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Abstract

Robonaut, the humanoid robot developed at the Dexterous Robotics
Laboratory at NASA Johnson Space Center serves as a testbed for
human-robot collaboration research and development efforts. One of
the recent efforts investigates how adjustable autonomy can provide for
a safe and more effective completion of manipulation-based tasks. A
predictive algorithm developed in previous work was deployed as part
of a software interface that can be used for long-distance tele-operation.
In this work, Hidden Markov Models (HMM’s) were trained on data
recorded during tele-operation of basic tasks. In this paper we provide
the details of this algorithm, how to improve upon the methods via opti-
mization, and also present viable alternatives to the original algorithmic
approach. We show that all of the algorithms presented can be opti-
mized to meet the specifications of the metrics shown as being useful for
measuring the performance of the predictive methods.

1 Introduction

Humanoid robotic tele-operation has been shown to be of interest for
space-related applications [1, 2]. NASA’s Robonaut is clearly an excel-
lent platform for performing human-robot collaboration research, and
serves as a testbed for developing practical capabilities and interfaces.
Potentially, a myriad of space-based construction and maintenance tasks
can be performed remotely by Robonaut. Manual teleoperation allows
for full control over the robot’s trajectory throughout execution of a task.
This is very important from the standpoint of safety in order for errant
execution to be terminated as soon as possible to prevent damage to ex-
pensive equipment, or injury to personnel. However, tele-operation often
incurs much more dedicated time and effort on the part of the human
operator, with the task taking 3 to 4 times longer on average than if
performed at normal human speeds. One reason for the extended task
time is due to the fact the robot is being operated over a time delay,
and it takes time to verify that the commands sent to the robot are
the ones actually being executed. This “bump and wait” approach is
tedious, and adds to the time to perform a task. Furthermore, for safety
considerations, Robonaut’s movement is rate limited, so that any move-
ments made by the operator must match these rate limitations, naturally
causing a slower execution.

In contrast, we may consider fully automating the operation of the
robot, obviating the need for tele-operation, potentially decreasing the
task burden and time. However, this would require building up a dic-
tionary of commands based hierarchically upon waypoints to complete
a simple task. The scalability of building such an interface is likely to
present a natural practical limitation, not to mention that operating in
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a fully autonomous mode prevents human intervention that is required
for safety considerations. As a trade-off to operating in fully manual or
fully autonomous mode, we take advantage of the sliding scale of ad-
justable autonomy. By allowing for both a manual tele-operation phase
and an autonomous phase of operation, we can free the operator to per-
form other tasks, and mitigate their task burden, while at the same time
retaining the ability to adhere to inherent safety constraints. Scalability
is also certainly an issue for sliding autonomy, and is an open question in
the methods we describe here and in previous work [3]. However, this is
a first attempt at optimizing these methods, and this paper is meant to
focus on very simple tasks in order to set a precedent for future work. In-
creasingly complex tasks may benefit from more advanced probabilistic
methods involving scalable, hierarchical architectures.

As part of the precursor to the work presented here, we have previ-
ously developed predictive techniques and implemented them algorith-
mically for use during the manual tele-operation phase [3]. These pre-
diction algorithms have been designed in a heuristic manner, without
explicit optimization of the desired objectives. Those objectives are as
follows:

• Probability of False Alarm – 0 %

• Probability of Missed Detection – Minimize (as low as possible)

• Average time to prediction for correctly classified trials – Minimize
(as early as possible)

Other approaches will be examined as alternatives to prediction algo-
rithms used in prior work [3]. In our previous work, we have trained and
implemented Hidden Markov Models (HMMs) for prediction of operator
intent using available data. The intention of the operator is conveyed
to the robot via a predictive interface. This predictive interface allows
for the tele-operator to execute remote commands in a completely simu-
lated environment that runs on the tele-operator’s side of the time delay.
The interested reader is referred to [3] for more detail on this interface.
The available data mentioned previously is collected during the execu-
tion of pre-specified tele-operated tasks. This data is used as input into
the selected algorithmic mechanism for predicting the operator’s inten-
tion. Results have been shown to be very good in practice, using learning
techniques more sophisticated than originally proposed for Robonaut [2].
Reports of using the same HMM methodology for gesture recognition are
available in other studies as well [4]. The results we will present are not
directly comparable to those of [4], as we use a different approach in
forming the feature vector used to train the HMM’s, and the application
we present here is for trajectory prediction as opposed to gesture recog-
nition. However, it is possible to improve upon the results in [3] to more
closely achieve the performance requirements stated above.
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Our new, alternative approaches as well as our previously imple-
mented techniques all have their own nuances and pose unique chal-
lenges, yet they all share a common feature. In each method, there are
sufficient available free parameters that can be optimized to achieve the
listed objectives. As such, our goal is to improve upon previously gener-
ated results in order to meet the performance specifications listed above
that define how well we are able to utilize the sliding scale of adjustable
autonomy. In order to make the best use of the tele-operator’s time, we
would like to be able to accurately predict the task being performed as
early as possible into its execution, prior to initiation of an autonomous
action.

The main requirements are based upon error statistics that are nor-
mally used in decision theory, the probability of false alarm and missed
detection. Normally there is an optimal tradeoff between false alarms
and missed detections that can be achieved, where improvement in one
metric can be achieved at the expense of impeding the other. There has
been much work in the statistical literature on this topic, and several
references are available [5]. However, for pragmatic purposes, we are
also interested in minimizing the average time to prediction for correctly
classified trials.

The experimental setup used in this work will be the same as used
in the previous work. The essence of the task is that the operator is
reaching for a vertically or horizontally oriented handrail mounted on
a vertical wall, prior to placing it in a box. For our experiment, an
example of a false alarm is when the prediction algorithm indicates that
the tele-operator is reaching for the vertical handrail, yet the “ground
truth” is that the tele-operator is reaching for the horizontal one. A
missed detection is the case in which the prediction algorithm fails to
recognize that any handrail is being reached for at all. Minimizing the
average time to prediction for correctly classified trials is important for
the purposes of maximizing tele-operator “free time.” That is, when
the tele-operator grasps the object, this indicates the natural end of the
window of useful time for prediction. For our application, false alarms are
much more critical than missed detections, due to safety considerations.
An autonomous grasp executed erroneously may potentially place the
robot or astronauts working alongside the robot in a hazardous situation.

Using the HMM paradigm, both off-line (static) and on-line/real-time
(dynamic) validation is performed by recalling on the trained models.
“Recall” is a term that often refers to the use of the Viterbi algorithm [6],
and we have used similar techniques for other applications in the past [7].
The Viterbi algorithm relies upon having a finite sequence buffer of data
to be tested on. Off-line, or static validation refers to performing recall
on a validation set, using the same sequence buffer segmentation that
was used during training, to gain intuition about real-time performance.
During real-time recall of the models, HMMs trained on both types of
tasks (reaching for horizontal or reaching for vertical handrails) are ar-
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bitrated based upon an algorithm to determine the “winning model,” or
which model best describes the streaming data. Furthermore, a com-
pletely different set of data is validated during both types of recall than
is used during training. This is performed by taking all of the data
spanning multiple training sessions and training days, randomizing and
partitioning the complete data set into mutually exclusive training and
validation sets. Both the nature of how the Viterbi algorithm is imple-
mented and the algorithmic details will be provided in the subsequent
section.

The new methods which may allow us to achieve the performance
specifications stated above are by modifying how we perform recall, us-
ing judicious feature selection, and optimizing both static model train-
ing and dynamic real-time recall parameters. In previous work, we used
subsets of a POR-based feature vector. POR stands for Point of Reso-
lution, which is a 4x4 homogeneous transform matrix representing the
commanded position and orientation of the back of the robot’s hand de-
composed into position (x-y-z) and orientation (roll-pitch-yaw). These
feature vectors act as a template to form observation data sequences used
both to train and recall the models. Here, we propose to either replace
or augment these feature vectors with distance data, which provides the
Euclidean distance to target objects. This will potentially add to the
discriminative ability of recall on the models.

Additional recall algorithms will also be examined, as alternatives
to the Viterbi algorithm. One such algorithm is similarly based on a
finite sequence buffer, however, its classification is based upon posterior
probabilities. Regardless of the algorithmic method being implemented,
there is a unique method to parameterize this sequence buffer and how to
find an optimal design point for static model training. Finally, we will use
the recall method of posterior probabilities without a sequence buffer,
which has unique advantages and disadvantages. Because there is no
buffer, optimization of this algorithm over the performance specifications
of interest can only be performed over real-time recall parameters. We
will perform dynamic optimization of the other competing methods as
well, where applicable.

2 Methodology

2.1 Hidden Markov Model Implementation

Practical implementation of Hidden Markov Models has been covered in
depth in the literature [8]. Here we aim to detail the most relevant facts
pertaining to the nuances that we will exploit and have been presented in
previous work [3]. We have chosen to implement a tied-mixture Hidden
Markov Model with M = 3 states and N = 6 mixtures. Fig. 1 shows
the graphical model topology and relevant parameters for this variant.

t ∈ {0, . . . , T} references the discrete-time steps within the sequence
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Figure 1. Tied Mixture Hidden Markov Model

buffer, qt : the state value at time t, wt : the mixture value at time t,
yt ∈ Rn : the observation vector at time t, and n : number of elements in
the feature vector. The HMM parameters which are learned by Baum-
Welch iteration, are grouped together as θ, and are defined as follows:

Prior (initial) probability
distribution : π0

Transition probability matrix : A

⇒ aij = p(qt+1 = j|qt = i)
Mixture weights : B

⇒ bij = p(wt = j|qt = i)
⇒ π0(i) = p(q0 = i)

Mean of Gaussian distribution
for mixture j : µj

Covariance matrix of Gaussian
distribution for mixture j : Σj

2.1.1 Viterbi-based recall

The Viterbi algorithm uses the idea of dynamic programming in a discrete-
state context, and estimates the best state sequence described by the
available data via the following mathematical formulation:

δT (i) = max
q0,...,qT

P (q0, . . . , qT = i, y0, . . . , yT |θ)

Therefore, δT (i) is the probability that the state sequence ends up
in state i at final time T . The algorithm to solve this optimization
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problem is recursive in nature, and the termination step provides us
with δ∗T = maxi δT (i), the maximum probability over the possible state
values, i, at the final time in the sequence buffer, T . The quantity log δ∗T
is what we shall use as our primary indicator of the likelihood that the
data being tested obeys the model being recalled on.

To gain more clarity about the difference between static recall and
dynamic real-time recall, refer to Fig. 2 , which shows an example of
the y-yaw feature vector on graphs “g” and “h”. The sequences shown
as solid lines are for the y variable, and dotted lines are for the yaw
variable. They represent portions of validation trials run for a fixed time
prior to the time that a handrail is grasped. The “training” segments are
demarcated as starting with circles (◦), and ending with crosses (×). Be-
cause the data displayed in these plots are validation trials, the training
demarcation is for illustrative purposes only. However, the demarcated
portions of the trials indicate the length of the sequence buffer. When
we are performing real-time recall, this buffer acts as a “sliding window”
across the entire length of the trial. We can think about the demarcated
“training” section shown as a snapshot of the sliding window at some
time beyond the start of the trial. This is also the section that most
clearly represents a divergence between the different types of trials.

Fig. 2 also illustrates the log δ∗T -based values (g(k, 1) and g(k, 2))
for all the trials as they are recalled on different models on graphs “a”
through “d”. Trials of type 1 indicate the operator reached for the hor-
izontal handrail, and trials of type 2 indicate that the operator reached
for the vertical handrail. Because of the “sliding window” used during
real-time recall, there should actually be a second time index to book-
keep the sequence length (T ) as well as the time step (k). Therefore,
hereafter we shall refer to the metric log δ∗T as log δ∗k:k+T .

We elicit as few false alarms as possible based upon the real-time
log δ∗k:k+T results shown in each graph. In order to compute false alarms
as well as missed detections and average time to prediction for correctly
classified trials, we must perform real-time arbitration with the aid of
many thresholds. As shown in graphs “a” through “d” of Fig. 2, there
is a dashed line indicating an important threshold. This threshold plays
a major part in the heuristically-driven prediction algorithm, which is
outlined as follows:

For each time step k in the streaming real-time data set, perform the
following:

1. Compute log δ∗k:k+T based upon the finite sequence length T by
using the Viterbi algorithm (recall).

2. Subtract off model bias from trial:
g(k, m)

4
= log δ∗k:k+T (m)− δm,

where m ∈ M ≡ {Horizontal,Vertical} indexes the model being
recalled on.
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Figure 2. Y and Yaw validation trials shown with corresponding
log δ∗k:k+T and confidence

3. For the current trial, determine and store the model yielding the
maximum value between the quantities computed in the previous
step, i.e. find
m̂ = arg maxm g(k, m).

4. Compute and store the confidence value, c, that indeed m̂ = arg maxm g(k, m).

5. If g(k,m) > Td, check if m̂ = arg maxm g(k, m) from Step 3 refer-
ences the same model as it did in the previous time step k. If so,
increment a counter for model m̂, otherwise, reset the counter to 1,
for the first count of a newly arbitrated m̂. If g(k, m) ≤ Td, reset
the counter to 0. Note that Td is not a model-specific threshold
(shown as a dashed line in Fig. 2).
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6. If the counter for model m̂ exceeds a predetermined number (de-
noted as maximum hysteresis count), then use the confidence value
computed in Step 4 for final arbitration.

7. If the confidence value, c, exceeds a predetermined threshold, Tc,
then sound prediction alarm for model m̂.

Step 4 in the algorithm is computed as follows, to yield a number
c ∈ [0, 1]:

c =
|g(k, Horizontal)− g(k, Vertical)|

Cs

In the formula above, Cs is the confidence scale parameter. The
idea of the confidence value, c, is to arbitrate between the models by
computing the difference between the horizontal and vertical likelihoods,
scaled by a judiciously selected factor, Cs, that will yield values c ∈ [0, 1].
If c > 1, then we set c = 1. The confidence values are shown on graphs
“e” and “f” in Fig. 2, with the corresponding confidence thresholds
shown as dashed lines. All of the thresholds, biases, and scaling constants
mentioned thus far for Viterbi recall are excellent candidates (i.e. “free
parameters”) for dynamic threshold optimization, and will be discussed
in depth later.

Notice that in Fig. 2, the graphs labelled “b” and “c” have features
that distinguish them from the graphs labelled “a” and “d”. The g(k, m)
values on graphs “b” and “c” appear to rise, then fall with k, whereas
the g(k, m) values on graphs “a” and “d” rise, then settle out above
the thresholds for the most part. This distinguishing characteristic, in
addition to the confidence values, provide the basis for the algorithmic
construction outlined above. The reason for the initial monotonic rise in
all graphs labelled “a” through “d” is due to the use of buffering required
by the Viterbi algorithm. The buffer, {k : k + T}, is initialized with all
zeros at first, and then the computation of the biased likelihood g(k, m)
grows monotonically until the buffer is full. At this point, the buffer
slides forward with no leading zeros, allowing for the algorithmic con-
struct to produce a robust model arbitration. Due to the delay in waiting
for the buffer to fill, using buffer-based algorithms are potentially slow
in meeting one of main performance specifications related to minimizing
average time to prediction for correctly classified trials. Therefore, we
will present an alternative to buffering methods shortly.

2.1.2 Posterior probability-based recall

As an alternative to the Viterbi-based algorithm, we may use part of
an algorithm that is traditionally used for inference during the Baum-
Welch re-estimation procedure. Also referred to as the EM algorithm for
Estimate (E-step) and Maximize (M-step), we borrow results from the E-
step, in which inference amounts to computing the posterior probability:
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p(qt|y0, . . . , yt) =
α(qt)∑
qt

α(qt)
=

α(qt)
p(y0, . . . , yt)

Notice that the formula is based upon some new quantities, specif-
ically, α(qt)

4
= p(y0, . . . , yt, qt). A forwards recursive formula updates

α(qt) (α recursion), working only with data up to time t, and as such is
real-time in nature. However, when used for the EM algorithm, this for-
wards algorithm complements a backwards recursive algorithm also run
as part of the procedure, starting at final time T , and working backwards
to time t+1. This is called β recursion, where β(qt)

4
= p(yt+1, . . . , yT |qt).

Clearly this is performed off-line in the context of the training that oc-
curs with the EM algorithm. The details of these recursive formulae and
the EM algorithm can be found in the literature [8, 9].

Due to the nature of α recursion, we can apply the algorithm across
the same buffer of data operated on by the Viterbi algorithm outlined
earlier. The buffer of data will still slide forwards in the same manner,
accumulating new streaming observations with time. However, a major
difference between implementation of the posterior-probability based re-
call is that the log δ∗k:k+T metric will be replaced with one that is based
upon the state value. Specifically, at each time instant k, the recursive
α formula will be run over the buffer of data {k : k + T}. Throughout
the execution of the algorithm, the state corresponding to the maxi-
mum posterior probability value encountered over the current contents
of the buffer will be stored. Mathematically, this can be represented as
a two-step optimization problem as follows (where t: time in the buffer):

q̂t = arg max
qt

p(qt|y0, . . . , yt)

p̂t = max
qt

p(qt|y0, . . . , yt)

tbuf = arg max
t

q̂t

q̂tbuf
= max

t
q̂t

The result q̂tbuf
is then compared with canonical state values to de-

termine the progression of the data through a Markov chain. Because the
tied mixture HMMs are trained as left-right models, the Markov chain
should naturally proceed from the initial state, 1, to the final state, M .
These are the “canonical” state values referred to previously. Clearly,
they represent a causal link to progression of the Markov chain, and will
aid us in determining the status and classification of the task at hand.
Therefore, we will use the canonical state values to help with arbitration
between models being recalled on differing trial types. The remainder
of the algorithm pertaining to this arbitration can be summarized as
follows:

1. Check to see if q̂tbuf
is equal to 1 or M , for both models.
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2. If, for a particular model, m, the following conditions hold true,
then sound prediction alarm for model m:

(a) q̂tbuf
= M for model m.

(b) q̂tbuf
= 1 for all models other than m.

(c) p̂tbuf
> 0.95.

Notice that there is a condition, p̂tbuf
> 0.95, corresponding to the

maximum posterior probability value encountered over the contents of
the buffer. In order to elicit an alarm, we require that this value be above
0.95. This is analogous to the confidence value used with Viterbi recall,
and could possibly be used for dynamic threshold optimization. However,
due to the nature of the algorithm’s implicit “max” bias, performing such
an optimization may not be necessary.

Finally, we can also implement real-time recall using posterior proba-
bility computations without the use of a buffer. There are computational
advantages to using this method, in contrast to the previously discussed
disadvantages of using algorithms based upon buffers. As such, we can
use a slight modification of the buffered version of the algorithm. We can
now reduce the mathematical representation of the two-step optimiza-
tion problem to a single step optimization problem, as follows (where t:
now refers to real-time):

q̂t = arg max
qt

p(qt|y0, . . . , yt)

p̂t = max
qt

p(qt|y0, . . . , yt)

The remainder of the algorithm pertaining to arbitration is very sim-
ilar, with only very slight changes summarized as follows:

1. Check to see if q̂t is equal to 1 or M , for both models.

2. If, for a particular model, m, the following conditions hold true,
then sound prediction alarm for model m:

(a) q̂t = M for model m.

(b) p̂t > 0.95.

Because this algorithm requires no buffering, there is hence no need
for static optimization, and dynamic optimization is very computation-
ally efficient. The optimization parameter is the confidence threshold,
shown in the algorithmic summary above as 0.95. Previously, we hy-
pothesized that the buffered version of the algorithm may exhibit very
little sensitivity to this threshold. Although this is still the case when
using the non-buffered method, marginal improvements in average time
to prediction for correctly classified trials can be claimed by performing
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the dynamic optimization. Fig. 3 illustrates the striking transition of
posterior probabilities for the final state only, i.e. p(qt|y0, . . . , yt) shown
for i = M , for models recalling on trials of the same type. For correctly
classified trials, the state transition occurs very rapidly, in contrast to
the rather slow transition of the log δ∗k:k+T metric shown in Fig. 2.

For certain trials, the posterior probability reverts back to a very
small value just prior to grasp. This aberration would give us pause if
the nature of the algorithm were to alarm based upon continuous ob-
servation. However, because our goal is to classify correctly as soon as
possible, once the classification is performed and the alarm is triggered
due to arbitration, there is no further need for monitoring the posterior
values. This is especially true due to the fact that an optimal alarm
triggered to initiate autonomous action moves us further along the slid-
ing scale of autonomy than continuous monitoring of confidence values
within the predictive interface as in [3].

Figure 3. Y and Yaw validation trials shown with corresponding poste-
rior probabilities, p(qt|y0, . . . , yt)

As mentioned before, only marginal improvements may be achieved
by performing dynamic optimization over the confidence threshold for
real-time non-buffered posterior probability-based recall. As seems clear
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by examining Fig. 3, using the transition to the final state as a fun-
damental part of the algorithm, and optimizing to obtain marginal im-
provements may not be the optimal solution to our problem. Further
improvements may be made by making use of some weighted combina-
tion of the posterior probability over all states as it exceeds some pre-
determined threshold. This intuitive concept can be formalized in the
roots of decision theory, and may be investigated in future work.

2.2 Optimization Methods

In order to find the optimal model training parameters when using a se-
quence buffer, the buffer can be parameterized to incur the fewest num-
ber of errors. As shown in Fig. 2, we have a fixed sequence buffer, which
can be parameterized by the time prior to grasp and the sequence buffer
length. Because we are interested in the fewest errors and maximizing
the time before grasp, we propose this parametrization as an antidote.
In essence, this can be thought of as a “static optimization,” where the
cost function being optimized is the sum of the off-diagonals of the con-
fusion matrix, M, which quantify the errors (false alarms) accumulated
during static validation. As such, it can be plotted as a function of the
two optimization parameters via a simple two-dimensional grid search
to see if there are any global or local minima. We will provide these
illustrations in the results section.

Clearly, there is no closed-form solution for this optimization prob-
lem since M(λs) is based upon empirical evidence, where λs is a vector
containing the optimization parameters defined previously. Therefore,
we can determine the optimal design points from the plots mentioned
above. Our goal is to find the region of the parameter space that incurs
no errors, but is constrained to having a maximum time before grasp
(related to one of our performance specifications), and smallest possible
sequence buffer length. The latter constraint is imposed because smaller
sequence buffers allow for more “sliding window” time during real-time
recall so that there is more time for correct arbitration between models.

The real-time recall thresholds can also be optimized, but in a formal
manner, based upon the metrics previously introduced as performance
specifications. Therefore, we may pose a “dynamic” optimization prob-
lem. In this case, there are three competing objectives, and the goal
is to determine the optimization parameters that provide an optimal
tradeoff among them. Whether using the Viterbi or the posterior-based
recall method, we shall denote the vector of thresholds being optimized
as λd. In the case of the Viterbi recall method, λd contains the following
thresholds and other recall parameters: δm,∀m ∈ M (model biases),
Td, the detection threshold against which we compare the log likelihood
values g(k, m) of both models, the maximum hysteresis count, Ch, the
confidence threshold, Tc, and the confidence scale parameter, Cs.

Therefore, λd
T =

[
δ1 δ2 Td Ch Tc Cs

]
. For the posterior-
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based recall methods, λd = Tc, whether buffered or non-buffered tech-
niques are being used. There are several optimization methods to choose
from, but as first step, we focus on a simple one which will solve the
problem posed as follows:

Solve arg min
λd

wTx(λd)

where wT =
[

1 1 1
]

and xT (λd) =
[

Pmd(λd) Pfa(λd) tp(λd)
]

tp(λd) =
tc(λd)

tc(λd) + tg(λd)

Pmd(λd) and Pfa(λd), are the probability of missed detection and
false alarm, respectively. tp(λd) is the scaled average time to prediction
for correctly classified trials, computed as shown above, where tc(λd) is
the average time to prediction for correct trials, and tg(λd) is the av-
erage “free time,” or time before the grasp for correct trials. In this
way, tp(λd) ∈ [0, 1], and can be directly compared to the other compet-
ing objectives Pmd(λd) and Pfa(λd), which are also ∈ [0, 1]. It should
be evident at this point that our cost function is essentially an equally
weighted sum of all of the competing objectives. This method of solving a
multi-objective optimization problem is a common approach, but suffers
from having to make judicious selection of the weights, w. However, it
can easily be posed as an unconstrained nonlinear optimization problem,
where a simplex method [10] can be implemented. Although we cannot
visualize the results for the Viterbi recall method due to optimization
over a high dimensional space, it will be shown that the optimization
routine converges to a local minimum for a particular set of initial con-
ditions in the subsequent section.

3 Results

3.1 Static Optimization

An optimal design point can be found for static validation when using
the y and yaw, POR-based feature vector. This design point reflects the
best parametrization of the training segmentation for data used to train
HMMs, using the Viterbi recall method. Shown in Fig. 4 is the sum
of the off-diagonals of the confusion matrix, M(λs), as a function of the
optimization parameters (λs): the time prior to grasp and the sequence
buffer length.

Both the 3D and the contour plot view are given in Fig. 4. It is clear
that there is an area corresponding to a large accumulation of errors, for
large times from grasp and small sequence lengths. Recall that our goal
for static optimization is to find the region of the parameter space that
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Figure 4. Optimal Design Point for Y and Yaw Feature Vector, Viterbi
Method

incurs no errors, but is constrained to having a maximum time before
grasp, and smallest possible sequence buffer length. As such, we have a
conflict of interest between our goal and the constraints. However there
is enough area in the parameter space where there is negligible error
accrual to accommodate our requirements. The optimal design point
has been marked with an asterisk (∗) on the contour plot, for an optimal
time from grasp of 11.3 sec and a sequence buffer length of 4 sec.

Similar contour plots can be constructed for other cases of interest,
i.e. when using other feature vectors, and for the posterior method,
when using buffering. Static optimization clearly does not apply to the
non-buffered posterior method, because there is no buffer that can be
optimally parameterized. A combination feature vector based on y-yaw
and scaled distance data is studied as well as the POR-based one (y-yaw).
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For the Viterbi recall method, the contour plots providing the static
optimization results for the combination feature vector is very similar to
the one shown in Fig. 4. However, using the posterior (buffered) recall
method results in a significant difference. For all feature vectors and
methods, the optimal time prior to grasp can be set to 11.3 sec. The
optimal sequence buffer length ranges between 4 and 7.53 sec, depending
on the feature vector and recall method used.

3.2 Dynamic Threshold Optimization

The results for dynamic threshold optimization provided in this subsec-
tion pertain only to the combination POR-based (y-yaw)/scaled distance
feature vector. This feature vector exhibits the most robust behavior
with respect to random variations of the training/validation segmenta-
tion. For this feature vector, the results provide us with solid evidence
that optimization yields substantial improvements, particularly when
testing the Viterbi recall method. We see great reduction in average
time to prediction, at the expense of a slight increase in the probability
of missed detection. For the posterior recall methods, however, we see
that the improvements are only marginal.

Therefore, for the posterior recall method, the truly effective steps in
the optimization procedure come from static optimization. However, as
stated earlier, the arbitration and machinery behind the posterior recall
algorithms may not be the optimal solution to the problem of minimizing
average time to prediction, as well as adhering to the other performance
specifications. Further improvements may be made by making use of
some weighted combination of the posterior probability over all states
as it exceeds some predetermined threshold, in attempt to improve the
performance of the algorithm. Table 1 summarizes the results of the
different methods and metrics. For the posterior method the (b) anno-
tation refers to the buffered method, and the (n) annotation refers to the
non-buffered method. For the Viterbi method, the two rows are shown
correspond to two different optimization initializations with varied re-
sults.

Table 1. Optimization Results
Method tc Pfa Pmd

Viterbi 6.51 sec 0% 2%
Viterbi 7.99 sec 0% 0%

Posterior (b) 8.75 sec 0% 0%
Posterior (n) 7.95 sec 0% 0%

Out of all of the cases investigated, there is no clear “winner,” with
regards to the recall method. However, we can conclude that the com-
bination feature vector provides us with the most desirable solution. As
expressed in previous work [3], it is possible to shave more time off of
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the average time to prediction by allowing for some missed detections.
We can achieve an average time to prediction as low as 6.5 sec if we al-
low a 2% probability of missed detection, for the Viterbi recall method.
However, if we desire a zero missed detection and zero false alarm prob-
ability, the best we can do on average time to prediction is 7.95 sec, for
the posterior recall method (non-buffered).

4 Conclusion

In summary, we can meet the requirements set by our performance spec-
ifications by choosing any of the appropriate recall methods that provide
for it. Furthermore, depending on how strict the performance require-
ments are set, we can trade off minimizing the probability of missed
detection for further reduction in the average time to prediction for cor-
rectly classified trials. Future work should include exploration of alter-
native optimization techniques, and ways to enhance the posterior recall
method based upon more rigorous decision theoretic concepts.
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