workshppages 76—83.
IEEE Computer Society, 2004.

E.A. Emerson. Temporal and modal logic. In J. Van Leeuywen
editor,Handbook of Theoretical Computer Scieneelume B,
chapter 16, pages 997-1072. Elsevier, MIT Press, 1990.

E.A. Emerson and C.L. Lei. Efficient model checking irgfra
ments of the propositionatcalculus. InLICS, 1st Symppages
267-278, Cambridge, Jun 1986.

K. Etessami and G.J. Holzmann. Optimizing Bichi autama
In CONCUR, Proc. 11th Int'l ConfLecture Notes in CS 1877,
pages 153-167. Springer, 2000.

C. Fritz. Constructing Biichi automata from linear tenab
logic using simulation relations for alternating Bucht@mata.

In Proc. 8th Intl. CIAA number 2759 in Lecture Notes in Com-
puter Science, pages 35-48. Springer, 2003.

Concepts of automata construction from LTL. In
LPAR, Proc. 12th Int'l Conf.Lecture Notes in Computer Sci-
ence 3835, pages 728—742. Springer, 2005.

23. P. Gastin and D. Oddoux. Fast LTL to Bichi automata trans

lation. In CAV, Proc. 13th Int'l Confvolume 2102 ofLNCS
pages 53-65. Springer, 2001.

24. J. Geldenhuys and H. Hansen. Larger automata and leks wor

for LTL model checking. InModel Checking Software, 13th
Int'l SPIN Workshop volume 3925 ofLNCS pages 53-70.
Springer, 2006.

25. J. Geldenhuys and A. Valmari. Tarjan’s algorithm makes o

the-fly LTL verification more efficient. liProc. 10th Int’l Conf.

on Tools and Algorithms for the Construction and Analysis of
SystemglLecture Notes in Computer Science 2988, pages 205—
219. Springer, 2004.

R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple be-t
fly automatic verification of linear temporal logic. In P. Dem
biski and M. Sredniawa, editor&rotocol Specification, Test-
ing, and Verificationpages 3-18. Chapman & Hall, Aug 1995.
D. Giannakopoulou and F. Lerda. From states to transitio
Improving translation of LTL formulae to Biichi automatan |
FORTE, Proc of 22 IFIP Int'l ConfNov 2002.

A. Gurfinkel and M. Chechik. Extending extended vacuiiy.
FMCAD, 5th Int'l Conf volume 3312 of_ecture Notes in Comp
Sci pages 306-321. Springer, 2004.

29. A. Gurfinkel and M. Chechik. How vacuous is vacuous. In

TACAS, 10th Int'l Confvolume 2988 of_ecture Notes in Com-
puter Sciencgpages 451-466. Springer, 2004.

30. G.J. Holzmann. The model checker SPINEEE Trans. on

Software Engineerin@3(5):279-295, May 1997. Special issue
on Formal Methods in Software Practice.

31. O. Kupferman. Sanity checks in formal verification. GON-

CUR, Proc. 17th Int'l Conf.volume 4137 ofl_ecture Notes in
Comp Scipages 37-51. Springer, 2006.

. O. Kupferman and M.Y. Vardi. Vacuity detection in temgor

model checkingJ. on Software Tools For Technology Transfer
4(2):224-233, Feb 2003.

. R.P. KurshanFormalCheck User’'s ManualCadence Design,

Inc., 1998.

K. McMillan. The SMV language. Technical report, Cadenc
Berkeley Lab, 1999.

K.L. McMillan. Symbolic Model Checkingluwer Academic
Publishers, 1993.

K.S. Namjoshi. An efficiently checkable, proof-basewdirfola-
tion of vacuity in model checking. Ia6th CAV volume 3114
of LNCS pages 57-69. Springer, 04.

14 Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Chking

37. G. Pan, U. Sattler, and M.Y. Vardi. BDD-based decisiom pr
cedures for K. InProc. 18th Int'l CADE LNCS 2392, pages
16-30. Springer, 2002.

38. N. Piterman and M.Y. Vardi. From bidirectionality toextha-
tion. Theoretical Computer Scienc295(1-3):295-321, Feb
2003.

39. M. Purandare and F. Somenzi. Vacuum cleaning CTL forenula
In CAV, Proc. 14th ConfLecture Notes in Computer Science,
pages 485-499. Springer, Jul 2002.

40. R. Sebastiani and S. Tonetta. “more deterministic” vs.
“smaller” Buichi automata for efficient LTL model checkinig.
CHARME pages 126-140. Springer, 2003.

41. R. Sebastiani, S. Tonetta, and M.Y. Vardi. Symbolic exyst,
explicit properties: on hybrid approaches for LTL symbolic
model checking. IICAV, Proc. 17th Int'l Conf.Lecture Notes
in Computer Science 3576, pages 350-373. Springer, 2005.

42. F. Somenzi and R. Bloem. Efficient Biichi automata frorh LT
formulae. InCAV, Proc. 12th Int'l Confvolume 1855 o£ NCS
pages 248-263. Springer, 2000.

43. H. Tauriainen and K. Heljanko. Testing LTL formula tret®n
into Buchi automataSTTT - Int'l J. on Software Tools for Tech.
Transfer 4(1):57-70, 2002.

44. X. Thirioux. Simple and efficient translation from LTLrfo
mulas to Biichi automataElectr. Notes Theor. Comput. Sci.
66(2):145-159, 2002.

45. M.Y. Vardi. Nontraditional applications of automataediny.

In STACS, Proc. Intlvolume 789, pages 575-597. LNCS,
Springer-Verlag, 1994.

46. M.Y. Vardi. Automata-theoretic model checking resit In
Proc. 7th Int’l Conf. on Verification, Model Checking, and-Ab
stract Interpretation volume 4349 ofLNCS pages 137-150.
Springer, 2007.

47. M.Y. Vardi and P. Wolper. An automata-theoretic apphotc
automatic program verification. Iroc. 1st LICSpages 332—
344, Cambridge, Jun 1986.

48. M.Y. Vardi and P. Wolper. Reasoning about infinite coraput
tions. Information and Computatiqri15(1):1-37, Nov 1994.

