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Abstract—This paper presents two probabilistic developments
for the use with electromyograms (EMGs). First described is a
neuroelectric interface for virtual device control based on gesture
recognition. The second development is a Bayesian method for
decomposing EMGs into individual motor unit action potentials
(MUAPs). This Bayesian decomposition method allows for distin-
guishing individual muscle groups with the goal of enhancing ges-
ture recognition. All examples presented rely upon sampling EMG
data from a subject’s forearm. The gesture-based recognition uses
pattern recognition software that has been trained to identify ges-
tures from among a given set of gestures. The pattern recognition
software consists of hidden Markov models, which are used to
recognize the gestures as they are being performed in real time
from moving averages of EMGs. Two experiments were conducted
to examine the feasibility of this interface technology. The first
replicated a virtual joystick interface, and the second replicated a
keyboard. Moving averages of EMGs do not provide an easy dis-
tinction between fine muscle groups. To better distinguish between
different fine motor skill muscle groups, we present a Bayesian
algorithm to separate surface EMGs into representative MUAPs.
The algorithm is based on differential variable component analy-
sis, which was originally developed for electroencephalograms. The
algorithm uses a simple forward model representing a mixture of
MUAPs as seen across multiple channels. The parameters of this
model are iteratively optimized for each component. Results are
presented on both synthetic and experimental EMG data. The syn-
thetic case has additive white noise and is compared with known
components. The experimental EMG data were obtained using a
custom linear electrode array designed for this study.

Index Terms—Bayesian decomposition, electromyogram
(EMG), gesture recognition, hidden Markov model (HMM),
motor unit action potential (MUAP).

I. INTRODUCTION

E LECTROMYOGRAMS (EMGs) are used in the medical
community to aid in the diagnosis of neuromuscular dis-

eases, and there has been increasing interest in the use of EMGs
as a means to interface with prosthetics and virtual devices [1].
For clinical applications, it is often necessary to use invasive
needle electrodes to pinpoint sources of the EMGs to specific
motor units. However, invasive measures are not ideal for use
in the control of virtual devices. The ability to utilize surface
EMG signals would enable the design of many neuroelectrically
interfaced systems.
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This paper introduces one such system in which surface EMG
recordings from hand gestures are used in place of mechanical
devices such as joysticks and keyboards to interface with a
computer. Currently, most gesture recognition systems come in
one of the following two forms.

• Gestures are recognized via an external camera, which
requires sophisticated image processing and controlled
lighting.

• Gestures are recognized by placing a sensing glove on the
hand(s) of the participant.

We aim to achieve recognition in poor lighting conditions in
extreme environments (outside of the laboratory) with minimal
equipment. To date, we have accomplished this by directly con-
necting a person to the computer via EMG surface electrodes on
the forearm. The EMG signals are sampled and digitized, and
the resulting time series are passed through a pattern recognition
system based upon hidden Markov models (HMMs). The rec-
ognized patterns are then transmitted as computer commands.
Our first example of this was to attach four pairs of electrodes to
one forearm and interpret the resulting EMG signals as joystick
commands [2]. These commands were then used to fly a realis-
tic flight simulator for a 757 transport aircraft. The acting pilot
would reach out into the air, grab an imaginary joystick, and
then pretend to manipulate this stick to achieve left and right
banks and up and down pitches of the aircraft simulation. We
also present results on pretending to type on a table (or lap) and
translating the resulting sensed EMG signals into keystrokes.

The demonstration of gesture recognition through surface
EMG signals leads to physiological questions of how individual
sources are involved in generating these EMG signals that are
distinctive for different types of movements. Voluntary limb
movement occurs as a result of the brain generating a spike train
that is transmitted through the nerve to a junction in the muscle
known as the end-plate region. This induces an ion transfer along
the length of the muscle fibers with a corresponding contraction
of the muscles. The travelling waveform along the muscle fibers
is known as a motor unit action potential (MUAP). This ion
exchange induces a current on the surface of the skin, which
can be measured as a voltage difference between two resistive
electrodes. Surface EMGs measure a composite of the voltage
changes produced by these individual MUAPs. Measuring from
the surface of the skin presents additional complexities because
the multiple MUAP sources mix as they traverse through skin,
fat, muscle, and other tissues.

To separate the EMG signals into the corresponding fine mo-
tor muscle groups, we examine new ways to decompose the
EMGs. Thus, the unmixed MUAPs can be used as an input to our
HMMs. We present a Bayesian method to perform source sep-
aration for surface EMGs. In particular, compound motor unit
action potentials (CMAPs) [3] are separated into representative
MUAP waveforms. Our method is based on the differentially
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variable component analysis (dVCA) algorithm for source sep-
aration of electroencephalograms (EEG) developed by Knuth
et al. [4], [5]. We have extensively modified this algorithm to
work with surface EMGs.

In any standard Bayesian methodology, it is necessary to
have a forward model and a means to optimize the parameteri-
zation of that model based upon data observations. In the case
of EMGs, we have chosen to develop a model that describes
the MUAPs and how they are mixed together. There has been
extensive research on decomposing EMGs [6]–[9] using non-
Bayesian approaches. There has also been great progress made
in developing physics-based forward models for EMG signal
generation as measured on the surface of the skin [10]–[14].
Unfortunately, in most of this literature, there is a gap between
the methods of decomposition and model parameterization that
could be bridged by following a Bayesian approach. In this pa-
per, we detail the steps that we have taken to fill this gap with a
simple mixing model.

II. METHODOLOGY

A. Gesture-Based Control

Each type of gesture set required a different methodology. The
virtual joystick gesture set used four pairs of dry electrodes and
four coarse grained movements. The virtual keyboard gesture
set consisted of eight pairs of wet electrodes and 11 fine grained
movements. The methodology that we followed consisted of the
following steps:

1) gesture selection;
2) electrode application (location and number);
3) signal acquisition, filtering, and digitization;
4) feature formation;
5) pattern recognition model training and testing;
6) pattern recognition application in interactive simulation.
The process started by selecting the desired physical motions

(gestures) to be used to control the virtual device. From the set
of gestures, the best location for the limited number of elec-
trode pairs (a maximum of eight in our case) was established.
Then, standard signal processing practices were used to filter and
digitize the signal. Transforms such as moving averages were
applied to these raw digital data. The transformed data were fed
into the pattern recognition software to train the models. Once
the pattern recognition models were trained, they could be used
for the real-time recognition task. Each of these steps will now
be described in detail.

1) Gesture Selection: Our first task used coarse grained ges-
tures to mimic manipulation of a joystick [2]. Movement of the
joystick was associated with four basic gestures: up, down, left,
and right. The use of the four pairs of electrodes for gesture
recognition provided reasonable separation between the four
gestures.

Our second task consisted of movements associated with typ-
ing on a number pad on the keys 0–9 and Enter. These move-
ments consisted of much finer grained gestures. The first, sec-
ond, and third fingers were resting over the keys, 4, 5, and 6
respectively. The first finger was used to press the keys 1, 4, and
7. The second finger was used to press the keys 2, 5, and 8. The

Fig. 1. (Top) Dry electrode sleeve for joystick-based flying. (Bottom) Wet
electrodes for typing experiments.

third finger struck the keys 3, 6, and 9. The fourth finger was
used for the Enter key, and the thumb was used to strike the zero
key. In this case we used eight pairs of electrodes.

2) Electrode Application: The placement of the electrodes
depends upon the gestures that we wish to recognize and upon
individual physiological differences. The joystick task was mea-
sured using four dry electrode pairs sewn into a sleeve as shown
in Fig. 1. This sleeve helped to reduce variation in the placement
of the electrodes. For the typing task, we chose to use eight pairs
of wet electrodes due to the improved signal-to-noise charac-
teristics of the wet electrodes over that of the dry electrodes.
This was in part due to the signal amplitudes for the typing task
being much smaller than that of the joystick task. The drawback
of using wet electrodes is that the positions of the electrodes are
difficult to replicate from one day to the next. The locations of
these pairs were obtained by establishing a grid of electrodes
on the forearm, and then performing the desired task; only elec-
trodes that produced distinct signals for a gesture were used.
The positions of the electrodes for the typing task were in two
rings around the forearm: One near the wrist and one near the
elbow also shown in Fig. 1.

Several tests were conducted to measure the effects of mi-
nor variations in placement (1–3 mm) and major displacements
(1–2 cm). The minor variations had no impact but the major dis-
placements required that the recognition models be retrained
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or adapted for the individual user. Individual differences in
personal physiology proved to be challenging. Differences in
arm lengths and widths made it difficult to place the electrodes
at the proper positions across people without considerable effort.
In addition, strengths of the EMG signals varied across people
and varied with the amount of training that individuals received.

3) Signal Acquisition, Filtering, and Digitizing: The EMG
data were acquired by placing differential instrumentation pre-
amplifiers near to each electrode pair with a common mode
rejection ratio of 110 dB. All eight channel pairs were referenced
to a common ground electrode positioned over the bone at the
wrist or elbow. The signal was digitized using 16 bits at 6000 Hz,
and then a 32-tap anti-alias bandpass Bessel filter was applied
and down sampled to 2000 Hz unless otherwise indicated.

4) Feature Formation: The goal of the feature formation step
is to separate the signals enough to allow the pattern recogni-
tion module to distinguish between gestures. Another result of
working with features is to create a space smooth enough to be
reliably modeled. We tried many common methods such as short
time Fourier transform (STFT), wavelets, moving averages, and
autoregression coefficients. At the end, moving averages, the
simplest feature space, seemed to be the best. Since the EMG
signals were differentially amplified, the average of the signals
when presented with enough samples was approximately zero.
This required that the moving average be performed on the
absolute value of the signals. The windows used to form the
moving averages were allowed to overlap by 75%. Note that
this is purely an amplitude-based method; the frequency of the
electrical activity did not seem to vary significantly from one
gesture to the next.

5) Pattern Recognition: The pattern recognition method we
chose to employ was an HMM. HMMs have been developed
by the speech recognition community in response to their pat-
tern recognition time-series problem [15]. The history of speech
recognition reveals a process, which first attempted to recognize
isolated words from a single speaker, and then isolated words
from multiple speakers, followed by continuous words from
a single speaker, and finally continuous words from multiple
speakers. We are following a similar approach with our gesture
recognition work. We have developed an isolated gesture recog-
nition for both a single participant and multiple participants.
The work in this paper will describe isolated recognition for a
single typist and continuous recognition for the joystick study.

Two issues with training any model to learn from the sampled
data are that the data sets are representative and the model has
the appropriate number of parameters for an accurate represen-
tation. The training data sets can suffer from not having enough
exemplars or being inconsistent for the sample size. In our case,
we can always sample more data if we do not have enough. On an
empirical basis, we have been able to use as few as 20 exemplars
from each gesture to adequately model the remaining data from a
single day. However, when we combine data from multiple days,
it becomes readily apparent that inconsistency is a problem.

We define inconsistency as the statistics of the data vary-
ing from day to day. We could have defined this in terms of
gesture-to-gesture variation but have chosen not to because this
variation is more of a natural variation inherent in human behav-

ior whereas the day-to-day inconsistencies are more an artifact
of the experimental procedures.

There are many solutions to resolve this inconsistency as
well as many contributions to the variations, which could be
minimized. One example is electrode placement. If the electrode
locations are allowed to vary from day to day, then the signal
statistics will also vary. This can be reduced through the use of
a fixed electrode sleeve.

Day-to-day variations related to natural behavior may not be
removable, and in fact, we would benefit from modeling them.
One example is the way by which people gesture may vary
slightly from day to day even though their intention is to perform
the gestures identically. In this case, we need to have enough
data to represent the multimodal statistics and we need a way
to adapt the system models over time. Our current methodology
does not vary adaptively but it is our plan to include this in future
work. This means that our best remedy is to recognize when day-
to-day variation is too great for adequate model generalization.
We can then use less data for training by using only the data
similar to our current day’s setup (i.e., electrode locations).

a) Training: The HMMs we used were continuous, tied
mixture [16], and left-to-right models. The standard Baum–
Welch training [15] was used. Models are classified as continu-
ous if they use inputs that can take on a range of floating-point
values. The alternative to this is to allow for only discrete values
such as might be found if the inputs were transformed by quan-
tization. Tied mixtures means that a fixed number of Gaussian
mixtures are used throughout all of the states. Thus, any state
may make use of any mixture. A left-to-right model means that
the HMM may not go back to a previous state but may remain
in a state or go to a new state.

Initialization of the models was performed using K-means
clustering. The states were partitioned to equalize the amount
of variance present within each state. The data sets used to train
were segmented to insure that the peak of the variance was near
the middle of each segment. This translated to the bulk of the
energy being centered. Segments were sampled at 2000 Hz and
contained 3072 samples per channel, with eight channels in total.
The parameters of the HMMs that we typically varied were the
number of discrete states, the number of Gaussian mixtures, the
number of maximum number of iterations to train, the method
used to arrive at the state partitioning (uniform versus variance
based), and the method used to initialize the parameters of the
mixtures (e.g., K-means clustering).

b) Recall: The real-time recall was performed using the
standard Viterbi algorithm [17]. Since the system was process-
ing streaming data, there was no knowledge as to where the
peak of the variance was occurring. Because of this, the HMMs
would see the data when the peak was first at the left most in
the time segment, then the peak would move across from left
to right, and then the final presentation was when the peak was
at the right most part of the segment. Since the HMMs were
trained only when the peak was centered, due to this shifting,
the HMMs were required to recognize a gesture several times
in a row before that gesture was selected as the one that was
observed. This prevented spurious recognition when the peak
was not near the center of observation.
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6) Experiments: Two experiments were conducted to deter-
mine the feasibility of using bioelectric signals to substitute for,
first, a joystick, and second, a keyboard.

The first experiment consisted of four pairs of dry electrodes
fitted within a sleeve worn on the forearm of a participant.
The participant was then asked to pretend to move a joystick
left, right, up, and down. The participant performed each of
these gestures 50 times. The data were separated by gesture,
and segmented to have the peaks in the center of 3072 sam-
ple segments. Artifacts or incomplete gestures were removed
from the data sets via manual inspection. The segmented data
were then used to train four HMMs, one for each gesture. These
trained models were then used to recognize gestures made on
a day excluded from the training set. A confusion matrix was
generated to display errors and to show which gestures were
confused with one another. The system has also been used
for numerous real-time demonstrations of flying a simulated
757 transport aircraft to landing [2]. A more continuous ges-
ture recognition was implemented by decreasing the segment
size.

Four methods were used to test the pattern recognition system.
The first involved training the models on data from one day,
and then recalling on different data obtained on the same day.
We call this method same trial acquisition and testing. The
second involved training on data from one day and recalling
on data collected on a different day. We call this method cross-
trial acquisition and testing. The third method trained on data
subsampled from a large set taken across multiple days, and
then recall performed on data different from the training but in
the same large set. We call this method multitrial acquisition
and testing. The final method involved training on a previously
acquired single day that provided the best recognition in our
real-time simulation for flying an aircraft. We call this best trial
training and real-time testing.

The second experiment used eight pairs of wet electrodes in
two rings of four each, one ring near the wrist, and the second
near the elbow. The participant was asked to touch type on a
printed picture of a number pad keyboard, striking the keys 0–
9 and Enter. The participant was asked to type these in order,
separated by a 1-s rest interval, for a total of 40 strokes on
each key. These data were then segmented, and artifacts were
manually removed. Data were collected on several different
days. Eleven HMMs were trained, one for each gesture. These
11 models were then run in parallel during the recall.

B. EMG Decomposition

The model that we formulate for separating mixed MUAPs is
dependent on how we acquire the data. Ideally, within a Bayesian
framework, we would model every part of the system. We would
start by modeling the sources of the potentials and observing
how the shape of the potentials is changed by transmission
through the tissue. This would be followed by a model of the
electrodes, the amplifier, and finally the data acquisition card.
The model we present relies on approximations to reduce the
task of modeling all of these elements.

Fig. 2. Linear electrode array pictured with a U.S. quarter. (Color version
available online at http://ieeexplore.ieee.org.)

Fig. 3. EMG data from our linear electrode array. Star indicates mov-
ing MUAP over time between channels. (Color version available online at
http://ieeexplore.ieee.org.)

Our model is based upon the assumption that we can observe
compound MUAPs along parallel fibers of a muscle group.
This assumption is facilitated by using a linear electrode array
[10], [18] as shown in Fig. 2. We fabricated this electrode array
with parallel silver bars spaced 5 mm apart. Fig. 3 shows the
data collected by this device on four differential channels (eight
total silver bars). Note that a star has been placed over one
of the action potential waveforms, which is shifted between
channels by an amount proportional to the conduction velocity.
The muscle contraction under study was carefully controlled
and can be assumed to be constant. The contraction level in
this work is approximately 20% of the maximum voluntary
contraction.
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Our model representing the mixing process for the mth chan-
nel as a function of time can be expressed as

ψm,t =
N∑

n=1

F∑
f =1

Cmnαnf sn

(
t − (m − mref)τC

n

− (f − 1)τF
n − τS

nf

)
(1)

where the subscripts index the nth component, f th firing, and
mth channel; N is the total number of MUAP sources (compo-
nents) being modeled; F is the number of firings; C represents
the coupling between channels and sources; sn () is the source
waveform; αnf is the amplitude weighting; τF

n represents the
time delay associated with the firing frequency of a particular
source; τC

n is the delay across channels, which is proportional to
the conduction velocity; and τS

nf is the latency for each source
and firing representing the variability in firing.

There are several assumptions that underlie (1). We assume
that the electrode array is positioned parallel to the muscle fibers
and that the electrodes are evenly spaced. These assumptions
allow us to model dominant components propagating along the
muscle fibers as signals travelling from channel to channel. The
time it takes to go from one channel to the next is represented
by τC

n = d/vc , where d = 5 mm is the electrode spacing and
vc is the conduction velocity. We also assume that the muscle
contraction is of constant force and that the sampling time is
short enough that the firing rate (or time delay between firings
τF
n ) of any one MUAP source is effectively constant. Variation

in the periodicity of the firing of a single source is modeled by
τS
nf and is assumed small with respect to the firing rate.

The basis of model parameter estimation lies in using Bayes’
theorem to maximize the a posteriori probability (MAP) of the
model, using the likelihood of the data and the prior probability
of the model parameters and other known information (symbol-
ized by I)

p(model | data, I) =
p(data |model, I)p(model | I)

p(data | I)
. (2)

Substituting the parameters of our model, this becomes

P = p(C, s(t), α, τF, τC, τS |x(t), I)

=
p(x(t)|C, s(t), α, τF, τC, τS, I)p(C, s(t), α, τF, τC, τS| I)

p(x(t) | I)

(3)

where the value on the left-hand side of the equation, which
will be referred to as P , is the posterior probability of a model
describing the data. The right side represents the product of the
likelihood of data of the given model and the prior probability
of the model, divided by a proportionality constant dependent
on the data. A uniform distribution is assigned to the prior
probabilities of each parameter, and as a result the posterior
probability P becomes directly proportional to the likelihood of
the data

P ∝ p(x(t) |C, s(t), α, τF, τC, τS, I). (4)

Using the principle of maximum entropy, the likelihood of the
data is assigned a Gaussian distribution by introducing a new pa-
rameter σ. This parameter represents the expected squared error
in prediction and is assigned a Jeffreys prior. When the likeli-
hood is marginalized over all values of σ, the result becomes

P ∝ (2πσ2)−
M T
2 exp

[
− 1

2σ2
Q

]
(5)

where Q represents the square of the residuals between the data
and our model, summed over all time points in all channels

Q =
M∑

m=1

T∑
t=1


xm (t) −

N∑
n=1

F∑
f =1

Cmnαnf sn

×
(
t − (m − mref)τC

n − (f − 1)τF
n − τS

nf

)
2

. (6)

To simplify calculations, we maximize P by maximizing the
log of P . Using the method described by Knuth et al. [4], [5],
the log of the posterior probability P can be written as

ln P = −MT

2
ln Q + const. (7)

For convenience of discussion, two expressions frequently
used in the process of minimizing the difference between the
data and the model are defined below. For a given component j
in channel m at time t, U represents all firings of the component
j deduced from the value of the actual data minus all other
parameterized components

U(j,m, t) = xm (t) −
N∑

n =1
n �=j

F∑
f =1

Cmnαnf sn

×
(
t − (m − mref)τC

n − (f − 1)τF
n − τS

nf

)
. (8)

Similarly, the expression UF isolates a particular firing f0 of the
jth component in channel m at time t, using the same method
of deduction by also subtracting away all other firings of the jth
component except for the f0th firing

UF (j, f0,m, t) = U(j,m, t) −
F∑

f =1
f �=f o

Cmjαjf sj

×
(
t − (m − mref)τC

j − (f − 1)τF
j − τS

jf

)
. (9)

1) Parameters: The five parameters optimized through iter-
ation are described below.

a) Waveshape: The maximum a posteriori estimate of the
waveshape is found by setting the partial derivative of the log
probability with respect to a time point q in waveshape sj to
zero (details are given by Knuth [4]).

b) Amplitude: When taking the partial derivative of the
log probability with respect to the amplitude of the f0th firing
of the jth component, the optimal estimate for the amplitude of
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this particular firing becomes

α̂jf0 =
∑M

m=1

∑T
t=1 UFRα∑M

m=1

∑T
t=1(Rα )2

(10)

Rα = Cmjsj

(
t − (m − mref)τC

j − (f0 − 1)τF
j − τS

jf0

)
. (11)

Since the model allows for varying amplitudes between different
firings of the same component, each αjf term is determined
irrespective of other firings by using the deduced single firing
term UF.

c) Firing period: To find the optimal estimate for the fir-
ing period of the jth component, one must solve

τ̂F
j = argmaxY

(
τF
j

)
(12)

Y
(
τF
j

)
=

M∑
m=1

T∑
t=1

U(j,m, t)U
(
j,m, t + τF

j

)
(13)

where the function U is defined in (8). The function Y (τF
j ) rep-

resents the autocorrelation across each channel, summed across
all channels for all firings of a given component j. The jth com-
ponent is isolated by subtracting away all firings of all other
components to obtain U(j,m, t). Each channel is multiplied
with shifted versions of itself, and assuming that the data are
periodic across each channel, the latency shift that produces the
maximal value will be where the second through F th channel
is closest to alignment with the first through (F − 1)st firing of
the jth component. This latency estimate is constrained to be
positive and greater than 2 ms because a firing period that is sig-
nificantly smaller than the time span of a single action potential
is not physiologically plausible.

d) Conduction period: To find the optimal estimate for
the conducting period of the jth component

τ̂C
j = argmaxZ(τC

j ) (14)

where

Z(τC
j ) =

M∑
m=1

T∑
t=1

U(j,m − 1, t)U
(
j,m, t + τC

j

)
(15)

where the function U is defined in (8). The function Z(τC
j )

represents the cross-correlation between consecutive channels,
summed across all pairs of channels for a given component j. As
above, the estimate of the jth component (with all of its firings)
is obtained by subtracting away all firings of all other compo-
nents to obtain U(j,m, t). As a convention, the first channel
will be considered the reference electrode from which action
potentials are first detected. As the action potentials propagate
through the muscle fibers, each subsequent channel detects the
action potential slightly later than the previous channel. For
each pair of channels, the first channel is multiplied with shifted
versions of the second channel. Assuming that the data are peri-
odic across each channel, the latency shift between the channels
that produces the maximal value will be where all firings of the

jth component most nearly align between the pair of channels.
The conduction period is constrained to positive values between
zero and half of the firing period. Since the conduction period is
significantly smaller than the firing period, we are able to apply
this assumption.

e) Offset latency: To find the optimal estimate for the off-
set latency of f0th firing of the jth component

τ̂S
jf0

= argmax A
(
τS
jf0

)
(16)

A(τS
jf0

) =
M∑

m=1

T∑
t=1

UF(j, f0,m, t)VF

(
j, f0,m, t + τS

jf0

)
(17)

where the function UF is defined in (9) and VF(j, f0,m, t) repre-
sents the reconstruction of the f0th firing of the jth component,
using all other parameters of the jth component

VF(j, f0,m, t) = Cmjαjf0sj

(
t − (m − mref)τC

j

− (f0 − 1)τF
j − τS

jf0

)
. (18)

The function A(τS
jf0

) represents the cross-correlation between
the deduced single firing of the jth component, UF(j, f0,m, t),
based on the data after removing the firings of the other
components, and the estimated single firing of the compo-
nent, VF(j, f0,m, t), based on the jth component parame-
ters. The deduced firing is multiplied with shifted versions
of the reconstructed firing, and the latency which produces
the maximal value is taken as the estimate of the offset
latency.

2) Adjustments for Parameter Degeneracies
f) Latency degeneracy between τF

n and τS
nf : Since τF

n and
τS
nf both represent time shifts within single channels of data, if

the estimated value for τF
n is inaccurate, τS

nf values will increase
linearly in amplitude. In other words, if the estimated τF

n value is
smaller than the actual value, each successive firing will deviate
from its estimate by a value larger than the previous firing with its
respective estimate. For a given firing f of a given component n,
the value of the net latency due to firing and offset is not affected,
but the τF

n and τS
nf values no longer represent the firing period

and offset period. To correct for this offset, every time the τS
nf

is calculated, a linear regression on the τS
nf values is performed,

and both the latency values are adjusted accordingly. The linear
regression takes the form of τS

nf = µnf + βn Using this line,
the τF

n and τS
nf values are remapped so that τS

nf becomes a
constant value plus or minus deviations from the regression line
dnf and τF

n accounts for this change

(f − 1)τF
n + τS

nf = (f − 1)τF
n + (µnf + βn + dnf )

= (f − 1)τF
n + (µn (f − 1) + µn + βn + dnf )

= (f − 1)(τF
n + µn ) + (µn + βn + dnf ).

The adjusted τF
n value becomes

τ̄F
n = τF

n + µn (19)
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and the τS
nf value becomes

τ̄S
nf = µn + βn + dnf

= µnf + βn + dnf − (f − 1)µn

= τS
nf − (f − 1)µn . (20)

g) Waveshape alignment and adjustment of τS
nf : A degen-

eracy also occurs in the time domain between the waveshape and
the offset latency τS

nf . A time shift in the component could be
characterized as either a change in waveshape or a shift in offset
latency. To give the offset latency values, a relative meaning
between different components, each time a stopping condition
is met, as in Step 9) of the iteration process below, the peaks of
all component waveshapes are aligned to match the waveshape
with the earliest peak, and each τS

nf value is adjusted accord-
ingly. This alignment is performed after each stopping condition
to ensure that the algorithm has had a chance to estimate all pa-
rameter values before shifting all waveshapes to an earlier time.
Performing the alignment during the iterative process runs the
danger of shifting parts of the waveshape out of the time-frame
allotted for a single waveshape into negative time, which would
be invalid for this model.

2) Iterations: We optimized the parameters as follows.
Step 1) Identify the total number of firings within the dataset

by human observation.
Step 2) Estimate τF

n for the component using (12) and (13).
Step 3) Estimate τC

n using (14) and (15).
Step 4) Estimate τS

nf using (16) and (17).
Step 5) Adjust τF

n values if τS
nf values show a linear rate of

change using (19) and (20).
Step 6) Estimate the waveshape s()
Step 7) Estimate the amplitude α of each firing using (10).
Step 8) To parameterize another component, follow Steps

1)–5), using the data from which the model of the
first component has been subtracted.

Step 9) Iterate through Steps 1)–5) for both components until
the average change in waveshapes from the previous
iteration is less than 1% or until a maximum num-
ber of iterations has been performed, and align the
peaks of the component waveshapes, adjusting τS

nf

accordingly.
Step 10) For each additional source, parameterize the new

component based on the data without all other com-
ponents that are already modeled, and repeat the it-
eration of Steps 1)–5) for all components until a
stopping condition in Step 9) is reached.

Listed below are considerations used in determining the aboveit-
eration order.

a) Parameter initialization: Since the general waveshape
of an MUAP is fairly well defined, this information is used to
initiate the waveshape. The point values in s(t) are determined
in the manner described in Section II-B4. As mentioned earlier,
the coupling matrix is set to all ones under the assumption that
all detectors receive signals from all components equally well.
All latency values τF

n , τC
n , and τS

nf are initialized as zero, and
all αnf values as one. Since the latency optimizations occur

first in the iteration in Steps 2)–4), αnf values are initialized
as one. If the αnf values were zero, the reconstructed compo-
nent used in the τS

nf calculation would just be a straight line
at zero. For this reason, if any value of αnf becomes zero in
the process of iteration, the αnf value is set to one temporarily
for the calculations of τF

n , τC
n , and τS

nf and then set back to
zero.

b) Estimation of τF
j and τC

j before τS
jf : When considering

a single component, τF
j and τC

j are parameters that characterize
the component, providing information about the firing rate and
conduction velocity when the distance between the electrodes
is known. The optimizations of τF

j and τC
j involve correlations

of the deduced component and are not directly dependent on the
accuracy of the parameters of the component in question. On
the other hand, τS

jf “picks up the slack” in the overall latency
value and is restrained to be a constant with slight deviations for
each firing. Effectively, this constant gives information about
the relative offset between different components, and the devia-
tion represents the time error between the model and the actual
data for each firing of this particular component. τF

jf involves
the cross-correlation of the deduced component and the recon-
structed component and, therefore, is directly dependent on the
accuracy of the jth component parameters.

In determining the order of this algorithm, the τS
jf calculation

is performed after τF
j and τC

j , and so the offset calculation has the
benefit of using the already parameterized firing and conduction
period values when reconstructing the jth component for cross-
correlation. When the latency values are remapped in Step 5), the
firing period adjustment is applied to a τF

j value that represents
an estimate of the firing period rather than an initial value with
no significance.

c) Estimation of the waveshape before amplitude: Due
to the degeneracy that could occur in the model between the
scaling of the waveshape and the amplitude, the waveshape is
constrained to have a peak-to-peak amplitude of one to give
the α values a consistent meaning. Thus, in each set of it-
erations, the waveshape is estimated first and scaled peak to
peak. The amplitude α is parameterized after the waveshape
has been determined so that α can appropriately compensate
for the waveshape scaling in each firing of the component in
question.

d) Isolated optimization of new component on its first
iteration: When parameterizing a new component j, all pre-
vious components have already been optimized to their stop-
ping condition. In all parameter optimization calculations
[Steps 1)–5)], the deduced component is used, in the form
of either a single firing or an action potential train. For the
first iteration, since the jth component has not yet been com-
pletely parameterized, using this component in calculations for
other components may throw off parameter values unnecessar-
ily. Therefore, for the first iteration of a new component j, all
the parameters of j are optimized. For successive iterations, all
parameters are optimized for each component in turn.

3) Synthetic Data: The waveshape of the synthetic data used
for testing is based on the MUAP model developed by McGill
et al. [19]. The source function V ′(t) was created by the sum of
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Fig. 4. Synthetically generated CMAPs with two components and white noise
added. (Color version available online at http://ieeexplore.ieee.org.)

a scaled spike and afterpotential

dV (t)
dt

= (ag′(t) + bg(t)) − b

tA
g(t) ∗ (e−t/tA u(t)) (21)

where ∗ denotes a convolution, a and b are scaling factors, tA is
a time constant of decay, and

g(t) =
kn+1

Γ(n)
tne−ktu(t) (22)

in which n and k are adjustable constants. The standard values
used were n = 2.5 and k = 5.8 [19]. This source function was
used as the initial estimate of all new component waveshapes.
The model described by McGill et al. also details spatial and
temporal weighting functions to be convolved with the source
function representing the waveshape distortion as it travels along
the muscle fibers, as well as considerations for different lengths
of muscle fibers. These factors were not implemented for this
paper, but a convolution was performed using an approximate
weighting function in generating the synthetic data. For simula-
tion, varying levels of Gaussian noise were added as well. The
data shown in Fig. 4 were generated with the two components
shown in Fig. 5 that were mixed together with uncorrelated
white noise with a signal-to-noise ratio of 3.7. This level of
noise is higher than that normally observed in our experimental
setting, and thus, is representative of a more difficult test.

4) Experimental Data: The subject EMG data were acquired
using our electrode array positioned over the bicep. The subject
was required to lift and hold a 5-lb weight and was only allowed
to bend at the elbow, with the elbow supported. The data were
sampled at 32 kHz using a custom-built amplifier with a gain of
1000 and an anti-aliasing filter with a 3-kHz cutoff frequency.

Fig. 5. Synthetic MUAPs. (Color version available online at http://ieeexplore.
ieee.org.)

TABLE I
CONFUSION MATRIX FOR CROSS-TRIAL JOYSTICK DATA

III. RESULTS

A. Joystick Gestures

1) Same Trial Acquisition and Testing: This experiment is
by far the easiest to recognize because the variability associ-
ated with day-to-day differences has been eliminated. Such a
variation includes conductivity levels of the skin, positioning
of the dry electrode sleeve, and changes in the performance of
the gestures. We noticed that we could determine when partici-
pants had used skin moisturizer before the experiment because
the signal quality obtained from the dry electrodes improved.
Typically, if the HMMs had an appropriate number of parame-
ters and enough data were used, then no errors were made upon
recall of the validation set.

2) Cross-Trial Acquisition and Testing: This experiment
demonstrated which gesture was the hardest to separate from the
others. In particular, we trained on 50 instantiations from one
trial date and then validated on 50 other instantiations from a dif-
ferent trial date. A typical confusion matrix is shown in Table I.
This indicates that day-to-day variations were significant enough
to cause difficulty in separating the gesture left from other ges-
tures. The source of the variations included electrode placement,
length of the gesture, strength of gesture formation, and the form
of the gesture (wrist angles). This led to the next experiment to
see if the models would generalize if we trained on all of the
different days together and then tested on a withheld subset.
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TABLE II
CONFUSION MATRIX FOR CROSS-TRIAL SHORT JOYSTICK DATA

3) Multitrial Acquisition and Testing: To determine the gen-
eralization capability of the HMMs, we trained on data from
multiple trial dates and then recalled on points withheld from
the training data for the same dates. This resulted in perfect
results (100% correct for all gestures).

Of course, this does not mean that when data from yet another
new day are added, the system will be able to generalize on that
data. In the next experiment, we examine training on the single
best day and use that for real-time testing. The real-time testing
acts as new and unseen data.

4) Best-Trial Training and Real-Time Testing: The error
rates determined from the previous methods were not neces-
sarily indicative of a real-time performance. In particular, the
error rates would vary across time depending upon many factors
such as sleeve position (rotation), sweating, skin moisture (dry
skin does not conduct well), length of time that the electrodes
were worn, and fatigue (resulting in tremors). By training on
only a single day’s data, we were able to use the dry electrode
sleeve for demonstrations on many different days. We selected
the day that gave the best real-time reliability. The demonstra-
tions consisted of flying a 757 transport aircraft in simulation to
landing at San Francisco airport.

5) Continuous Recognition: In the previous experiments, a
total of 3072 data samples were used to form the estimate. This
introduced considerable time lag into the system (1.5 s). In an
attempt to become closer to a continuous recognition process,
the time segments used to train the HMMs were shortened to
only contain the first part of the rise of the signal using 352
samples. In this case, the HMMs consisted of three states with
nine mixtures in total. The resulting cross-trial confusion matrix
is shown in Table II.

This matrix is not significantly different from the previous
cross-trial longer data. The change in signal length allowed us
to remove noticeable delays between the gesture action and the
movement of the aircraft. We achieved a much less noticeable
delays (176 ms) at the expense of a slight decrease in the ro-
bustness of the gesture recognition process. It is possible to have
this response time with a small decrease in the recognition rates.
Since this is intended for real-time systems, such a lag is hard to
justify but it has not prevented us from successfully flying the
simulated aircraft. The resulting multiday confusion matrix had
no errors.

In the next set of experiments, we switched from using the
dry electrode sleeve to wet electrodes. This was necessary
because the EMG signals measured for the typing gestures
were much smaller than those for the joystick. The wet elec-
trodes tend to have a higher signal-to-noise ratio than the dry
electrodes.

TABLE III
MULTITRIAL CONFUSION MATRIX FOR TYPING DATA

B. Keyboard

In this experiment, the position of the hand above the simu-
lated number pad was maintained in a touch-typist typing po-
sition. If the position of the hand were allowed to vary, the
tasks of distinguishing between hitting the top row of keys from
the bottom row of keys would greatly increase in difficulty
and would require electrodes on the upper arm to sense the
movement. The angle of the participant’s wrist also had to be
carefully maintained to avoid radically changing the sampled
signals. Even with careful attention to position and maintaining
electrode placement from day-to-day, the data tended to vary.
There are consistent trends in the data but the variation between
instantiations of the same gesture is great.

1) Multitrial Acquisition and Testing: The keyboard replica-
tion experiments had a much greater daily variation in electrode
placement than with the joystick. We also had difficulty in reli-
ably having the participants maintain a consistent hand position
from trial to trial. This included ensuring that the wrist angle
was similar and that the hand was consistently neither resting on
the table during motion nor was in part supported by the table
(i.e., bad form, but consistent bad form). Despite these uncon-
trollable variations, the resulting confusion matrix for multiple
trials shown in Table III is remarkably good. The variability in
the data caused our models to generalize gestures such that more
confusion occurred. For live demonstrations, we needed to train
on the same day we were giving the demonstration, and thus,
used only a single day’s data.

Two enhancements are planned. First, the use of wet
electrodes caused unintentional misplacement. We are currently
developing new dry electrode straps, which have a higher den-
sity than the sleeve and are similar in size to a wrist band. These
straps will allow us to have the electrodes on a band positioned
relative to each other without variability. The second enhance-
ment is to include model correcting adaptation, which is now
common in the speech recognition community. This adaptation
would allow the models to be tuned to small variations, both
throughout the day and whenever the current day’s configuration
differs from the models used to train. A calibration stage will
be included so that the participant can make a gesture to issue a
certain command and the computer will adapt to understand the
signals as that command. Calibration will eliminate the need
to require a participant to learn a fixed set of gestures. Instead,
the person will be able to perform a gesture that seems natural
to him or her to accomplish a given task, and the computer will
simply map those signals to the correct action.
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Fig. 6. Recovered components from synthetic data. (Color version available
online at http://ieeexplore.ieee.org.)

Fig. 7. Experimental EMG data. (Color version available online at http://
ieeexplore.ieee.org.)

C. Muap Analysis

1) Synthetic Data: We applied the algorithm to 20 trials of
synthetic data (see 4). The data consisted of three channels with
only four firings across the channels. A typical decomposition is
shown in Fig. 6. This resulted in a median RMS error of 0.0297.

2) Experimental Data: The experimental data, which are
partially shown in Fig. 7, were decomposed into two compo-
nents shown in Fig. 8. Since these were real data, we do not have
the actual MUAPs to compare our decomposition, so instead
we compare this with a method in which clean MUAPs were
hand picked and then averaged together. This averaged MUAP
waveform is depicted in Fig. 9, which illustrates that there is a
qualitative agreement between the expected MUAP and the first
component discovered using this algorithm. The second com-
ponent contains multiple compound MUAPs because only two
components were specified to be calculated.

Fig. 8. Two components separated from experimental data. (Color version
available online at http://ieeexplore.ieee.org.)

Fig. 9. Average waveform of hand-selected MUAPs. (Color version available
online at http://ieeexplore.ieee.org.)

IV. CONCLUSION

We have shown that it is feasible to control virtual devices
via noninvasive EMG signal monitoring without explicitly mod-
eling the EMG signals. Using HMMs for pattern recognition,
we have demonstrated the ability to replicate movements asso-
ciated with both joysticks and keyboards. We chose to demon-
strate these input devices because they are familiar to the general
computer user. Ultimately, improved interfaces will consist of
more natural movements than those associated with either joy-
sticks or keyboards. When our online adaptation software has
been completed, a person will be able to make the gesture he
feels is natural for a given task (assuming that we have enough
electrodes to cover the muscles involved) and the computer will
map from this “natural” signal space to the expected “computer
command” space.
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Although the dry electrode sleeve guaranteed that the elec-
trodes would be positioned consistently relative to each other,
there was no guarantee that the sleeve would be exactly at the
same location on the arm. It was our hope that the sleeve would
minimize the day-to-day variations, but it needs to be redesigned
to assure positioning. We would also like to increase the number
of electrodes to allow for spatial oversampling. The dry elec-
trode sleeve can suffer from intermittent conductivity problems
when the impedance between a dry electrode and the skin be-
comes temporarily elevated due to hairs lifting the sensors or
variations in the moisture level of the skin. In this study, the
decrease in conductivity could usually be identified and fixed
by a manual readjustment of the sensors, but this inconsistency
is not acceptable for daily use.

Ultimately, we envision a variety of applications for this
work. The ability to naturally interface with a computer allows
humans to manipulate any electrically controlled mechanical
system. In addition to wearable computing applications, we are
also examining interfaces to robotic arms, mobile robots for
urban rescue, unmanned aircraft drones, robotic exoskeletons,
and space suit interfaces. There are also side benefits to using
EMG signals for control in long duration space missions. One
of the side effects of living in a zero-gravity environment
for extended periods is muscle atrophy. It would be possible
to have astronauts train during a long flight to a distant
planet by simulating the motions necessary to accomplish a
given task. The EMG signals generated from these motions
could be analyzed. If significant variations were detected, the
astronauts could be given advance warning to change their
training routines to minimize atrophy and ensure mission
success.

The drawback of using moving averages of EMGs as input
to the HMMs for gesture recognition was that the individual
sources of EMGs could no longer be distinguished. To dis-
tinguish smaller muscle group activations and inturn improve
recognition, we have presented a dVCA algorithm for EMG de-
composition based on the Bayesian methodology. The original
dVCA algorithm designed for EEG was substantially modified
for the purpose of separating compound MUAPs measured in
the surface EMGs. This modified algorithm was demonstrated
on both simulated and real EMG data. The results are encour-
aging for both the synthetic and real cases. The most flexible
part of this algorithm is that it allows the waveform s(t) to
vary over time. Letting the waveshape be pointwise estimated
permits it to have any shape, even shapes that are not at all physi-
ologically plausible. This flexibility was deliberate to determine
whether the algorithm would discover waveshapes resembling
expected MUAP shapes. Indeed, we were pleased to see that the
discovered components do resemble the synthesized MUAPs.
We have obtained MUAPs from surface electrodes that are re-
markably similar to our expected waveform without imposing
any knowledge of what we were expecting to see in terms of
shape.

The EMG decomposition method shown is a simple forward
mixing model, which could eventually be replaced with a much
more complicated physics-based model such as the electro-
magnetic model of [12]. This would then allow for the auto-

mated determination of the representative tissue properties via
proper model parameterization at the expense of more complex
optimization.
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