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Abstract: The overall structure of a system described by a set of
components and their interconnections is termed its software
architecture. In this paper, we associate behavioural specifications
with components and use these specifications to analyze the
overall system architecture . The approach is based on the use of
Labelled Transition Systems to specify behaviour and
Compositional Reachability Analysis to check composite system
models. The architecture description of a system is used directly in
the construction of the model used for analysis. Analysis allows a
designer to check whether an architecture satisfies the properties
required of it. The paper uses examples to illustrate the approach
and discusses some open questions arising from the work.

1. INTRODUCTION

Software Architecture has been identified as a promising approach to
bridging the gap between requirements and implementations in the design of
complex systems. Software Architecture describes the gross organisation of
a system in terms of its components and their interactions. The initial
emphasis in Software Architecture specification has thus been in capturing
system structure [5,8,13]. The authors have previously published papers on
the use of the architecture description language Darwin for specifying the
structure of distributed systems and subsequently directing the construction
of those systems [8,9,10]. Darwin can also be used to organise CORBA
based distributed systems [11]. Darwin describes a system in terms of
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components, which manage the implementation of services. Interconnection
structure is specified by bindings between the services required and provided
by component instances. Darwin has both a graphical and a textual form
with appropriate tool support [9,12].

Behavioural View Service View

Structural View

Analysis Construction/
implementation

Figure 1.Common Structural View with Service and Behavioural Views

In this paper, we describe the use of Darwin structural descriptions as a
framework for behaviour analysis rather than system construction. Darwin
has been designed to be sufficiently abstract to support multiple views (cf.
[7]), two of which are the behavioural view (for behaviour analysis) and the
service view (for construction) (Figure 1). Each view is an elaboration of the
basic structural view: the skeleton upon which we hang the flesh of
behaviour specification or service implementation [14].

In previous papers, we have discussed the use of Darwin to produce the
service view, with components providing and requiring services at their
interfaces and with implementation definitions for the primitive components.
For example, when used to structure CORBA systems [11], the
computational behaviour of Darwin primitive components is determined by
CORBA object implementations and these object implementations interact
via interfaces specified in IDL using the ORB in the usual way. Primitive
components encapsulate objects and specify their instantiation, their required
interfaces and provided interfaces. As depicted in figure 2, a primitive
component may embed one or more objects.

In this paper we concentrate on the behavioural view using Labelled
Transition Systems (LTS) for behaviour specification and analysis. The
analysis approach is Compositional Reachability Analysis CRA [4]. We have
developed techniques for analysing system models in the CRA setting with
respect to both safety [2] and liveness [3] properties. The techniques are
supported by software tools, which provide for automatic composition,
analysis, minimisation, animation and graphical display. We first describe
the relationship between components and their behavioural specifications.
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Figure 2.Embedding objects in components

2. PRIMITIVE COMPONENTS

A primitive component is one with no substructure of components. In the
service view of architecture, a primitive component has an implementation
defined by an object or objects programmed in a programming language such
as C++. In the behavioural view, a primitive component is defined as a finite
state LTS. The example of figure 3 depicts the Darwin graphical and textual
description of a primitive component with two interfaces.

In the behavioural view, we do not distinguish between provided and
required services, service access points are simply declared asportals.
Consequently, implementation details such as invocation direction can be
deferred, although, in many cases, it is obvious from the behavioural model
as to which component is providing a service and which is using it.

A major objective of our work in architectural analysis is to provide tools
that are both accessible and usable by practising engineers. To this end, we
originally conceived that the behaviour of primitive components should be
specified graphically as state transition diagrams since these should be
familiar in one form or another to software engineers. However, it quickly
became apparent that this is an extremely cumbersome method for other than
trivial behaviour specifications. With our focus on actions rather than states
in specifying behaviour, it was natural to use process algebra as a concise
notation for describing behaviour. However, it is unlikely that most software
engineers have a working knowledge of process algebra. To mitigate this
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problem, we have included the facility to depict textual specifications as
labelled transition diagrams. These diagrams may be animated, by an
interactive behaviour simulation, to check that the specification corresponds
to the engineer’s intuition.

press pour

DRINKS
interface BUTTON {red; blue;}

interface BEVERAGE{coffee; tea;}

component DRINKS {
portal press:BUTTON;
portal pour :BEVERAGE;

}

Figure 3.Darwin description of DRINKS component

The behaviour of the drinks component is modelled in Figure 4 both
graphically as a Labelled Transition System and textually in our process
algebra notation FSP (Finite State Processes).

press.red

press.blue

pour.coffee

pour.tea

0 1 2

DRINKS = (press.red -> pour.coffee -> DRINKS
|press.blue -> pour.tea -> DRINKS
) @ { press, pour}.

Figure 4.Behavioural description of DRINKS component

Primitive components are defined as finite state processes in FSP using
action prefix "-> " and choice "|". Ifx is an action andP a process then
(x->P) describes a process that initially engages in the actionx and then
behaves exactly as described byP. If x and y are actions then
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(x->P|y->Q) describes a process which initially engages in either of the
actionsx or y . After the first action has occurred, the subsequent behaviour
is described byP if the first action wasx and Q if the first action wasy .
Thus theDRINKS component offers a choice of the actionspress.red
and press.blue . As a result of engaging in one of these actions the
appropriate drink is poured. The behavioural view does not distinguish
between input and output actions although, as in the example, input actions
generally form part of a choice offered by a component while output actions
do not. The@{press,pour} states that all actions labelled or prefixed by
press or pour can be shared with other components. The next example is
a component that has internal actions that cannot be shared with other
components. Figure 5 gives the Darwin graphical description for the
primitive componentLOSSYCHANtogether with its behaviour modelled in
FSP and the corresponding LTS diagram.

in outLOSSYCHAN

range T = 0..1
LOSSYCHAN =

(in[x:T]->out[x]->LOSSYCHAN
|in[x:T]->fail ->LOSSYCHAN
)@{in,out}.

in.0

in.0

in.1

in.1

out.0

out.1

tau

tau

0 1 2 3 4

Figure 5.LOSSYCHAN component

The componentLOSSYCHANmodels a channel which inputs values in
the range0..1 and then either outputs the value or fails. In other words,
the component models a transmission channel that can lose messages.
Failure is modelled by non-deterministic choice on the input, which leads to
the internal actionfail, if failure is chosen. Sincefail does not appear
at the interface of the component, it becomes the silent actiontau in the
LTS diagram for the component. In many Architectural Description
Languages,LOSSYCHANwould be represented as a connector rather than a
component [1,13]. However, Darwin does not have a separate connector
construct. Connectors can be distinguished as a particular class of
components. It is clear from the above that connectors are modelled in
exactly the same way as components.
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The modelling notation FSP – Finite State Processes – includes guarded
choice, local processes and conditional processes. However, these are
syntactic conveniences to allow concise model definition. Definitions using
these constructs can all be expressed using action prefix, choice and
recursion as described in this section.

SERVICE

customer[1]:
CUSTOMER

customer[N]:
CUSTOMER

STATION

customer[1..N]

GASSTATION

const int N = 3; //# customers

interface SERVICE {
prepay(int); gas(int);

}
component CUSTOMER {

portal
SERVICE;

}
component STATION {

portal
customer[1..N]:SERVICE;

}

component GASSTATION {
inst

STATION;
forall i = 1 to N {

inst
customer[i]:CUSTOMER;

bind
customer[i].SERVICE

--STATION.customer[i];
}

}

SERVICE

Figure 6.GASSTATIONcomposite component

3. COMPOSITE COMPONENTS

A composite component is constructed from interconnecting instances of
more primitive components. A composite component defines a structure and
no additional behaviour. Its behaviour can therefore be computed based on
this structure and the behaviour of its components. To illustrate composition,
we will use the Gas Station problem, originally stated in [16] and more
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recently addressed in [2,17]. The Gas Station problem concerns a set ofN
customers who obtain gas by prepaying a cashier who activates one ofM
pumps to serve the customer. The overallGASSTATIONcomponent is
depicted in figure 6.

In an implementation such as CORBA discussed in the introduction,
Darwin bindings (drawn as arcs between portals) are generally references to
objects. In the behavioural view, a binding denotes an action shared between
two components. Each customer in figure 6 shares the actionsprepay and
gas , which constitute theSERVICE interface, with the STATION
component. Component instances in the behavioural view are finite state
processes as described in the previous section. The composite behaviour is
the parallel composition of these processes. Consequently, the behaviour of
GASSTATIONis the parallel composition of its constituent components:

||GASSTATION = (customer[1..N]:CUSTOMER || STATION).

Note that to create multiple copies ofCUSTOMERwe use process
labelling. Each action label of the customer process (namelyprepay and
gas ) is prefixed with the process label. Thus customer 1 has the action
labelscustomer[1].prepay andcustomer[1].gas . TheSTATION
is itself a composite component consisting of the cashier and one or more
pumps as depicted in figure 7. ADELIVER component is also required to
associate pump actions with customer actions. The need for this component
is discussed later in the paper.

A binding in Darwin always denotes a shared action in the behavioural
view. Shared actions are the means by which processes synchronise and
interact in FSP. It is sometimes necessary to relabel actions to ensure that the
shared action has the same name in all the processes that share that action.
Relabelling is required in the FSP description of theSTATION component
based on the particular bindings:

||STATION = (CASHIER || pump[1..M]:PUMP || DELIVER)
/{pump[i:1..M].start/start[i],

pump[i:1..M].gas/gas[i]}
@{customer}.

The general form of the relabeling function is:
/{ newlabel_1/oldlabel_1,…newlabel_n/oldlabel_n}.
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cus tom er[1..N].prepay CASHIER
s tart[1..M]

cus tom er[1..N].gas DELIVER
gas[1..M]

pump[1]:
PUMP

gas

s tartcus tom er[1..N]

STATION

const M = 2; //# pumps
component STATION {

portal customer[1..N]:SERVICE;

inst CASHIER;

inst DELIVER;

forall i = 1 to N bind

customer[i].prepay -- CASHIER.customer[i].prepay;

customer[i].gas -- DELIVER.customer[i].gas;

forall i = 1 to M {

inst pump[i]:PUMP;

bind

pump[i].start -- CASHIER.start[i];

pump[i].gas -- DELIVER.gas[i];

}

}

Figure 7.STATIONcomposite component

This section has outlined how the FSP composition expressions for the
behavioural model can be generated directly from the Darwin composite
component structure. In the next section, we discuss analysis using the
behavioural model.

4. ANALYSIS

The complete behavioural model for the Gas Station is listed in figure 8.
It includes behaviour definitions for the primitive components,CUSTOMER,
CASHIER, PUMPand DELIVER. A CUSTOMERmakes a prepayment of
some amount (a) chosen from the range (A ) and then inputs some amount of
gas (x). The process definition includes a test to check that the amount of
gas actually delivered is the same as the amount paid for. In this simplified
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model of the Gas Station, the cashier does not give change and pumps are
expected to deliver the amount of gas that has been paid for. The CASHIER
starts any pump that is ready and passes to it the identity of the customer (c)
and the amount of gas required (x). ThePUMPoutputs the correct amount of
gas, which is delivered to theCUSTOMERby theDELIVER component. The
composition expressions for the composite componentsSTATION and
GASSTATIONare as described in the previous section.

const N = 3 //number of customers
const M = 2 //number of pumps
range C = 1..N //customer range
range P = 1..M //pump range
range A = 1..2 //amount of money or Gas

CUSTOMER = (prepay[a:A]->gas[x:A]->
if (x==a) then CUSTOMERelse ERROR).

CASHIER =
(customer[c:C].prepay[x:A]->start[P][c][x]->CASHIER).

PUMP =
(start[c:C][x:A] -> gas[c][x] -> PUMP).

DELIVER=
(gas[P][c:C][x:A] -> customer[C].gas[x] -> DELIVER).

||STATION = (CASHIER || pump[1..M]:PUMP || DELIVER)
/{pump[i:1..M].start/start[i],

pump[i:1..M].gas/gas[i]} @{customer}.

||GASSTATION = (customer[1..N]:CUSTOMER ||STATION).

Figure 8.Gas Station Behavioural Model

Animation
Our analysis toolLTSA(Labelled Transition System Analyser) allows a

user to explore different execution scenarios using the behavioural model.
To do this, the user must specify the set of actions that he/she wants to
control. The controlled set of actions is defined by a menu, which for figure
9 is:

menu RUN = {customer[C].prepay[A]}
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Figure 9.Animating the Gas Station

Figure 9 depicts the trace of actions which result from instigating a
prepay action from customer 3. The cashier allocates pump 1, which delivers
the requisite gas to the customer via theDELIVER process.

Reachability Analysis
Animation allows a user to explore different execution scenarios,

however, it does not allow general properties concerning the model to be
checked. For example, does a customeralwaysreceive the correct amount of
gas? Reachability analysis performs an exhaustive search of the state space
to detectERRORand deadlock states (no outgoing transitions). In fact the
behaviour model of figure 7 has a bug which permits incorrect behaviour.
The output of the analyser is shown below:

property customer.3:CUSTOMER violation.
property customer.2:CUSTOMER violation.
property customer.1:CUSTOMER violation....
States Composed: 3409 Transitions: 11862 in 1468ms
Trace to property violation in customer.2:CUSTOMER:
customer.1.prepay.1
pump.1.start.1.1
customer.2.prepay.2
pump.1.gas.1.1
customer.2.gas.1

The output shows that a property violation in each of the customer
components is detected. In addition, an example trace, which causes one of
the violations, is produced. Remembering that theCUSTOMERmodel
requires that the amount of gas delivered to the customer should be the
amount paid for, the trace is an execution in which customer 2 gets the gas
paid for by customer 1. This error is essentially the same as the race
condition discussed in [17]. The error in the model is that theDELIVER
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process delivers gas toany ready customer C rather than to the customer
identity c passed to it by the cashier. The correctedDELIVER process is:

DELIVER
=(gas[P][c:C][x:A] -> customer[c].gas[x] -> DELIVER).

Safety properties
We can specify safety properties that a composition of components must

satisfy using property automata [2]. These specify the set of all traces that
satisfy the property for a particular action alphabet. If the model can produce
traces, which are not accepted by the property automata, then a violation is
detected during reachability analysis. For example, the following automaton
specifies that for, two customers, if one customer makes a payment then he
or she should get gas before the next customer makes a payment. In other
words, service should be FIFO.

range T = 1..2
property

FIFO = (customer[i:T].prepay[A] -> PAID[i]),
PAID[i:T] = (customer[i].gas[A] -> FIFO

|customer[j:T].prepay[A] -> PAID[i][j]
),

PAID[i:T][j:T] = (customer[i].gas[A] -> PAID[j]).

A Gas Station with a single pump satisfies this property, however, a
station with two pumps does not and leads to the following violation:

Composing
property FIFO violation.

States Composed: 617 Transitions: 1398 in 94ms
Trace to property violation in FIFO:
customer.1.prepay.1
pump.1.start.1.1
customer.2.prepay.1
pump.2.start.2.1
pump.2.gas.2.1
customer.2.gas.1

The trace describes the scenario in which customer 1 pays first and gets
pump 1 followed by customer 2 paying and getting pump 2. Clearly in a two
pump system, pump 2 can finish first, thereby violating the FIFO property.

Liveness properties
The LTSA analysis tool allows behavioural models to be checked against

specific liveness properties specified in Linear Temporal Logic. However,
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we have found a check for a general liveness property which we term
progressto provide sufficient information on liveness in many examples.
Progress asserts that in an infinite execution of the system being modelled,
all actions can occur infinitely often. In the gas station example, it would
assert that customers will always eventually be served. In performing the
progress check, we assume fair choice which means that if an action is
eligible infinitely often, then it is executed infinitely often. With this
assumption, the progress check finds no problem with the gas station.
However, we can examine the behaviour of the system under different
scheduling constraints by applying action priority. For example, the system
below states that the actions of customer 1 have lower priority than other
actions:

||GASSTATION = (customer[1..N]:CUSTOMER ||STATION)
>>{customer[1]}.

Unsurprisingly, this causes a progress check violation since it is now
possible for the cashier to ignore customer 1 in favour of other customers.
Customer 1 may never be served. The tool gives the following output.

Progress violation for actions:

{customer.1.prepay.1, customer.1.gas.1, customer.1.gas.2,

customer.1.prepay.2, pump.1.start.1.1, pump.2.start.1.1,

pump.1.start.1.2, pump.2.start.1.2, pump.1.gas.1.1,

pump.1.gas.1.2...........}

Trace to terminal set of states:

Actions in terminal set:

{customer.2.prepay.1, customer.2.gas.1, customer.2.gas.2,

customer.2.prepay.2, customer.3.prepay.1, customer.3.gas.1,

customer.3.gas.2, customer.3.prepay.2, pump.1.start.2.1,

pump.2.start.2.1...........}

This includes the set of actions that do not occur infinitely often in the
system and the set of action that can occur infinitely often. It is clear that
actions for customer 1 occur in the former set and the actions for customer 2
in the latter. The tool gives a trace that leads to the execution in which the
violation occurs. In the example, this trace is empty, as customer 1 never
gets an opportunity to get gas.
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5. DISCUSSION & CONCLUSIONS

We have presented an approach that associates behaviour descriptions
with architectural components and supports behaviour analysis of the
composition of these components according to the software architecture.
Although relatively small, the example exhibits non-trivial behaviour. It
demonstrates that we can produce concise and flexible behavioural models
in which it is easy to add additional components and interactions. In the Gas
Station, it is trivial to modify the numbers of customers and pumps. In fact,
the Gas Station as presented is an instantiation of a common distributed
software architecture style known as a multi-server or multithreaded server.
In a multi-server system, a separate server thread allocated by an
administrator thread handles each client request.

In the introduction we stated that we could use the same structural
description for system construction as for behaviour modelling. This is not
always the case. For example, the Gas Station behavioural view includes the
DELIVER component which routes pump actions to customers. This
component would not appear in the service view since this routing would be
implicit in the service invocation mechanism.DELIVER is modelling an
aspect of architectural connection and it is specific to the behavioural view.
In other words, we recognise that there is a need to augment the structural
description with connector components for the behavioural view of
architecture. In contrast to Wright [1] we have resisted requiring that a
connector component isalwaysinterposed between application components
since this seems to lead to large numbers of auxiliary actions.

An issue that always arises when considering exhaustive state space
search methods is scalability. We have used the current toolset, which has
not yet been optimised for performance, to analyse an Active Badge
System[21] in which the final model has 566,820 reachable states and
2,428,488 possible transitions. This took 400 seconds to construct and check
on a 200MHz Pentium Pro and required 170Mb of store. Although not
addressed in this paper, our tools support compositional reachability analysis
in which intermediate composite components can be minimised with respect
to their interface actions using observational equivalence. Previous work
[15] has addressed the problem of intermediate state explosion.

We believe that analysis and design are closely inter-linked activities
which should proceed hand in hand. The FSP notation and its associated
analysis tool LTSA have been carefully engineered to facilitate an
incremental and interactive approach to the development of component
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based systems. Analysis and animation can be carried out at any level of the
architecture. Consequently, component models can be designed and
debugged before composing them into larger systems. The analysis results
are easily related to the architectural model of interconnected components.
The LTSAanalysis tool described in this paper is written in Java™ and can
be run as an application or applet. It is available athttp://www-
dse.doc.ic.ac.uk/~jnm. The approach we have described in this paper to
analysing component-based systems is a general one that is not restricted to
a particular tool-set. For example, CSP/FDR [6,19] has been used with the
architectural description language Wright[1] and both LOTOS/CADP [18]
and Promela/SPIN [20] have been used in the context of analysing software
architectures. The objective, whatever the tool, is to use behaviour analysis
during design to discover architectural problems early in the development
cycle.
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