
Hiproofs: A Hierarchical Notion of Proof Tree

Ewen Denneya,1 ,2 , John Powerb,1 ,2 and

Konstantinos Tourlasb,1 ,2

a RIACS, NASA Ames Research Center, Moffett Field, CA 94035, USA

b Laboratory for the Foundations of Computer Science, University of Edinburgh, King’s
Buildings, Edinburgh EH9 3JZ, Scotland

Abstract

Motivated by the concerns of theorem-proving, we generalise the notion of proof tree to that of
hierarchical proof tree. Hierarchical trees extend ordinary trees by adding partial order structure
to the set of nodes: that allows us to visualise a node as a rectangle in the plane rather than as
a point, letting us use the containment relation to express structure additional to that given by
a tree. A hierarchical proof tree, or hiproof for short, is a hierarchical tree with nodes labelled
by tactics. We motivate the details of our definition by reference to the behaviour of tactics in
tactical theorem proving. We characterise the construction of the ordinary proof tree underlying
a hierarchical proof tree as a left adjoint. We then analyse the notion of proof refinement with
respect to hierarchy, and we give a characterisation of hiproofs that is more directly suited to
implementation.

Keywords: proof tree, hierarchical proof tree, skeleton, adjoint, refinement, tactical theorem
proving

1 Introduction

Consider a proof by induction as represented by Figure 1(a): the nodes are
labelled by tactic identifiers, inclusion of one node in another indicates a sub-
tactic relationship, and the arrows represent sequential composition. The
diagram is read as follows: the proof consists of invoking an induction tactic,

1 This work has been supported by EPSRC grants nos. GR/M45030 (Ewen Denney)
GR/N64571/01 and GR/586372/01 (John Power) and GR/N12480 (Konstantinos Tourlas).
The first author did most of this work while in Edinburgh.
2 Email: edenney@email.arc.nasa.gov, ajp@inf.ed.ac.uk, kosutamu@yahoo.co.uk

Electronic Notes in Theoretical Computer Science 155 (2006) 341–359

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.11.063

mailto:ajp@inf.ed.ac.uk
http://www.elsevier.com/locate/entcs


Ind-Rule

Induction

Rewrite

Use-Hyp

StepBase

(a)

T2

WF

T1

DP

Normalise

Taut

(b)

Fig. 1. Two hierarchical proofs

Induction. That consists of applying an induction rule, Ind-Rule, which
then generates two subgoals. The first subgoal is handled by the Base tac-
tic, the second by the Step tactic. In turn, Step is defined as first applying
the Rewrite tactic, and then the Use-Hyp tactic, with Base, Rewrite and
Use-Hyp treated as primitive. In contrast to the usual presentations of a
proof by induction, the emphasis is on tactics rather than on goals and proof
steps.

For a structurally somewhat more complex proof, consider Figure 1(b). At
the most abstract level, the proof consists of applying T1, and then DP. The
tactic T1 first applies T2, generating two subgoals, the first of which is handled
by WF. The second is handled by DP, which applies Normalise and then Taut.

These examples reflect, albeit very abstractly, the hierarchical structure
of tactics as appear in proof assistants such as [5,8,10]. In this paper, we
take a first abstract step towards developing a definition and mathematical
theory of such hierarchy, ultimately aimed towards the development of inter-
faces, both graphical interfaces for individual theorem provers and interfaces
between theorem provers based on common tactic structure (which is gener-
ally independent of the underlying logic). Our central definition, abstracting
from Figures 1(a) and 1(b), is that of a hierarchical proof tree or hiproof. We
analyse an appropriate choice of axioms for hiproofs in Section 2, the relation-
ship between a hiproof and its underlying ordinary proof in Section 3, and a
notion of refinement of hiproofs in Section 4. Finally, we characterise hiproofs
in terms more amenable to implementation in Section 5.

Compared to the hierarchical structures typically implemented in modern

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359342



theorem provers, our work is an abstract first step: hiproofs abstract away
many concrete and operational features. The key abstractions are as follows:

• we only model tactics, not goals. Hierarchy per se is independent of the
underlying logic. Moreover, tactics alone support rich structure, and we
seek the simplest possible framework in which to study it.

• we consider a tactic as a black box, giving no implementation details of it
beyond a record of which other tactics define it. We treat inference rules
and axioms as primitive tactics.

• we only model the static structure of tactics, not their dynamics. Our dia-
grams represent only the sequence of tactic applications leading to a proof,
not the tactic definitions themselves or information about proof search.

• we consider tree structure rather than dags. Implementations often use
dags, but formal logic generally does not. Our aim is to study the structure
of proof rather than particular implementations, allowing us independence
from specific notions of basic proof and implementation technology.

The central result of the paper, in Section 3, characterises the skeleton, or
underlying ordinary proof, of a hiproof, as a left adjoint to the inclusion of
ordinary proofs in hiproofs. One wants to lift constructions on ordinary proofs
via the skeleton functor to constructions on hiproofs. So the central results
of Sections 4 and 5, for refinement and towards implementation respectively,
show that the relevant constructions respect skeletons.

The use of diagrams in logic is far from new [2]. Fitch-style boxed natural
deduction is one way to draw the boxes on a given proof, contrasting with
the situation here. But hierarchical proofs along our lines appear in proof
planning [4]. For example, two different representations appear in [11]. We
know of little analysis of algebraic features of proofs, but see [9], which studies
the dynamics of a representation language: we only address statics here, but
one needs such statics in order to study dynamics.

More generally, any system (such as Coq, HOL and PVS) in which tactics
may be defined from other tactics leads naturally to the kind of hierarchical
proof here. In particular, the notion of hierarchy we formalise relates to that
underlying the Lambda Clam family of proof planners [10], although Lambda
Clam does not yet allow tactics to leave open goals as we do in Figure 1(b) for
example. The Tecton system [8] also supports hierarchical proof: its hierarchy
is ‘two level’ while ours allows arbitrary nesting. The PDS data structure [5],
implemented in Omega [3] and other systems, is of similar generality to our
hiproofs but is less abstract and includes implementation features. A PDS
consists of names, sequents, and elements called justifications and reasons. Of
those, named nodes and justification elements have counterparts in hiproofs.

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359 343



A � A
Ax

A � x = x
Refl

A � A ∧ (x = x)
And-I

� A ⇒ A ∧ (x = x)
Imp-I

Fig. 2. A simple natural deduction proof.

Sequents and reasons implement goals and back-tracking, and so have no
counterparts in hiproofs. Otherwise, a PDS (one which, moreover, happens to
be a tree at the lowest level) corresponds closely to a concrete characterisation
of hiproof.

In a different direction, hiproofs are closely related to higraphs (see for
instance [1]), but the notions of refinement differ. This paper is to be under-
stood as a first abstract step towards hierarchy in proofs, with no attempt
to give the implementation structure of the languages and systems mentioned
above.

2 Hierarchical proof trees

In this section, we define the notion of a hierarchical proof tree or hiproof.
To motivate it, we first analyse, by means of an example, the relationship
between tactics and standard notions of formal proof such as proofs in natural
deduction style.

Example 2.1 Consider a natural deduction proof of A ⇒ A ∧ (x = x),
as in Figure 2. The obvious (backwards) proof is implication introduction,
followed by conjunction introduction, and then applying axiom and reflexivity
to the two subgoals. The essential information of the proof is the sequence of
inference rules, with the order of those rules represented by a proof tree as in
Figure 3(a). Typically, however, theorem provers allow the use of higher-level
tactics that group together the application of a number of low-level inferences.
For example, it is common to have an Intros command, which performs all
possible introduction rules. We can indicate this on the proof diagram by
grouping Imp-I and And-I together, as in Figure 3(b). We could go further
and define a tactic, Prop, which first calls Intros, and then tries to use axioms
wherever possible. This gives the hierarchical structure of Figure 3(c). �

Example 2.1 shows that proofs can be represented as tactic- (or axiom and
inference)-labelled trees with hierarchical structure on the set of nodes. The
tree structure is straightforward, but the hierarchical structure and its inter-
action with the tree structure are more complex. We formalise the hierarchical
structure by a partial order, with v ≤i w represented visually by depicting the
node v as sitting inside the node w. The partial order satisfies axioms to the

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359344



And−I

Ax Refl

Imp−I

(a)

And−I

Ax Refl

Imp−I

Intros

(b)

And−I

Intros

Prop

Ax

Refl

Imp−I

(c)

Fig. 3. Introducing hierarchy in proof diagrams by grouping.

effect that it is generated by a (finite) forest, and it is sometimes convenient to
regard it as such. Our hierarchical trees are labelled by tactics, so we hence-
forth assume that Λ is a fixed non-empty set of tactic identifiers or method

identifiers. We write isrootF (v) (or isroot→) for the assertion that there is a
tree in forest F with root v, and we write siblingsF (v, v′) (or siblings→(v, v′))
if v and v′ have the same parent or are both roots. Standard definitions of
trees and forests are given in the appendix.

Definition 2.2 A hierarchical proof tree, or hiproof for short, consists of
a (necessarily finite) forest qua poset i = 〈V,≤i〉 and a forest s = 〈V,→s〉,
together with a function t : V → Λ which labels the nodes in V with tactic
identifiers in Λ, subject to the following conditions:

(i) arrows always target outer nodes: whenever v →s w1 and w1 <i w2, then
v <i w2

(ii) arrows always emanate from inner nodes: whenever w1 ≤i v and v →s w2

then v = w1

(iii) inclusion and sequence are mutually exclusive: whenever v ≤i w and
v →�

s w, then v = w

(iv) given any two nodes v and v′ which both lie at the top inclusion level,
or are both immediately included in the same node, then at most one of
v, v′ has no incoming →s edge:

∀v, v′ ∈ V. siblingsi(v, v′) ∧ isroots(v) ∧ isroots(v
′) =⇒ v = v′.

�

Note the subtlety in the first condition, especially in combination with
the third: an arrow from a node v can only go to an outer node relative to

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359 345



the inclusion level of v. So, for instance, Example 2.1 satisfies the condition.
Observe that the fourth condition together with finiteness imply that there is
a unique node that is maximal with respect to ≤i and has no incoming →s

edge, acting as a kind of hierarchical root.

The main theorem justifying the axioms is Theorem 3.9, which shows that
every hiproof unfolds to give an ordinary proof. But before developing that
result, we shall analyse the axioms by looking at some non-examples. The
axioms are designed to ensure that none of the diagrams in Figure 4 forms a
hiproof.

T2

T3

T1

(a)

T1

T2

T3 T4

(b)

T1

T2

(c)

T1

T2 T3

(d)

Fig. 4. Four non-examples of hiproofs

In tactical theorem proving, one tactic is followed by another, which un-
folds to give another tactic, and so on. So tactics are invoked ‘at the most
abstract level.’ But Figure 4(a) contradicts that because if T1 is followed by
T3 and T2 unfolds to T3, the more abstract T2 should follow T1. Equivalently,
it would be permissible for T3 to follow T1, but then the fact that T2 is an ab-
straction of T3 would be irrelevant to the proof and should not be added after
the composition of T1 and T3. Conversely, when a tactic finishes executing,
control flows from the most recently executed tactic, i.e., the innermost, out-
wards, but Figure 4(b) contradicts that. We want to exclude Figure 4(c) too
in order to avoid circularity of unfolding and sequencing. Finally, Figure 4(d)
fails because tactic T1 should unfold to give a unique subsequent tactic to
execute, not two.

The first condition in the definition of hiproof prohibits the inclusion hi-
erarchy from being ‘downwards’ transcended by composition, e.g., as in Fig-
ure 4(a). The second condition precludes Figure 4(b). The third condition
precludes Figure 4(c): the similar structure with the arrow pointing the other
direction is already precluded by the second condition. And the fourth condi-
tion precludes Figure 4(d) as well as the similar non-proof example obtained
from Figure 4(d) by removing the node labelled T1. For a positive example of
a hiproof, consider Figure 1(b).

The main ideas behind the definition of hiproof can be understood in terms
of Figures 1(a) and 1(b). Although motivated by diagrams, we have abstracted
away from geometry to discrete mathematical structure. The central features

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359346



are as follows:

• we do not require tactic identifiers to be unique as a tactic may be applied
repeatedly in a proof. But we informally refer to proof nodes by their tactic
identifiers where there is no ambiguity.

• there are only two relationships that can hold between nodes: inclusion,
representing the unfolding of a tactic into its definition, with arrows repre-
senting sequential composition. For example, in Figure 1(b), the decision
procedure DP unfolds to give the composition of Normalise with Taut.

• hiproofs are essentially tree-like in that subgoals are independent: a tactic
acts on a single subgoal. That is not generally the case in tactical theorem
proving, and we intend to extend the definition accordingly in future work.
Tactics usually return a list of subgoals, but we abstract away from the
order on child tactics.

A hiproof, therefore, consists of a finite collection of tactic-labelled nodes, re-
lated by inclusion and composition. Although the diagrams represent abstract
versions of full proofs, we are interested in how such proofs are constructed,
and so we consider partial proofs as well-formed.

3 Relating proof trees and hierarchical proof trees

In this section, we relate hierarchical proof trees with proof trees. Not only
are proofs instances of hiproofs with trivial hierarchy, but, more importantly,
every hiproof unfolds to give an ordinary proof, which we call its skeleton. As
Example 2.1 illustrates, the relationship between ordinary proofs and hiproofs
underlies our semantic understanding of the behaviour of hiproofs. So we
should like to characterise our definition of skeleton axiomatically, and we do
that here by showing that it acts as a left adjoint to the canonical inclusion.
We retain the terminological conventions of Section 2.

Definition 3.1 A proof tree consists of a tree, 〈V,→, r〉, together with a
tactic labeling function, t : V → Λ. �

Definition 3.2 A proof tree map α : 〈V,→, r, t〉 → 〈V ′,→′, r′, t′〉 is a function
α : V → V ′ such that α preserves roots and satisfies the following:

• u → v ⇒ α(u) →
′∗ α(v)

• t(u) = t′(α(u)). �

Proof trees together with proof tree maps form a category we denote by
Proof . The category Proof has finite products and finite coproducts. Such
category theoretic structures allow one to build complex proofs from less com-

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359 347



plex ones, and they provide transformations between proofs. The coproduct
of a pair of proof trees is given by joining their roots. The product involves
nodes with pairs of labellings, cf. Section 5. There are also sophisticated
monoidal-like structures that, given a proof 〈V,→, r〉 and a family of proofs
whose roots agree with the leaves of 〈V,→, r〉, allow one to attach the latter
proofs at each of the leaves of 〈V,→, r〉, cf [7] and Section 4. In further work,
we want to lift such constructions from proof trees to hierarchical proof trees.
But first we need to establish the precise nature of the relationship between
the two notions, and we do that by finding an adjunction.

In order to find an interesting adjunction, characterising a natural notion
of skeleton of a hiproof, we need a delicate definition of the notion of hiproof
map, using a refinement of the partial order ≤i.

Definition 3.3 In a hiproof, let ≤f denote the suborder of ≤i generated by
putting u ≤f v if u is a child of v and u has no incoming →s edge. �

It follows from the fourth condition of Definition 5.4 that ≤f is always a
finite set of finite chains.

Definition 3.4 A hiproof map α : 〈V,≤i,→s, t〉 → 〈V ′,≤′
i,→

′
s, t

′〉 is a func-
tion α : V → V ′ such that α preserves →-roots and satisfies the following:

• u ≤f v ⇒ α(u) ≤′
f α(v)

• u →s v ⇒ α(u) →
′∗
s α(v)

• t(u) = t′(α(u)). �

Hiproofs and hiproof maps form a category Hiproof . Proofs can naturally
be considered as flat hiproofs as follows:

Definition 3.5 Let E : Proof → Hiproof send the proof γ = 〈V,→, r, t〉 to
〈V, idV ,→, t〉. �

Proposition 3.6 The functor E is fully faithful and preserves finite products

and finite coproducts. �

The most important relationship between proofs and hiproofs is given by
the unfolding of a hiproof into an ordinary proof, called its skeleton, as we
discussed in analysing the non-examples of Figure 4. In order to describe
and characterise the skeleton in general, we use the following correspondence
between trees and partial orders: note, in the following, that v1 ≤ v2 means
that, in the corresponding tree, there is a path in the opposite direction, i.e.,
from v2 to v1.

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359348



T2

WF

Normalise

Taut

Fig. 5. Skeleton of a hiproof

Proposition 3.7 To give a tree is equivalent to giving a finite poset T =
〈V,≤〉 that satisfies the ‘non-sharing’ condition

∀ x, y, z ∈ F. x ≤ y and x ≤ z implies y ≤ z or z ≤ y ,

and has a top element �. The resulting tree is 〈V,→,�〉, where v → v′

whenever v′ ∈ cover≤(v), and the cover of a node is defined to be the set of

nodes immediately below it. �

Corollary 3.8 To give a forest is equivalent to giving a finite poset 〈V,≤〉 sub-

ject to the ‘non-sharing’ condition of Prop. 3.7: ∀ x, y, z ∈ V. x ≤ y and x ≤
z implies y ≤ z or z ≤ y. �

Now we can define and characterise the skeleton of a hiproof as a left
adjoint as follows:

Theorem 3.9 The functor E has a left adjoint, denoted by sk, sending a

hiproof h = 〈V,≤i,→s, t〉 to what we call its skeleton, given as follows: the

Λ-labelled tree 〈VT ,→T , r〉, corresponding to the finite poset T = 〈VT ,≤T 〉,
where VT is the set of leaves of ≤i, and v1 ≤ v2 if and only if there exists

v ∈ V such that v2 ≤i v and v1 →s v. �

Example 3.10 The skeleton of the hiproof in Figure 1(b) is given by Figure 5,
and the skeleton of the hiproof depicted in Figure 3(c) is the proof depicted
in Figure 3(a). �

The skeleton of a hiproof gives us a notion of an unfolding of a hiproof,
given by the tree of underlying atomic tactics. If we think of atomic tactics
as inferences and axioms, this gives us a standard non-hierarchical proof. We
sometimes regard a skeleton as a proof and sometimes as a flat hiproof: for-
mally, this amounts to applying the composite functor Esk and freely using

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359 349



T1

(a)

T1
T2

(b)

T1
T2

WF

DP

(c)

T1
T2

WF

Normalise

DP

(d)

T2

WF

T1

DP

Normalise

Taut

(e)

Fig. 6. Refinement of hiproofs

the fully faithfulness of E , which allows us to regard Proof as a full subcate-
gory of Hiproof . Any construction or transformation we make of a hiproof,
as we consider in the following sections, needs to be justified by preservation
of, or a corresponding construction on, its skeleton.

4 Hiproof refinement

The fundamental construction one wants to make on a hiproof is refinement:
the idea is that h1 refines to h2 when h2 extends the proof in h1, where
extension is to be understood informally as “proving more”. So our goal here
is to formalise that. Proofs can grow in two ways: either by a tactic calling
a subtactic, or by applying a new tactic to a subgoal. These correspond,
respectively, to inclusion of and sequential composition with a tactic. Since
we want to formalise a semantic, rather than operational, notion of refinement,
our definition of refinement amounts to allowing trees to grow arbitrarily ‘at
the bottom’ and, in the case of forests, adding additional trees. The definitions
in this section make this precise.

Example 4.1 Figure 6 shows a refinement, from left to right, of a hiproof.
Refinement generates a partial order, and this is not the only possible se-
quence.

We first define refinement for trees and forests, the simple structures from
which hiproofs are constructed. We need a few supplementary definitions.

Definition 4.2 A rooted subtree T ′ of a tree T = 〈V,→, r〉 is a tree 〈V ′,→′, r〉
where

• V ′ is an upwards-closed non-empty subset of V : whenever v′ ∈ V ′ then for
all v′′ such that v′′ → v′ one also has v′′ ∈ V ; and thus also r ∈ V ′

• →′ is the restriction of → to V ′ × V ′. �

Henceforth, we refer to rooted subtrees simply as subtrees. Intuitively,
refining a tree amounts to the addition, at possibly any level below the root,

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359350



of any (finite) number of new nodes. Thus the original tree is always a subtree
of any tree that refines it:

Definition 4.3 A tree 〈V1,→1, r1〉 refines to the tree 〈V2,→2, r2〉, written

〈V1,→1, r1〉 �T 〈V2,→2, r2〉 ,

if the former is a subtree of the latter. �

Definition 4.4 A forest F1 refines to the forest F2, written F1 �F F2, if
there exists an injective function ι : F1 → F2 such that for all trees T ∈ F1,
T �T ι(T ) �

In practice, it is easier to use the following characterisations of forest re-
finement, given by regarding a forest as a graph or poset:

Proposition 4.5 Given forests F1 = 〈V1,→1〉 and F2 = 〈V2,→2〉, F1 �F F2

if and only if V1 ⊆ V2 and for all v, v′ ∈ V1, isrootF1
(v) ⇐⇒ isrootF2

(v) and

v →1 v′ ⇐⇒ v →2 v′. �

Proposition 4.6 Given forests F1 = 〈V1,≤1〉 and F2 = 〈V2,≤2〉, F1 �F

F2 if and only if for all v, v′ ∈ V1, isrootF1
(v) ⇐⇒ isrootF2

(v) and v ∈
coverF1

(v′) =⇒ v ∈ coverF2
(v′). �

Thus forest refinement can be characterised in terms of preservation of
roots and inclusion of the corresponding order. This justifies the way we
define hiproof refinement.

Definition 4.7 A hiproof h = 〈V,≤i,→s, t〉 is said to refine to the hiproof
h′ = 〈V ′,≤′

i,→
′
s, t

′〉, written h �1 h′, if 〈V,≤i〉 �F 〈V ′,≤′
i〉, 〈V,→s〉 �F

〈V ′,→′
s〉 and labels are preserved, i.e., t ⊆ t′ (regarding each of t and t′ as a

finite set of pairs, e.g., 〈v, t(v)〉). �

Refinement for ordinary proofs is defined by tree refinement, as in Def-
inition 4.3, subject to respect for labelling. It follows by inspection of the
definitions that refinement for hiproofs restricts along E to refinement for or-
dinary proofs. More importantly, sk sends hiproof refinement to ordinary
refinement as follows.

Theorem 4.8 If a hiproof h refines to h′, then sk(h) refines to sk(h′). �

We shall not prove this in this section, as a stronger result follows from
our characterisation of hiproofs in terms of ordinary labelled trees with more
complex labelling in Section 5. So we shall formulate the stronger statement
later.

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359 351



5 A concrete characterisation of hiproofs

In this section, we characterise hiproofs in terms more amenable to imple-
mentation. The definition of hiproof consists of two forests. But they can
be combined into a single tree with more complex labelling by dint of the
following. Let R+ denote the transitive closure of a binary relation R.

Proposition 5.1 No ‘composite cycles’ exist in a hiproof: writing v <1
i v′

whenever v ∈ cover≤i
(v′), then for all v, v′ ∈ V , whenever v (>1

i ∪ →s)
+ v′

one has v �= v′. �

So, as a first attempt at a characterisation of hiproofs in such terms, we
might try to represent Figure 1(b) as follows, cf. [11]:

T2

WF DP

T1

Taut

Normalise

The solid lines denote composition and the dashed lines inclusion. But this
representation does not distinguish the similar hiproof in which DP is a sub-
tactic of T1. That can be resolved by pairing tactics with their level in the
inclusion hierarchy: in Figure 1(b), T1 and DP have level 0, T2 has level 1, and
so on. But then we do not need to distinguish between two kinds of arrow,
as that information is determined by the respective levels of adjacent nodes.
This motivates the following definition:

Definition 5.2 A hiproof of type 2 is a tree 〈V,→, r〉 together with functions:
t : V → Λ and l : V → N, subject to the following conditions:

(i) l(r) = 0

(ii) if v → v′, then l(v′) ≤ l(v) + 1

(iii) if v → v1, v → v2 and l(v1) = l(v) + 1, then v1 = v2. �

We shall often identify a node v with a pair 〈λ, l〉, thereby implicitly assert-
ing that t(v) = λ and l(v) = l. The function l : V → N sends a node to what
we call its inclusion level. So the first condition of the definition asserts that
the root of the tree lies at inclusion level 0. The second condition states that
nodes are only (directly) connected to those nodes that they directly include
or with which they are composed. In the latter case, the node can ‘escape’ to

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359352



an arbitrarily lower inclusion level. The third condition asserts uniqueness of
children if one increases inclusion level.

In Definition 5.2, both composition and inclusion depth are implicit in the
structure of the nodes. So, in terms of cognitive properties, the diagrams
arising from hiproofs of type 2 seem less suitable for human users than the
diagrams arising from hiproofs of type 1. In the latter, two distinct visual rela-
tions, spatial containment and edge connectivity, are used to represent tactic
inclusion and composition (see Figure 1(b)), thus giving less scope for confu-
sion. In contrast, owing to their economy, type 2 hiproofs have advantages as
internal, machine-oriented representations.

With a little thought about levels, hiproofs of type 2 readily form a category
we denote by Hiproof2. We sometimes refer to the hiproofs of Definition 2.2
as hiproofs of type 1.

Example 5.3 Figure 1(b) not only forms a hiproof but also a hiproof of type
2. The partial order information in Figure 1(b) may be unfolded as follows:

T1

T2 WF

i i

DP

Normalise Taut

i
i

WF DP

T2 Normalise

Taut

s s s

where the labels on the arrows distinguish between the inclusion and compo-
sition forests. If we recombine this data using all the s-labelled arrows but
only those i-labelled arrows whose codomain has no incoming s-labelled edge,
we obtain a hiproof of type 2 as follows:

(T1,0)

(T2,1)

(WF,1) (DP,0)

(Normalise,1)

(Taut,1)

where nodes are informally represented by their tactic identifiers and inclusion
levels. Now compare this hiproof of type 2 with Figure 5, which is the skeleton
of the hiproof of Figure 1(b). In terms of our hiproof of type 2, the skeleton is
determined by those nodes v for which l(v) is locally maximum, so if v → v′

and l(v′) ≤ l(v), it follows that v is in the skeleton. �

Example 5.3 suggests that any proof may be equivalently represented in
either type of hiproof. Indeed, the two definitions of hiproof are related by an

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359 353



isomorphism of categories. Moreover, we can directly and naturally describe
the skeleton of a hiproof in terms of hiproofs of type 2, so the correspondence
between the two notions of hiproof respects the underlying proof structure.

Definition 5.4 Define the functor μ12 : Hiproof → Hiproof2 by sending a
hiproof 〈V,≤i,→s, t〉 of type 1 to the hiproof 〈V,→, r, t, l〉 of type 2 given by
the following data:

• l(v) is defined to equal 0 whenever isroot≤i
(v), and, inductively, to equal

l(parent≤i
(v)) + 1 otherwise; (explicitly in forest-qua-poset notation: for

each v′ �= �, parent≤i
(v′) is the unique v such that v′ ∈ cover≤i

(v));

• v → v′ whenever v →s v′ or, v′ ∈ cover≤i
(v) and isroot→s

(v′); and

• r is the root of the hiproof (see the remark after the definition). �

Definition 5.5 Define the functor μ21 : Hiproof2 → Hiproof by sending a
hiproof 〈V,→, r, t, l〉 of type 2 to the hiproof 〈V,≤i,→s, t〉 of type 1 given by
the following data:

• v →s v′ whenever v → v′ and l(v′) ≤ l(v)

• ≤i is the reflexive and transitive closure of <1
i , the latter being defined thus:

v <1
i v′ whenever a (non-empty) path v′ = v0 → . . . → vn → vn+1 = v

exists such that l(v1) = l(v0) + 1 and l(vi) = l(vi+1) for 1 ≤ i ≤ n. �

The proofs of well-definedness of μ12 and μ21 amount to Propositions A.3
and A.5 in Appendix A. We now show that they are mutually inverse.

Theorem 5.6 The functors μ12 : Hiproof → Hiproof2 and μ21 : Hiproof2

→ Hiproof1 are mutually inverse.

Proof. We only sketch one direction of the argument as the other is similar.
Let h1 = 〈V,≤i,→s, t〉, h2 = μ12(h1) = 〈V2,→, r, t2〉 and h′

1 = μ21(h2) =
〈V ′,≤′

i,→
′
s, t

′〉. It follows directly from the definitions that V = V ′ = V2 and
t = t2 = t′.

We first show ≤′
i ⊆≤i (required to show ≤′

i =≤i). Assume v ≤′
i v′ and

proceed by induction on the length of the path linking v′ to v in the forest
〈V,≤′

i〉. The base case is trivial. For the inductive case, assume v ≤i v′′ by
the induction hypothesis and v′′ ∈ cover≤′

i
(v′). From the latter and Def. 5.5,

a path v′ = v0 → . . . → vn → vn+1 = v′′ must exist in h2 such that l(v1) =
l(v0) + 1 and l(vi+1) = l(vi) for 1 ≤ i ≤ n. It follows from Def. 5.4 that
v′ = v0 = parent≤i

(v1) or, equivalently, v1 ∈ cover≤i
(v′). From vi → vi+1

and l(vi) = l(vi+1), it follows that vi and vi+1, for i ranging as above, share
v′ = v0 as their parent in ≤i. So v′′ ∈ cover≤i

(v′). Together with the inductive
hypothesis v′′ ≤i v′, this proves v ≤i v′.

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359354



The proof of ≤i ⊆≤′
i is similar. And the equality →s =→′

s can also be
proved similarly. �

We now turn to skeletons. We need to characterise the construction of the
skeleton in terms of hiproofs of type 2. Given a type 2 hiproof
h2 = 〈V,→, r, t, l〉, we call a node an inclusion node if it has a child with
greater inclusion level.

Theorem 5.7 Given a type 2 hiproof h2 = 〈V,→, r, t, l〉, the following data,

which we denote by sk2(h2), agrees, via μ12, with sk: the Λ-labelled tree

〈VT ,→T , r〉 where VT is the set of non-inclusion nodes of h2, and v →T v′

if and only if v → v1 → · · · → vn → v′, where v1, . . . , vn are inclusion nodes,

r is the maximum non-inclusion node, and labelling is given by the restriction

of the labelling function to VT . �

Proof. By well-founded induction on the hiproofs. At each stage one extends
the hiproof by one leaf and shows that sk and sk2 and the μ ’s respect the
extension. �

Finally, as promised at the end of Section 4, we formulate refinement in
terms of hiproofs of type 2 and show that the formulation agrees, relative to
the equivalence, with our formulation of refinement for hiproofs of type 1 in
Definition 4.7.

Definition 5.8 A hiproof h = 〈V,→, r, t, l〉 of type 2 refines to a hiproof h′ =
〈V ′,→, r′, t′, l ′〉 of the same type, written h �2 h′, if and only if 〈V,→, r〉 �T

〈V ′,→′, r′〉 and, moreover, t ⊆ t′ and l ⊆ l ′. �

Theorem 5.9 Let h1 and h′
1 be hiproofs. Then, h1 �1 h′

1 holds if and only if

μ12(h1) �2 μ12(h
′
1) does. �

This shows that the two formulations of hiproofs are equivalent with re-
spect to refinement. A proof of Theorem 4.8 follows directly.

6 Conclusions and Further Work

We have introduced and begun to develop a notion of hierarchical proof tree
or hiproof, abstractly reflecting the use of tactics in theorem proving. We have
presented axioms that allow one to unfold a hiproof to yield an ordinary proof,
and we have illustrated the axioms by examples and non-examples. We have
outlined how refinement works and we have given an alternative presentation
of the definition that is better suited to implementation.

In practice, tactics possess much more complex structure than we have
addressed here, where we have restricted ourselves to simple notions of tac-

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359 355



tic and proof. We regard this work as just a first step towards providing a
semantic foundation for the topic. We believe that, suitably developed, the
study of general properties and operations on hiproofs and extensions of the
notion will help to give a principled way in which to design interfaces that are
independent of the specifics of hiproof representation and allow one to reason
about the correctness of implementation. We are actively investigating the
application of hiproofs as a foundation for prover protocols, using an opera-
tional semantics which formalises how hiproofs are constructed from sequences
of tactic applications.

To develop hiproofs as we have defined them, we next seek to define natural
operations on hiproofs that are supported by the various proof assistants.
Examples are the various abstraction operations. Such ‘zooming’ operations
have been considered for higraphs and statecharts [1,6], and there are natural
operations to consider on them. We also plan to characterise the relationship
between our semantic structures and the underlying logic, introducing a notion
of stepwise refinement.

Acknowledgement

The first author thanks Alan Bundy for his encouragement and interest in this
work.

References

[1] Stuart Anderson, John Power, and Konstantinos Tourlas. Zooming out of higraph-based
diagrams: syntactic and semantic issues. In Proceedings of CATS 2002, the Australasian
Symposium on Theory of Computing, volume 61 of Electronic Notes in Theoretical Computer
Science (ENTCS). Elsevier, 2002.

[2] Jon Barwise and Eric Hammer. Diagrams and the concept of logical system. In G. Allwein and
J. Barwise, editors, Logical Reasoning with Diagrams, pages 49–78. Oxford University Press,
1996.

[3] Christoph Benzmüller, Lassaad Cheikhrouhou, Detlef Fehrer, Armin Fiedler, Xiaorong Huang,
Manfred Kerber, Michael Kohlhase, Karsten Konrad, Andreas Meier, Erica Melis, Wolf
Schaarschmidt, Jörg Siekmann, and Volker Sorge. Omega: Towards a mathematical assistant.
In Proceedings of CADE-14, volume 1249 of LNAI. Springer, 1997.

[4] A. Bundy. Proof planning. In B. Drabble, editor, Proceedings of the 3rd International
Conference on AI Planning Systems, (AIPS) 1996, pages 261–267, 1996. Also available as
DAI Research Report 886.

[5] Lassaad Cheikhrouhou and Volker Sorge. PDS — A Three-Dimensional Data Structure for
Proof Plans. In Proceedings of the International Conference on Artificial and Computational
Intelligence for Decision, Control and Automation in Engineering and Industrial Applications
(ACIDCA’2000), Monastir, Tunisia, March 2000.

[6] David Harel. On visual formalisms. Communications of the ACM, 31(5):514–530, 1988.

[7] C. Hermida, M. Makkai, and A. J. Power. Higher dimensional multigraphs. In Proceedings of
13th LICS, pages 199–206. IEEE Press, 1998.

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359356



[8] D. Kapur, X. Nie, and D. R. Musser. An overview of the Tecton proof system. Theoretical
Computer Science, 133(2):307–340, 1994.

[9] J. D. C. Richardson and A. Smaill. Continuations of proof strategies. In International Joint
Conference on Automated Reasoning, IJCAR 2001 — Short Papers, June 2001. Technical
Report DII 11/01, Dipartimento di Ingegneria dell’Informazione, Università di Siena, Italy.

[10] J. D. C Richardson, A. Smaill, and I. Green. System description: proof planning in higher-
order logic with Lambda-Clam. In 15th International Conference on Automated Deduction,
pages 129–133, 1998.

[11] Julian Richardson and Alan Bundy. Proof Planning Methods as Schemas. DAI Technical
Report, Division of Informatics, University of Edinburgh, 1999.

A Definitions and Technical proofs

Definition A.1 A tree T = 〈V,→, r〉 is a finite dag 〈V,→〉 together with a
distinguished vertex r ∈ V , called the root, such that there is exactly one path
from r to every other vertex v �= r. For every edge 〈v, v′〉 ∈→, which we shall
conventionally write as v → v′, one says that v′ is a child of v or, equivalently,
that v′ has parent v. The vertices V in a tree are conventionally also called
nodes. �

Definition A.2 A forest F is a finite set {T1, . . . , Tn} of trees Tj = 〈Vj,→j, rj〉.
We shall write v →F v′ (or just v → v′ when F understood) to mean that
there exists tree Tj in F such that v, v′ ∈ Vj and v →j v′. Consequently we
shall often also write the forest F as 〈V,→F 〉 where V is the disjoint union of
all Vj. �

Proposition A.3 μ12 is well-defined, i.e., each μ12(〈V,≤i,→s, t〉) conforms

to Def. 5.2.

Proof. By Prop. 5.1 and observing that →+⊆ (>1
i ∪ →s)

+, it follows that
〈V,→〉 is an acyclic graph. Moreover, whenever v1 → v and v2 → v one
has v1 = v2: for the only possible cases are v1 →s v and v1 →s v, or, v ∈
cover≤i(v1) and v ∈ cover≤i(v2); v1 = v2 immediately follows from 〈V,→s〉
and 〈V,≤i〉 being forests. Thus, whenever a path v0 →� v exists, it must be
unique. We show that r →�

s v for all v ∈ V by induction on d(v), the ‘depth’
of v with respect to →s, which is defined thus: d(v) = d(v′) + 1 whenever
v′ → v and d(v) = 0 otherwise. When d(v) = 0 then clearly isroot→s

(v)
and siblings≤i

(v, r) (in the sense that isroot≤i
(v)). Now r = v and r →� v

holds trivially. In the inductive case assume true for v′ and v′ → v. Then the
induction hypothesis yields r → v′ and so, transitively, also r →� v.

Showing that l(v′) ≤ l(v) + 1 whenever v → v′ proceeds by case analy-
sis. Case v′ ∈ cover≤i

(v) and isroot→s
(v′) is immediate. When v →s v′ one

examines whether isroot≤i
(v′) or not. When so, l(v′) = 0 ≤ l(v) + 1. When

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359 357



v′ ∈ cover≤i
(v′′) for some v′′, condition i yields v′ ∈ cover≤i

(v′′), from which
l(v) = l(v′′) + 1 = l(v′) follows.

Assume v → v1 and v → v2 such that l(v1) = l(v) + 1. Then one must
have v = parent≤i

(v1) and hence v1 ≤i v in the type 1 hiproof. Further, we
distinguish two cases: first, if l(v2) = l(v1), one has siblings≤i

(v1, v2) while also
isroot→s

(v1) ∧ isroot→s
(v2). Then condition iv of Def. 2.2 establishes v1 = v2

as required. Similarly the case l(v2) ≤ l(v) means v →s v2 while v1 ≤i v, hence
v1 = v2 by the first condition in the definition of type 1 hiproofs. Finally, that
l(r) = 0 is obvious. �

Lemma A.4 In the context of Def. 5.5, isroot→s
(v) is equivalent to ∀v0 ∈

V. (v0 → v =⇒ l(v0) + 1 ≤ l(v)).

Proof. Using the definition of →s and the tautology (p =⇒ q) ⇐⇒ (¬p∨q):

isroot→s
(v) ⇐⇒ � ∃v0. (v0 → v ∧ l(v) ≤ l(v0))

⇐⇒ ∀v0. (v0 �→ v ∨ l(v) > l(v0))

⇐⇒ ∀v0. (v0 �→ v ∨ l(v) ≥ l(v0) + 1)

⇐⇒ ∀v0. (v0 → v =⇒ l(v0) + 1 ≤ l(v))

�

Proposition A.5 μ21 is well-defined, i.e., each μ21(〈V,→, r, t, l〉) is a hiproof

of type 1.

Proof. (Sketch) <i is manifestly irreflexive and transitive. On the other hand,
≤i is clearly antisymmetric, as follows from observing that ≤i⊆ (→�)−1 while
〈V,→, r〉 is a tree. Thus, the definition of ≤i as the reflexive closure of <1

i

makes 〈V,≤i〉 a poset.

The non-sharing condition, needed by Corol. 3.8 to show 〈V,≤i〉 a forest,
as required, also follows from 〈V,→, r〉 being a tree and ≤i⊆ (→�)−1:

to assume v ≤i w1 and v ≤i w2 while w1 �= w2 would mean the existence
of two distinct paths in 〈V,→, r〉 from the root r to v, one via w1 and the
other via w2, thus contradicting the fact of 〈V,→, r〉 being a tree. One must
therefore admit that, whenever v ≤i w1 and v ≤i w2, w1 must equal w2.

To show 〈V,→s〉 a forest, as required, we shall show that 〈V, (→�
s)

−1〉 is a
forest-qua-poset and appeal to Corol. 3.8. The poset structure of 〈V, (→�

s)
−1〉

is immediate as → is clearly antisymmetric. Again, observing that →�
s⊆→�,

the ‘non-sharing’ condition required by Corol. 3.8 follows, as above, from
〈V,→, r〉 being a tree.

To show that ≤i and →s are mutually exclusive in the sense of condition
(iii) of Def. 2.2, consider first the case of v ≤i w and v →�

s w: as the former
implies w →� v and the latter implies v →�

s w, v = w follows easily from the
acyclicity of the tree 〈V,→, r〉. In the case of v ≤i w (hence also l(w) ≤ l(v))

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359358



while w →�
s v (and hence l(v) ≤ l(w)), one must have l(v) = l(w) and so,

according to the definition of ≤i, v = w.

To establish condition i, first observe that w1 ∈ cover≤i(w2) means the
existence of a non-empty path w2 → v1 → . . . → vn → w1 in the tree 〈V,→, r〉
such that l(v1) = l(w2) + 1 and l(v1) = . . . = l(vn) = l(w1). Assuming also
that v →s w1, i.e., also v → w1, forces v = vn, for 〈V,→, r〉 is a tree. That
v ∈ cover≤i

(w2) now follows immediately from Def. 5.5.

For condition ii, suppose that w1 ≤i v and v →s w2. We must show
that v = w1. By the definition of μ21, we have that w1 (<1

i )
∗ v and v → w2,

with l(w2) ≤ l(v). Suppose that the path from w1 to v is non-empty, i.e.,
w1 <1

i w′
0 (<1

i )
∗ v, for some w′

0. Then, by definition of <1
i , there exists w0

such that v → w0 and l(w0) = l(v) + 1. Now, by condition iii of Def. 5.2, we
have that w2 = w0, but this is impossible because they have different levels.
Therefore the path from w1 to v must be be empty, and so w1 = v.

For showing condition iv assume first that siblings≤i
(v, v′). Then either

v = v′, or else (by unfolding the definition of cover≤i
) there must exist v0 such

that, at least, v0 → v, and v0 → v′. Thus, by condition ii of Def. 5.2, l(v) ≤
l(v0) + 1 and l(v′) ≤ l(v0) + 1 also hold. Assuming further that isroot→s

(v) ∧
isroot→s

(v′), v0 → v and v0 → v′ additionally yield, by Lemma A.4, that
l(v0) + 1 ≤ l(v) and l(v0) + 1 ≤ l(v′). Hence, l(v) = l(v′) = l(v0) + 1 and, by
condition (iii) of Def. 5.2, it now follows that v1 = v2, as required. �

E. Denney et al. / Electronic Notes in Theoretical Computer Science 155 (2006) 341–359 359


	Introduction
	Hierarchical proof trees
	Relating proof trees and hierarchical proof trees
	Hiproof refinement
	A concrete characterisation of hiproofs
	Conclusions and Further Work
	References
	Definitions and Technical proofs

