
A Lightweight Methodology for Safety Case Assembly

Ewen Denney and Ganesh Pai

SGT / NASA Ames Research Center

Moffett Field, CA 94035, USA.

{ewen.denney, ganesh.pai}@nasa.gov

Abstract. We describe a lightweight methodology to support the automatic as-

sembly of safety cases from tabular requirements specifications. The resulting

safety case fragments provide an alternative, graphical, view of the requirements.

The safety cases can be modified and augmented with additional information. In

turn, these modifications can be mapped back to extensions of the tabular require-

ments, with which they are kept consistent, thus avoiding the need for engineers

to maintain an additional artifact. We formulate our approach on top of an ide-

alized process, and illustrate the applicability of the methodology on excerpts of

requirements specifications for an experimental Unmanned Aircraft System.

Keywords: Safety cases, Formal methods, Automation, Requirements, Unmanned

Aircraft Systems.

1 Introduction

Evidence-based safety arguments, i.e., safety cases, are increasingly being considered

in emerging standards [10] and guidelines [3], as an alternative means for showing

that critical systems are acceptably safe. The current practice for demonstrating safety,

largely, is rather to satisfy a set of objectives prescribed by standards and/or guide-

lines. Typically, these mandate the processes to be employed for safety assurance, and

the artifacts to be produced, e.g., requirements, traceability matrices, etc., as evidence

(that the mandated process was followed). However, the rationale connecting the rec-

ommended assurance processes, and the artifacts produced, to system safety is largely

implicit [7]. Making this rationale explicit has been recognized as a desirable enhance-

ment for “standards-based” assurance [14]; especially also in feedback received [4]

during our own, ongoing, safety case development effort.

In effect, there is a need in practice to bridge the gap between the existing means,

i.e., standards-based approaches, and the alternative means, i.e., argument-based ap-

proaches, for safety assurance. Due to the prevalence of standards-based approaches,

conventional systems engineering processes place significant emphasis on producing

a variety of artifacts to satisfy process objectives. These artifacts show an apprecia-

ble potential for reuse in evidence-based argumentation. Consequently we believe that

automatically assembling a safety argument (or parts of it) from the artifacts, to the

extent possible, is a potential way forward in bridging this gap.

In this paper, we describe a lightweight methodology to support the automatic as-

sembly of (preliminary) safety cases. Specifically, the main contribution of our paper



is the definition of transformations from tabular requirements specifications to argu-

ment structures, which can be assembled into safety case fragments. We accomplish

this, in part, by giving process idealizations and a formal, graph theoretic, definition of

a safety case. Consequently, we provide a way towards integrating safety cases in ex-

isting (requirements) processes, and a basis for automation. We illustrate our approach

by applying it to a small excerpt of requirements specifications for a real, experimental

Unmanned Aircraft System (UAS).

2 Context

The experimental Swift UAS being developed at NASA Ames comprises a single air-

borne system, the electric Swift Unmanned Aerial Vehicle (UAV), with duplicated

ground control stations and communication links. The development methodology used

adopts NASA mandated systems engineering procedures [15], and is further constrained

by other relevant standards and guidelines, e.g., for airworthiness and flight safety [13],

which define some of the key requirements on UAS operations. To satisfy these require-

ments, the engineers for the Swift UAS produce artifacts (e.g., requirements specifica-

tions, design documents, results for a variety of analyses, tests, etc.) that are reviewed at

predefined intervals during development. The overall systems engineering process also

includes traditional safety assurance activities as well as range safety analysis.

3 Safety Argumentation Approach

Our general approach for safety assurance includes argument development and uncer-
tainty analysis. Fig. 1 shows a data flow among the different processes/activities dur-

ing the development and safety assurance of the Swift UAS, integrating our approach

for safety argumentation.1 As shown, the main activities in argument development are

claims definition, evidence definition/identification, evidence selection, evidence link-
ing, and argument assembly. Of these, the first four activities are adapted from the

six-step method for safety case construction [8].

The main focus of this paper is argument development2; in particular, we consider

the activity of argument assembly, which is where our approach deviates from existing

methodologies [2], [8]. It reflects the notion of “stitching together” the data produced

from the remaining activities to create a safety case (in our example, fragments of ar-

gument structures for the Swift UAS) containing goals, sub-goals, and evidence linked

through an explicit chain of reasoning.

We distinguish this activity to account for (i) argument design criteria that are likely

to affect the structure of the overall safety case, e.g., maintainability, compliance with

safety principles, reducing the cost of re-certification, modularity, and composition of

arguments, and (ii) automation, e.g., in the assembly of heterogenous data in the overall

1 Note that the figure only shows some key steps and data relevant for this paper, and is not a

comprehensive representation. Additionally, the figure shows neither the iterative and phased

nature of the involved activities nor the feedback between the different processes.
2 Uncertainty analysis [5] is out of the scope of this paper.



Fig. 1. Safety assurance methodology showing the data flow between the processes for safety

analysis, system development, software verification, and safety argumentation.

safety case, including argument fragments and argument modules created using manual,

automatic, and semi-automatic means [6].

Safety argumentation, which is phased with system development, is applied starting

at the level of the system and then repeated at the software level. Consequently, the

safety case produced itself evolves with system development. Thus, similar to [11], we

may define a preliminary, interim, and operational safety case reflecting the inclusion

of specific artifacts at different points in the system lifecycle. Alternatively, we can also

define finer grained versions, e.g., at the different milestones defined in the plan for

system certification3.

4 Towards a Lightweight Methodology

The goal of a lightweight version of our methodology (Fig. 1), is to give systems engi-

neers a capability to (i) continue to maintain the existing set of artifacts, as per current

practice, (ii) automatically generate (fragments of) a safety case, to the extent possible,

rather than creating and maintaining an additional artifact from scratch, and (iii) provide

different views on the relations between the requirements and the safety case.

Towards this goal, we characterize the processes involved and their relationship

to safety cases. In this paper, we specifically consider a subset of the artifacts, i.e.,

tables of (safety) requirements and hazards, as an idealization4 of the safety analysis and

development processes. Then, we transform the tables into (fragments of) a preliminary
safety case for the Swift UAS, documented in the Goal Structuring Notation (GSN) [8].

Subsequently, we can modify the safety case and map the changes back to (extensions

of) the artifacts considered, thereby maintaining both in parallel.

3 Airworthiness certification in the case of the Swift UAS.
4 We consider idealizations of the processes, i.e., the data produced, rather than a formal process

description since we are mainly interested in the relations between the data so as to define and

automate the transformations between them.



Hazards Table

ID Hazard Cause / Mode Mitigation Safety 
Requirement

HR.1.3 Propulsion system hazards
HR.1.3.1 Motor overheating Insufficient airflow Monitoring RF.1.1.4.1.2

Failure during operation

HR.1.3.7 Incorrect programming of KD motor 
controller

Improper procedures to check programming before 
flight Checklist RF.1.1.4.1.9

System Requirements Table

ID Requirement Source Allocation Verification
Method

Verification
Allocation

RS.1.4.3 Critical systems must be redundant AFSRB RF.1.1.1.1.3

RS.1.4.3.1 The system shall provide independent and 
redundant channels to the pilot AFSRB

Functional Requirements Table

ID Requirement Source Allocation Verification
Method

Verification
Allocation

RF.1.1.1.1.3 FCS must be dually 
redundant RS.1.4.3 FCS Visual Inspection FCS-CDR-20110701,

TR20110826

RF.1.1.4.1.2

CPU/autopilot system must 
be able to monitor engine 
and motor controller 
temperature.

HR.1.3.1 Engine systems Checklist Pre-flight checklist

RF.1.1.4.1.9
Engine software will be 
checked during pre-
deployment checkout

HR.1.3.7 Pre-deployment
checklist Checklist Pre-deployment

checklist

Fig. 2. Tables of hazards, system and functional requirements for the Swift UAS (excerpts).

4.1 Process Idealizations

We consider three inter-related tables as idealizations of the safety analysis and de-

velopment processes for the Swift UAS; namely: the hazards table (HT), the system

requirements table (SRT), and the functional requirements table (FRT)5.

Fig. 2 shows excerpts of the three tables produced in the (ongoing) development

of the Swift UAS. As shown, the HT contains entries of identified hazards, potential

causes, mitigation mechanisms and the corresponding safety requirements. The require-

ments tables contain specified requirements, their sources, methods with which they

may be verified, and verification allocations, i.e., links to artifacts containing the re-

sults of verification. Requirements can be allocated either to lower-level (functional)

requirements or to elements of the physical architecture.

Fig. 2 mainly shows those parts of the tables that are relevant for defining transfor-

mations to an argument structure. Additionally, we are concerned only with a subset of

the set of requirements, i.e., those which have a bearing on safety. Since we are look-

ing at snapshots of development, the tables are allowed to be incomplete, as shown in

Fig. 2. We further assume that the tables have undergone the necessary quality checks

performed on requirements, e.g., for consistency.

Entries in any of the tables can be hierarchically arranged. Identified safety require-

ments in the HT need not have a corresponding entry in the SRT or FRT. Additionally,

5 Strictly speaking, this table contains lower-level requirements and not only functional require-

ments; however, we use the terminology used by the engineers of the Swift UAS.



requirements identified as safety-relevant in either of the requirements tables need not

have a hazard, from the hazards table, as a source (although to ensure full traceability,

both of these would be necessary). The HT, as shown, are a simplified view of hazard

analysis as it occurs at a system level. In practice, hazard analysis would be conducted

at different hierarchical levels, i.e., at a subsystem and component level.

For now, we consider no internal structure to the table contents, and simply assume

that there are disjoint, base sets of hazards (H), system requirements (Rs), functional

requirements (Rf ), verification methods (V ), and external artifacts (Ar). The set of ex-

ternal artifacts contains items such as constraints from stakeholders, artifacts produced

from development, e.g., elements of the physical architecture, concepts of operation, re-

sults of tests, etc. We also consider a set of causes (C) and mitigation mechanisms (M ).

Without loss of generality, we assume that hazards and requirements have unique iden-

tifiers. Additionally, we assume the sets V , Ar, C, and M each have a unique “blank”

element, shown in the tables as a blank entry.

The HT consists of rows of type

hazard× cause
∗ × mitigation

∗ × safety requirement
∗

(1)

Definition 1. A hazards table, HT , is set of hazard entries ordered by a tree relation
→h, where a hazard entry is a tuple 〈h, c,m, sr〉, in which h ∈ H , c ⊆ C, m ⊆ M ,
and sr ⊆ (Rs ∪Rf ).

The SRT and FRT each have rows of type

requirement× source
∗ × allocation

∗ × verif method
∗ × verif alloc

∗
(2)

Definition 2. A system requirements table, RTs, is a set of system requirements en-
tries ordered by a tree relation →s, where a system requirements entry is a tuple,
〈r, so, al, vm, va〉, in which r ∈ Rs, so ⊆ (H ∪ Ar), al ⊆ (Rf ∪ Ar), vm ⊆ V ,
and va ⊆ Ar.

Definition 3. A functional requirements table, RTf , is a set of functional requirement
entries ordered by a tree relation →f , where a functional requirement entry is a tuple
〈r, so, al, vm, va〉 in which r ∈ Rf , so ⊆ (H ∪ Ar ∪ Rs), al ⊆ Ar, vm ⊆ V , and
va ⊆ Ar.

Thus, in an SRT (i) a source is one or more hazard or external artifact, (ii) an al-

location is a set of functional requirements or a set of artifacts, and (iii) a verification

allocation is a set of artifacts. Whereas in a FRT (i) a source is a hazard, external arti-

fact or system requirement, (ii) an allocation is a set of artifacts, and (iii) a verification

allocation links to a specific artifact that describes the result of applying a particular

verification method.

Given the base sets and the definitions 1 – 3, we can now define:

Definition 4. A requirements specification, R, is a tuple 〈HT,RTs, RTf 〉.
We consider a safety case as the result of an idealized safety argumentation pro-

cess, and document its structure using GSN. We are concerned here with development



snapshots, however, so want to define a notion of partial safety case. Here, we ignore se-

mantic concerns and use a purely structural definition. Assuming finite, disjoint sets of

goals (G), strategies (S), evidence (E), assumptions (A), contexts (K) and justifications

(J), we give the following graph-theoretic definition:

Definition 5. A partial safety case, S, is a tuple 〈G,S,E,A,K, J, sg, gs, gc, sa, sc,
sj〉 with the functions

– sg : S → P(G), the subgoals to a strategy
– gs : G → P(S) ∪ P(E), the strategies of a goal or the evidence to a goal
– gc : G → P(K), the contexts of a goal
– sa : S → P(A), the assumptions of a strategy
– sc : S → P(K), the contexts of a strategy
– sj : S → P(J), the justifications of a strategy

We say that g′ is a subgoal of g whenever there exists an s ∈ gs(g) such that g′ ∈ sg(s).
Then, define the descendant goal relation, g � g′ iff g′ is a subgoal of g or there is a
goal g′′ such that g � g′′ and g′ is a subgoal of g′′. We require that the � relation is a
directed acyclic graph (DAG) with roots R.6

4.2 Mapping Requirements Specifications to Safety Cases

We now show how a requirements specification (as defined above) can be embedded

in a safety case (or, alternatively, provide a safety case skeleton). Conversely, a safety

case can be mapped to an extension of a requirements specification. It is an exten-

sion because there can be additional sub-requirements for intermediate claims, as well

as entries/columns accounting for additional context, assumptions and justifications.

Moreover, a safety case captures an argument design that need not be recorded in the

requirements.

In fact, the mapping embodies the design decisions encapsulated by a specific argu-

ment design, e.g., argument over an architectural breakdown, and then over hazards. A

given requirements specification can be embedded in a safety case (in many different

ways), and we define this as a relation. Based on definitions 1 – 5, intuitively, we map:

– hazard, requirement, causes �→ goal, sub-goal

– allocated requirements �→ sub-goals

– mitigation, verification method �→ strategy

– verification allocation �→ evidence

– requirement source, allocated artifact �→ goal context

We want to characterize the minimal relation which should exist between a require-

ments specification and a corresponding partial safety case. There are various ways of

doing this. Here, we simply require a correspondence between node types, and that

“structure” be preserved.

We define x ≤ x′ whenever (i) x →s x, or (ii) x →f x, or (iii) x →h x, or

(iv) x = r, x′ = al, 〈r, so, al, vm, va〉 ∈ RTs and al ∈ RTf , or (v) x = h, x′ = sr,

〈h, c,m, sr〉 ∈ HT and sr ∈ (RTs ∪ RTf ).

6 Note that we do not require there to be a unique root. A partial safety case is, therefore, a forest

of fragments. A (full) safety case can be defined as a partial safety case with a single root, but

we will not use that here. Informally, however, we refer to partial safety cases as safety cases.



Definition 6. We say that a partial safety case, S = 〈G,S,E,A,K, J, sg, gs, gc, sa,
sc, sj〉, extends a requirements specification, R = 〈HT,RTs, RTf 〉, if there is an
embedding (i.e., injective function), ι, on the base sets of R in S, such that:

– ι(H ∪ C ∪Rs ∪Rf ) ⊆ G
– ι(V ∪M) ⊂ S

– 〈r, so, al, vm, va〉 ∈ (RTs ∪ RTf ) ⇒

⎧⎪⎨
⎪⎩

ι(so) ∈ gc(ι(r)),

ι(vm) ∈ gs(ι(r)),

ι(va) ⊆ sg(ι(vm)) ∩ E

– x ≤ x′ ⇒ ι(x) � ι(x′)

Whereas goal contexts may be derived from the corresponding requirements sources,

strategy contexts, assumptions and justifications are implicit and come from the map-

ping itself, e.g., as boilerplate GSN elements (See Fig. 3, for an example of a boilerplate

assumption element). Note that we do not specify the exact relations between the indi-

vidual elements, just that there is a relation.

4.3 Architecture of the Argument

The structure of the tables, and the mapping defined for each table, induces two patterns

of argument structures. In particular, the pattern arising from the transformation of the

HT can be considered as an extension of the hazard-directed breakdown pattern [12].

Thus, we argue over each hazard in the HT and, in turn, over the identified hazards in a

hierarchy of hazards. Consequently, each defined goal is further developed by argument

over the strategies implicit in the HT, i.e., over the causes and mitigations.

Similarly, the pattern induced by transforming the SRT and FRT connects the argu-

ment elements implicit in the tables, i.e., requirements (goals), and verification methods

and verification allocations (strategies), respectively. Additionally, it includes strategies

arising due to both the hierarchy of requirements in the tables, and the dependencies

between the tables. Specifically, for each requirement, we also argue over its allocation,

e.g., the allocation of a functional requirement to a system requirement, and its chil-

dren, i.e., lower-level requirements. The links between the tables in the requirements

specification define how the two patterns are themselves related and, in turn, how the

resulting safety case fragments are assembled.

4.4 Transformation Rules

One choice in the transformation is to create goals and strategies that are not marked

as undeveloped (or uninstantiated, or both, as appropriate), i.e., to assume that the

completeness and sufficiency of all hazards, their respective mitigations, and all re-

quirements and their respective verification methods, is determined prior to the trans-

formation, e.g., as part of the usual quality checks on requirements specifications. An

alternative is to highlight the uncertainty in the completeness and sufficiency of the

hazards/requirements tables, and mark all goals and strategies as undeveloped. We pick

the second option, i.e., in the transformation described next, all goals, strategies, and

evidence that are created are undeveloped except where otherwise indicated.



We give the transformation in a relational style, where the individual tables are

processed in a top-to-bottom order, and no such order is required among the tables.

Hazards Table: For each entry in the HT (Fig. 2),

(H1) For an entry {Hazard} in the Hazard column with no corresponding entries,

{Cause} in the Cause/Mode column, {Mitigation} in the Mitigation column,

or {Requirement} in the Safety Requirement column, respectively,
(a) Create a top-level goal “{Hazard} is mitigated”, with the hazard identi-

fier as context. Here, we are assuming that this top-level entry is a “con-

tainer” for a hierarchy of hazards, rather than an incomplete entry.

(b) The default strategy used to develop this goal is “Argument over identi-

fied hazards”, with the associated assumption “Hazards have been com-

pletely and correctly identified to the extent possible”.
(H2) For each lower-level entry, {Hazard}, in the hierarchy,

(a) Create a sub-goal, “{Hazard} is mitigated”, of the parent goal.

(b) The way we further develop this sub-goal depends on the entries {Cause},

{Mitigation} and {Requirement}; specifically,

i. For one or more causes, the default strategy is “Argument over identi-

fied causes”, with “Causes have been completely and correctly iden-

tified to the extent possible” as an assumption, and “{Cause} is man-

aged” as the corresponding sub-goal for each identified cause. Then

develop each of those sub-goals using “Argument by {Mitigation}”

as a strategy.7

ii. For no identified causes, but one or more mitigations specified, create

an “Argument by {Mitigation}” strategy, for each mitigation.

iii. When no cause/mitigation is given, but a safety requirement is spec-

ified, then create a strategy “Argument by satisfaction of safety re-

quirement”.

iv. If neither a cause, mitigation nor a safety requirement is given, then

assume that the entry starts a new hierarchy of hazards.

(c) The entry in the Safety Requirement column forms the sub-goal “{Safety

Requirement} holds”, attached to the relevant strategy, with the require-

ment identifier forming a context element.

System/Functional Requirements Tables: For each entry in either of the SRT/FRT

(Fig. 2),

(R1) The contents of the Requirements column forms a goal “{System Require-

ment} holds” if the SRT is processed, or “{Functional requirement} holds”

if the FRT is processed. Additionally, if the entry is the start of a hierarchy,

create a strategy “Argument over lower-level requirements” connected to this

goal. Subsequently, for each lower-level entry in the hierarchy, create a goal

“{Lower-level requirement} holds” from the content of the Requirements col-

umn.

7 An alternative strategy could be “Argument by satisfaction of safety requirement”, assuming

that the entry in the Safety Requirement column of the hazards table is a safety requirement

that was derived from the stated mitigation mechanism.



(R2) (a) the Source column forms the context for the created goal/sub-goal. Ad-

ditionally, if the source is a hazard, i.e., (an ID of) an entry {Hazard} in

the HT, then the created goal is the same as the sub-goal that was created

from the Safety Requirement column of the HT, as in step (H2)(c).

(b) the Allocation column is either a strategy or a context element, depending

on the content. Thus, if it is

i. an allocated requirement (or its ID), then create and attach a strategy

“Argument over allocated requirement”; the sub-goal of this strategy

is the allocated requirement8.

ii. an element of the physical architecture, then create an additional con-

text element for the goal.

(c) the Verification method column, if given, creates an additional strategy

“Argument by {Verification Method}”, an uninstantiated sub-goal con-

nected to this strategy9, and an item of evidence whose content is the

entry in the column Verification allocation.

We now state (without proof), that the result of this transformation is a well-formed

partial safety case that extends the requirements specification.

5 Illustrative Example

Fig. 3 shows a fragment of the Swift UAS safety case, in the GSN, obtained by apply-

ing the transformation rules (Section 4.4) to the HT and FRT (Fig. 2), and assembling

the argument structures. Note that a similar safety case fragment (not shown here) is

obtained when the transformation is applied to the SRT and FRT.

We observe that (i) the argument chain starting from the top-level goal G0, to the

sub-goals G1.3 and G2.1 can be considered as an instantiation of the hazard-directed

breakdown pattern, which has then been extended by an argument over the causes and

the respective mitigations in the HT (ii) the argument chains starting from these sub-

goals to the evidence E1 and E2 reflects the transformation from the FRT, and that,

again, it is an instantiation of a specific pattern of argument structures, and (iii) when

each table is transformed, individual fragments are obtained which are then joined based

on the links between the tables (i.e., requirements common to either table). In general,

the transformation can produce several unconnected fragments. Here, we have shown

one of the two that are created.

The resulting partial safety case can be modified, e.g., by including additional con-

text, justifications and/or assumptions, to the goals, sub-goals, and strategies. In fact, a

set of allowable modifications can be defined, based on both a set of well-formedness

rules, and the activities of argument development (Fig. 1). Subsequently, the modifica-

tions can be mapped back to (extensions of) the requirements specification.

Fig. 4 shows an example of how the Claims definition and Evidence linking activ-

ities (Fig. 1) modify the argument fragment in Fig. 3. Specifically, goal G2 has been

8 This will also be an entry in the Requirements column of the FT.
9 A constraint, as per [8], is that each item of evidence is preceded by a goal, to be well-formed.



G0
[Propulsion System Hazards] 

is mitigated

C0.1
HR.1.3

S0
Argument over 

identified hazards

G2
[Incorrect programming 
of KD motor controller] 

is mitigated

G1
[Motor overheating] 

is mitigated
C2.1

HR.1.3.7

C1.1
HR.1.3.1

S1
Argument over 

identified causes

S2.1
Argument over 

identified causes

G1.2
[Failure during operation] 

is managed

G1.1
[Insufficient airflow] is 

managed

G2.1.1
[Improper procedures to 

check programming 
before fight] is managed

S2
Argument by 
[Monitoring]

S3
Argument by 
[Checklist]

G1.3
[CPU/Autopilot system must be 

able to monitor engine and motor 
controller temperature] holds

G2.1
[Engine software will be checked 
during pre-deployment checkout] 

holds

C1.3.2
HR.1.3.1

C1.3.1
RF.1.1.4.1.2

C1.3.3
Engine Systems

C2.1.2
HR.1.3.7

C2.1.1.
RF.1.1.4.1.9

C2.1.3
Pre-deployment 

checklist
S6

Argument by 
[Checklist]

S7
Argument by 
[Checklist]

G6.1
{To be instantiated}

G7.1
{To be instantiated}

E1
Pre-flight 
checklist

E2
Pre-

deployment 
checklist

A0.1
Hazards have been 

completely and 
correctly identified to 
the extent possible.

A2.1
Causes have been 

completely and 
correctly identified to 
the extent possible

A1.1
Causes have been 

completely and 
correctly identified to 
the extent possible

Fig. 3. Fragment of the Swift UAS safety case (in GSN) obtained by transformation of the hazards

table and the functional requirements table.

further developed using two additional strategies, StrStatCheck and StrRunVerf, result-

ing in the addition of the sub-goals GStatCheck and GRunVerf respectively. Fig. 5 shows

the corresponding updates (as highlighted rows and italicized text) in the HT and SRT

respectively, when the changes are mapped back to the requirements specification. Par-

ticularly, the strategies form entries in the Mitigation column of the HT, whereas the

sub-goals form entries in the Safety Requirement and Requirement columns of the HT

and the SRT respectively. Some updates will require a modification (extension) of the

tables, e.g., addition of a Rationale column reflecting the addition of justifications to

strategies. Due to space constraints, we do not elaborate further on the mapping from

safety cases to requirements specifications.

6 Conclusion

There are several points of variability for the transformations described in this paper,

e.g., variations in the forms of tabular specifications, and in the mapping between these



G2
[Incorrect programming 
of KD motor controller] 

is mitigated

C2.1
HR.1.3.7

S2.1
Argument over 

identified causes

G2.1.1
[Improper procedures to 

check programming 
before fight] is managed

StrStatCheck
Argument by 

[Static Checking]

GStatCheck
[Software checks that 

programmed parameter 
values are valid] holds

SRunVerf
Argument by 

[Runtime Verification]

GRunVerf
[Software performs runtime 

checks on programmed 
parameter values] holds

Fig. 4. Addition of strategies and goals to the safety case fragment for the Swift UAS.

Hazards Table

ID Hazard Cause / Mode Mitigation Safety
Requirement

HR.1.3 Propulsion system hazards
HR.1.3.1 Motor overheating Insufficient airflow Monitoring RF.1.1.4.1.2

Failure during operation
Improper procedures to check 
programming before flight Checklist RF.1.1.4.1.9

- Static checking GStatCheck
- Runtime Verification GRunVerf

Incorrect programming of 
KD motor controllerHR.1.3.7

System Requirements Table

ID Requirement Source Allocation Verification
Method

Verification
Allocation

RS.1.4.3 Critical systems must be redundant AFSRB RF.1.1.1.1.3
RS.1.4.3.1 The system shall provide independent and redundant channels to the pilot AFSRB
GStatCheck Software checks that programmed parameter values are valid HR.1.3.7
GRunVerf Software performs runtime checks on programmed parameter values HR.1.3.7

Fig. 5. Updating the requirements specification tables to reflect the modifications shown in Fig. 4.

forms to safety case fragments. We emphasize that the transformation described in this

paper is one out of many possible choices to map artifacts such as hazard reports [9] and

requirements specifications to safety cases. Our main purpose is to place the approach

on a rigorous foundation and to show the feasibility of automation.

We are currently implementing the transformations described in a prototype tool10;

although the transformation is currently fixed and encapsulates specific decisions about

the form of the argument, we plan on making this customizable. We will also imple-

ment abstraction mechanisms to provide control over the level of detail displayed (e.g.,

perhaps allowing some fragments derived from the HT to be collapsed).

We will extend the transformations beyond the simplified tabular forms studied here,

and hypothesize that such an approach can be extended, in principle, to the rest of the

data flow in our general methodology so as to enable automated assembly/generation

of safety cases from heterogeneous data. In particular, we will build on our earlier work

on generating safety case fragments from formal derivations [1]. We also intend to

clarify how data from concept/requirements analysis, functional/architectural design,

10 AdvoCATE: Assurance Case Automation Toolset.



preliminary/detailed design, the different stages of safety analysis, implementation, and

evidence from verification and operations can be transformed, to the extent possible,

into argument structures conducive for assembly into a comprehensive safety case.

We have shown that a lightweight transformation and assembly of a (preliminary)

safety case from existing artifacts, such as tabular requirements specifications, is fea-

sible in a way that can be automated. Given the context of existing, relatively mature

engineering processes that appear to be effective for a variety of reasons [14], our view

is that such a capability will ameliorate the adoption of, and transition to, evidence-

based safety arguments in practice.

Acknowledgements. We thank Corey Ippolito for access to the Swift UAS data. This

work has been funded by the AFCS element of the SSAT project in the Aviation Safety

Program of the NASA Aeronautics Mission Directorate.

References
[1] Basir, N., Denney, E., Fischer, B.: Deriving safety cases for hierarchical structure in model-

based development. In: 29th Intl. Conf. Comp. Safety, Reliability and Security. (2010)
[2] Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Proc. 6th

Safety-critical Sys. Symp. (Feb 1998)
[3] Davis, K.D.: Unmanned Aircraft Systems Operations in the U.S. National Airspace System.

FAA Interim Operational Approval Guidance 08-01. (Mar 2008)
[4] Denney, E., Habli, I., Pai, G.: Perspectives on Software Safety Case Development for Un-

manned Aircraft. In: Proc. 42nd Annual IEEE/IFIP Intl. Conf. on Dependable Sys. and

Networks. (Jun 2012)
[5] Denney, E., Pai, G., Habli, I.: Towards measurement of confidence in safety cases. In: Proc.

5th Intl. Symp. on Empirical Soft. Eng. and Measurement. pp. 380–383 (Sep 2011)
[6] Denney, E., Pai, G., Pohl, J.: Heterogeneous aviation safety cases: Integrating the formal

and the non-formal. In: Proc. 17th IEEE Intl. Conf. Engineering of Complex Computer

Systems. (Jul 2012)
[7] Dodd, I., Habli, I.: Safety certification of airborne software: An empirical study. Reliability

Eng. and Sys. Safety. 98(1), pp. 7–23 (2012)
[8] Goal Structuring Notation Working Group: GSN Community Standard Version 1 (Nov

2011). http://www.goalstructuringnotation.info/
[9] Goodenough, J.B., Barry, M.R.: Evaluating Hazard Mitigations with Dependability Cases.

White Paper (Apr 2009). http://www.sei.cmu.edu/library/abstracts/
whitepapers/dependabilitycase_hazardmitigation.cfm/

[10] International Organization for Standardization (ISO): Road Vehicles-Functional Safety.

ISO Standard 26262 (2011)
[11] Kelly, T.: A systematic approach to safety case management. In: Proc. Society of Automo-

tive Engineers (SAE) World Congress (Mar 2004)
[12] Kelly, T., McDermid, J.: Safety case patterns – reusing successful arguments. In: Proc. IEE

Colloq. on Understanding Patterns and Their Application to Sys. Eng. (1998)
[13] NASA Aircraft Management Division: NPR 7900.3C, Aircraft Operations Management

Manual. NASA (Jul 2011)
[14] Rushby, J.: New challenges in certification for aircraft software. In: Proc. 11th Intl. Conf.

on Embedded Soft. pp. 211–218 (Oct 2011)
[15] Scolese, C.J.: NASA Systems Engineering Processes and Requirements. NASA Procedural

Requirements NPR 7123.1A. (Mar 2007)


