Abstract Cofibered Domains: Application to the
Alias Analysis of Untyped Programs

Arnaud Venet

LIX, Ecole Polytechnique, 91128 Palaiseau, France.
venet@lix.polytechnique.fr

Abstract. We present a class of domains for Abstract Interpretation,
the cofibered domains, that are obtained by “glueing” a category of par-
tially ordered sets together. The internal structure of these domains is
well suited to the compositional design of approximations and widening
operators, and we give generic methods for performing such construc-
tions. We illustrate the interest of these domains by developing an alias
analysis of untyped programs handling structured data. The results ob-
tained with this analysis are comparable in accuracy to those obtained
with the most powerful alias analyses existing for typed languages.

1 Introduction

Widening operators have originally been used in Abstract Interpretation [CC77)
in order to cope with infinite domains on which abstract iteration sequences were
not necessarily computable (e.g. [CC76, CH78]). In fact, the notion of widening
is much more powerful since it allows the definition of abstract interpretations
with very few hypotheses on their structure by dynamically constructing the
abstract domain [Cou78, CC92a, Cou96]. In this paper we introduce a new class
of such abstract domains: the cofibered domains.

A cofibered domain consists of a category of partially ordered sets “glued”
together in a sense that we will make clear. Like for other composite domains
in Abstract Interpretation (e.g. the reduced product of lattices [CC79]), most
constructions over a cofibered domain can be achieved compositionally by com-
bining the corresponding constructions over its base components. We illustrate
the interest of this approach by constructing an alias analysis for a small un-
typed language with structured data. This analysis gives results comparable in
accuracy to those obtained with Deutsch’s framework [Deu92a, Deu92b, Deu94|
whose applicability is restricted to languages with explicit datatype declarations.

The paper is organized as follows. In Sect. 2 we recall briefly the context
of semantic approximation in which our work takes place. Section 3 is devoted
to describing the framework of cofibered domains. We use dynamic partition-
ing [Bou92] as the running example of our presentation. In Sect. 4 we describe
a generic construction of widening operators over cofibered domains. We apply
the previous techniques to build an alias analysis for an untyped language in
Sect. 5.

2 Abstract Interpretation with Widening

Let P be a program of a language £. We suppose that the semantics S]hg of P is
given by the least fixpoint of a L%-complete endomorphism F? over a complete
lattice (Dh, Ca, L b, T8, I_Ih), where DP is the concrete semantic domain which
expresses program properties or behaviours. This is a quite common situation in
practice but it is possible to relax significantly the previous hypotheses [CC92a].

Abstract Interpretation provides general frameworks to reason about seman-
tic approximation [CC92a]. We choose one of these that is quite general and
well-suited for our purpose, but all the techniques developed in this paper can be
adapted to other frameworks. More precisely, following [CC92a] we assume that
an abstract semantic specification of P is given by a preordered set (D, <), the ab-
stract semantic domain, related to D' by a concretization functiony : D —s D,
an abstract basis L € D, and an abstract semantic function F' : D — D such
that:

(i) LPE y(L).
(i) Vo,y € D: 2 2y = () C¥ 1(y).
(iii) Vo € D: Fiovy(z) C% yo F(x).

In order to compute an approximation Sp of the concrete semantics of P in D
we introduce the notion of widening operator.

Definition 1 Widening operator [CC77, CC92a]. A widening on D is a bi-
nary operator V : D x D — D which satisfies the following properties:

WI1- Ve,yeD:x <z Vy.

W2- Ve,yeD:y=<zVy.

W3- For every sequence (,)n>0 of elements of D, the sequence (%Y)nzo induc-
tively defined as follows:

is ultimately stationary.

O

Ezample 1 Intervals [CC76]. Let (Dp,C) be the domain of intervals where
Dy ={0}U{[a,b] |a € ZU{—o0} Ab € ZU{+0c0}} and C is set inclusion. The
widening Vi is defined as follows:

IVip=1
OviI=1I
[a1,b1] V1 [az,bs] = [if a2 < a; then —oo else ay,
if by < by then 400 else by]

In other words, the upper (resp. lower) limit of an interval is extrapolated to
+00 (resp. —oo) whenever it increases (resp. decreases). O

Proposition 2 Abstract iterates [CC92a, CC92b]. The absiract iteralion
sequence (FY),>o0 given by:

Fy =1

FY ,=F) if F(FY) < FY
= FyY V F(FY) otherwise

is ultimately stationary and its limit Sp satisfies Slhg CY ~(Sp). Moreover, if
N >0 is such that Fy = Fy, |, thenVn > N : FY = Fy.

3 Cofibered Domains

The intuitive idea of “glueing” a category of posets is formalized by the Grothen-
dieck construction.

Definition 3 Grothendieck construction [BW90]. Let D be a small cate-
gory and Pos be the category of posets and monotone maps. We associate to
any functor A :ID — Pos the category GA defined as follows:

(i) An object of GA is a pair (D,x) where D is an object of D and z is an
element of the poset AD.

(ii) An arrow (D,x) A (E,y) of GA is a morphism D L E of D such
that Af(z) Cg y, where Cg denotes the order relation on AE.

(iii) The composition of two arrows (D, x) N (E,y) and (E,y) —2» (F,2)

is given by (D, x) o4, (F, z). It is explicited in the following diagram:
D f E g F
A A

@ / Af(z) J Ag o Af(z)

) EFL
Ag
y Ag(y)

EF{
z

O

Definition 4 Cofibered domain. A cofibered domain' is a preordered set
(D, X) for which there exists a functor A : D — Pos such that:

(i) D is the set of objects of GA.
(ii) For all (D,z),(E,y) € D, (D,z) 2 (E,y) whenever there exists an arrow

(D,) N (E,y) in GA. O

! The term cofibered domain comes from the fact that such a domain can be endowed
with the structure of a cofibration [BW90].

In other words, (D, <) is the preorder obtained by flattening the category GA.
We call the functor A the display associated to the cofibered domain. For each
object D in D we call the poset AD the fiber of A over D.

Ezxample 2 Dynamic partitioning I. We illustrate cofibered domains by cons-
tructing an approximation of the domain (p(C — L), C), where C — L is
the set of functions from a set C into a complete lattice (L,C, L,U, T,M). An
interesting instance of this problem arises when C' is the set of control points of a
program (lexical points, stacks, etc.) and L is the powerset of all memory states.
This has been extensively studied in [Bou92] where the powerful abstraction
framework of dynamic partitioning has been developed. In its simplest form it
amounts to abstracting a function p : C — L by a partial function u from p(C')
into L. The value of p at a point z is approximated by the join of the values
u(X) on the subsets X of C that contain x.

Let P(C) be the category whose objects are the subsets of p(C). An arrow

DL+ Eof P(C) is a function f : D — E such that for any X € D we have
X C f(X). Composition and identities are the usual ones. One can easily check
that this definition is consistent. We define the functor A¢ : P(C) — Pos as
follows:

— For any object D of P(C), AcD is the set D — L with the pointwise
ordering.

~ 1D —+ Eisanarrowin P(C), Ac f maps any p : D — L to the function
AX - {u(Y)|Y € f71(X)} of AcE.

We then construct the cofibered domain (D¢, <¢) associated to the display Ac.
An element (D, u) of D¢ represents a partial function from o(C') into L, where
D C p(C) is the domain of definition of the function. The approximation of
the concrete domain is given by the concretization function vy¢ : (D¢, X¢) —
(p(C — L), Q) that maps any (D,) in D¢ to the set {p: C — L |Vz € C:
pz) CLl{pu(X) | X e DAz e X}}. O

In Sect. 2 we defined the connection between the concrete and abstract se-
mantic domains as a concretization function v : (D, <) — (D%, C). However it
is quite rare in practice to directly build the abstract domain (D, <). In general
one proceeds by stepwise refinements of the approximation: if (Df, <*) is an-
other preordered set and y* : (D¥, <%) — (D, <) is a monotone map, then the
composite y oy : (D, <¥) — (DF) is a further approximation of (D4, C). If
(D, X) is cofibered via a display A one can obtain an approximation of (D, <)
by means of a fiberwise approzimation of A. In order to describe precisely this
idea we need to introduce the notion of lax natural transformation.

Definition 5 Lax natural transformation [Kel74]. A laz natural transfor-

mation (lax n.t. for short) Af ~~s A between two functors A¥, A : D —s Pos

KD

is given by a morphism A*D —2» AD for each object D in D and by a collection

of commutative diagrams:

At
AD / A'E
KD CE RE
AD AE
Af

O

The intuition is that a morphism kp is a local concretization function that
relates the fiber AD with its approximation A*D. The commutative diagram
above means that Af o kp Cg kg o AYF, ie. A'f is a sound approximation of
Af.

Let (D,=) and (D!, <*) be two cofibered domains and A : D — Pos,
A? : D} — Pos be the associated displays. A fiberwise approzimation of (D, <)

by (D%, <) is given by a functor I : D — D and a lax n.t. A* ~~e Ao T’
expressed diagrammatically by:

r ;
D D

#

Pos

I' can be seen as a “concretization functor” and Df as an abstraction of the
shape of the cofibered domain (D, <). The functor I" is the global part of the
approximation and the lax n.t. k is the local part. We can then “glue” these two
parts in order to obtain a concretization function G(I',) : (D¥, <*) — (D, <).

Proposition 6. The function G(I', k) : D — D that sends any (D%, %) in D*
to (I'D¥ ks (x%)) is monotone.

Ezxample 8 Dynamic partitioning II. We carry on with Example 2. We sup-
pose that we are provided with two approximations ¢ : (C*, C¥) — (p(C), C)
and v : (L¥,C*) — (L,C). We suppose that LF has the structure of a LI*-
semilattice (L, C* L* L) and that ¢ is injective (this is always possible, see
[CCT9]). Now let P;(C*) be the category whose objects are finite subsets of C*.
An arrow Df —L+ EF of P;(C¥) is a function f: D¥ — E* such that for any

X! € D! we have X* C! f(X?). Let AL : P;(C*) — Pos be the functor defined
as follows:

— For any D! in P;(CY), ALD?! is the set D! — L* with the pointwise
ordering.

— 1f D' —L+ E* is an arrow in P;(CY), AL f maps any pf : D! — L! to the
function AX* - LE{uf(Y?) | Y e f~1(X?)} of ALE!.

Let I' : P;(C*) —s P(C) be the functor that sends any object D* to {yc(X*) |

X* € D*} and any arrow D* 1. B! to the function that maps yc(X?) to
o (f(X?)) for every X* € D*. This definition is not ambiguous because ¢ is
injective. We now define a lax n.t. A% ~~s T'o Ac. Let D? be in P;(CY),
kpt sends every function uf in A%(Dﬁ) to the function p that maps v¢(X?) to
vL o u*(X*#), for every X* in D¥. We denote by (Dg, jg) the cofibered domain
associated to the display Aﬂc. By proposition 6 we obtain a fiberwise approxi-
mation vy : (Dg, jg) — (D¢, X¢) from (I, k). O

4 Construction of Widenings on Cofibered Domains

Let (D, =) be a cofibered domain with display A : D — Pos. We suppose
that for every object D in D the fiber AD is provided with a widening operator
Vp: AD x AD — AD satisfying conditions W1, W2 and W3 of Definition 1.
Now we need to define a notion of widening on the category D.

Definition 7 w-chain. An w-chain in D is a sequence of arrows (D, B
Dyt1)n>0. We say that the w-chain is ultimately pseudo-stationary if there exists

a rank N > 0 such that for all n > N, f,, is an isomorphism. O

A widening operator V on D associates to any two objects D, E of D two arrows:

(D \Y% E')1 (D \Y E)2

»DVE~ E

v
such that for any sequence of objects (Dy,)n>0, the w-chain (D) LN DY 1)n>0

defined by:
Dy = Dy
D7Y+1 = DrY V Dyt
fn = (DY V Dptih
is ultimately pseudo-stationary. Moreover we require V to be stable under iso-
morphism, that is, whenever D = D' and E = E’, then DVE = D'VE'.

Definition 8 Widening on cofibered domains. We assume that D is pro-
vided with a widening operator V. If (D,z) and (E,y) are elements of D, we

define (D, z)V(E,y) as follows:

- (D,2) V (B,y) = (D,z Vp A(DVE){" o (DVE):)(y)) if (DVE); is an
isomorphism. This is expressed by the following diagram:

(DV) (DVE) .

D < DV E -~

2 Vp A((DVE);" o (DVE)y)(y) <---------------=-=----- y

— (D,z) V (E,y) € (DVE,A(DVE),(z) Vpve A(DVE)s(y)) otherwise.
That is, graphically:

(DV E); (DV E),

»DVE <

X ------- » A(DVE),(z) Vpve A(DVE)s(y) <------- Y

Intuitively the first case means that when the fiber is “stable”,i.e. (DVE); is an
isomorphism, we “transfer” the abstract property y into the fiber and we make
the widening with z. Otherwise we transfer z and y into the fiber over D V E
and we make the widening in this fiber.

Theorem 9. V is a widening operator (i.e. it satisfies conditions W1, W2 and
W3 of definition 1).

Ezxample 4 Dynamic partitioning ITI. We apply this method to the cofibered
domain of Example 3. We suppose that the semilattice (L, C¥, L* L) comes
equipped with a widening operator V:. For each D* in Pf(Cﬂ) we define a
widening V p: on the fiber over D! by pointwise application of V. It is not
possible to exhibit a widening for P;(C*) in whole generality since it strongly
depends on the nature of C*. Therefore we treat a particular instance of C' and
C*. We suppose that we are analyzing an imperative program P with a set £
which labels the instructions in P. We denote by C the subset of £ consisting of
all labels of procedure calls. We define a control point to be a pair (S,£) where
S € C* is a stack of procedure calls and ¢ € £ denotes the current program point.
C' is the collection of all sets of control points. We do not specify the domain L
introduced in Example 2, which is intended to represent sets of memory states.

We define C* to be the poset £ x (C — Dp), where Dy is the domain of
intervals defined in Example 1, the ordering being given componentwise. The
injective function o sends a pair (£,v) to the set {(S,¢) | Ve € C : |5]. €
v(c)}, where |S|. denotes the number of occurrences of the label ¢ in S. That
is, we abstract a stack by the number of times each procedure call occurs in
it. We define a widening operator V¢ on C* by componentwise application of
V1. If D? is an element of P;(C*) and ¢ € £, we denote by D*(¢) the element
Ut {p| (¢,) € D*} of C*, where L1 is the pointwise extension of the join Li; on
the lattice Dp of intervals. Now let D§ and Dg be elements of P;(C*). We define
the widening D§ \Y Dg as follows:

D} V D} = {(¢,D}(¢) Vi D5(0)) | £ € L}

For i € {1,2}, (D! V D!); sends any (¢,u) in D! to (¢,D}(¢) Vi Di(f)) in
D§ \Y Dg. We readily check that this defines a widening on the category P ;(C*).
By applying Theorem 9 we obtain a widening V¢ on the cofibered domain Dﬂc.

Note that the construction of such a widening (and the proof of its validity)
would have been rather intricate without using the cofibered structure of the
domain. O

5 Application to the Alias Analysis of Untyped Programs

We apply the previous techniques to sketch the construction of an alias analysis
for a small imperative language without datatype declarations. We consider a
program P written in this language. Let C be the set of data constructors occur-
ring in P and X be the set of associated data selectors. If f € C has arity n, we
denote by fi,..., fn the corresponding data selectors. We will essentially focus
on the two assignment instructions in the language that are involved in the pro-
duction of aliases: ¢ := y.w and = := f(z1,...,z,) wherew € X* f € C and z,y
are elements of the set Vp of variables occurring in P. The treatment of control
structures (conditionals, loops, recursion) is quite standard [CC77, Gra92] and
we do not detail it.

Following [Jon81, Deu92b], a semantic configuration is a pair (L,=) where
L is a prefiz-closed subset of Vp.X* and = is a right-reqular equivalence relation
over L. Right-regularity means that whenever v = w and v.a,w.a € L, then
v.a = w.a. L describes the set of access paths in the structures pointed by the
variables of the program, and = is the aliasing relation on these paths. Right-
regularity models equality of pointers in this semantic model.

Example 5. Consider the following program:

x := nil; y := nil;
for i:= 0 to N do begin
h := a;
x := cons(h, x);
y := cons(h, y);
end;

We suppose that the data selectors associated to cons are hd and tl. Then the
semantic configuration at the end of the program is given by (L, =) where L is
the set of prefixes of {z.tI".hd,y.t!".hd | 0 < n < N} U {h} and = is such that
z.tl".hd = y.tI".hd and h = x.hd = y.hd. a

We can always assume that none of the variables occurring at the right-hand side
of an assignment expression appears at the left-hand side by adding intermediate
variables. Let A = Vp U X. For any prefix-closed subset L of A* and any binary
relation p over L, we denote by [p]r the least right-regular equivalence relation
over L containing p. If w € A* and L C A*, we denote by w™'L the language
{u € A* | w.u € L}. The semantics {|z := y.w[} of the instruction z := y.w maps

(L,=) to (Le,=,) where:

— L= (L\z.Y*) Uz.((yw) ' L).
= [(= A(L\2.Z")2) U { (@ g0) M.

The semantics {z := f(z1,...,2z,)[} maps (L,=) to (Le, =.) where:

— Ly = (L\z.Z*) U Ulgign mfl(ml_lL)
— =E [(=NL\e.Z)?) U {(afi,2:) | 1 < i < nd]r,.

See [Jon81] for more detail on this kind of semantics. The domain (D?, <%) asso-
ciated to the collecting semantics of the program is the powerset of all semantic
configurations (L, =) ordered by inclusion.

We first approximate (D%, <%) by a cofibered domain (D, <). Let p(A*) be
the set of all prefix-closed languages over A and A : (p<(A*), C) — Pos be the
display that sends any L € p(A*) to the powerset of {(L',p) | L' CL A p €
(L' x L")} ordered by inclusion. The image of an arrow L; C Ly is the natural
inclusion map of AL, into AL,. The concretization function g : D — D? maps
any (L,X) to {(L',=)|L'CLA(L,=)e X}.

We will make a fiberwise approximation of A, but we first need some nota-
tions. For any function f: X — Y we denote by pf : (p(X),C) — (p(Y), C)
its powerset extension. That is, for any A € p(X), pf(A) = {f(z) | z € A}. If
fi: X1 — Y7 and fo : Xo — Y5 are two functions, we denote by f; x fo :
X1 x Xy — Y] x Y; the function that maps (z1,x2) to (fi(z1), f2(z2)).

We choose to abstract the domain L of an alias relation by a regular language.
It is represented by an automaton (@), I, 7) over A which consists of a finite set of
states @), a set of initial states I C @), and a transition relation 7 € p(Q x A X Q).
Since L is prefix-closed all states of the automaton are terminal. A morphism

Aq AN Ay between two automata Ay = (Q1,[1,71) and As = (Q2, 2, 72) is
given by two functions fo : Q1 — Q2 and f1 : 71 — 72, such that fo(I1) C I»
and for all (¢,a,q") € 71, fi(g,a,q") = (fo(q),a, fo(¢')). Automata over A with
morphisms between them form a category A. In order to keep this category
small and representable we suppose that all states come from an infinite and
recursively enumerable set Q.

A path 7 of an automaton A = (@, I, 7) is a sequence of adjacent transitions
(g0, a0,q1)(q1,01,42) - - - (qn, Gn, qn+1) such that go € I. Let Paths(A) be the set
of paths of A. We denote by i(m) the initial state of 7, by ¢(r) its terminal state
and by £(x) the word labelling 7. Let R : A — Pos be the functor that sends
any automaton A to the poset (p(Paths(.A) x Paths(.A)), C) of binary relations

over paths of 4. A morphism of automata A; N As induces a function f* :
Paths(A;) — Paths(Ay) in the obvious way. We therefore define Rf to be
p(f* x f7).

Let A: A — (p<(A*),C) be the functor that sends any automaton to the
language that it recognizes and any morphism to the inclusion arrow. For any
automaton A = (Q,1,7) in A, let k% : RA — (A o A)A be the morphism in
Pos that sends any relation p in R.A to the set of pairs (L, pe) for which there
exists a function A € L — Paths(.A) such that:

-~ VYw e L:{(A\(w)) =w.
—VYweL:Vace A: (waeLl)A(MNw)=r) = Jo €7:\Nw.a)=r0.
— VYu,v € L: (u,v) € po = (u=10v)V (AMu), A(v)) € p).

Proposition 10. &° defines a laxz natural transformation R ~~~ Ao A.

Therefore (A, k%) induces a fiberwise approximation of D. Following the ideas
developed in [Deu92a, Deu92b] we now introduce a numerical abstraction of
paths in an automaton. It basically amounts to abstracting a path by the number
of times it runs through each arrow of the automaton.

Let A = (Q, I,7) be an automaton of A. We denote by R(A) the set (I x Q)?.
Let R” : A — Pos be the functor that sends an automaton A = (Q,I,7) to
the set R(A) — p((r — N)?) ordered by pointwise inclusion. If V and W
are two finite sets and f : V — W is a function between them, we define the
function f¥: (V — N) — (W — N) as follows:

Voe(V—N:f(p)E Xy Y. pla)
zef~1(y)

Let A; = (Q1,11,71) and Az = (Q2,Is,72) be two automata and A SN As
be a morphism between them. We denote by fr : R(A;) — R(As) the function
that maps (,¢,i',t") to (fo(i), fo(t), fo(i'), fo(t")). We define R” f as follows:

RYf = M- dr A % f7) () | 3" € ft(r) - p € p(r')}

For any path n of an automaton (@,I,7), we denote by #° its commutative
image, that is the function 7° : 7 — N that associates to each transition o € 7
the number |7, of times it occurs in .

For any A = (Q,1,7) in A, let kY : R“A — RA be the morphism in Pos
that sends any p in R” A to the element { (w1, m2) | (77, 79) € p(i(m), t(m1),i(m2),
t(m2))} of RA. In other words we approximate a path in an automaton by the
pair of its initial and final states together with its commutative image.

Proposition11. &' defines a laz natural transformation R ~~~ R.

If Id, is the identity functor on A, (Ida, ') provides a fiberwise approximation
of the cofibered domain given by the display R : A — Pos.

Now it remains to give a computable approximation of the poset (p(V —
N),C) for any finite set V, in order to obtain an effective abstract domain.
Several abstractions of this kind have been developed like the arithmetic intervals
[CCT6], the arithmetic congruences [Gra89], the linear equalities [Kar76], the
linear inequalities [CHT8] or the linear congruence equalities [Gra91l]. We will
not stick to any particular one and leave the choice of the numerical abstraction
as a parameter of our domain. We therefore give an abstract description of a
numerical domain.

Definition 12 Abstract numerical domain. An abstract numerical domain
VE associates to each finite set V a lattice (VIV, %, L4 1f T% 1) together
with a concretization vy : (Vf, EE/) — (p(V — N), Q). If V and W are finite
sets and f : V — W is a function between them, there is a computable function

Vif VIV — VAW, such that pfYoyy C ywoVif . IfV e Wisan injection,

there are two computable functions ? : VRV — VIV and 7 VEW — VIV
such that:

— Wt € VIW :Vw €y () s v o f (T ().
~ Vit € VIV V€ v (i) s {r €W — N [vo f =} S yw (F (1)),
O

Moreover, if S is a system of linear equations over the set of variables V', there
is a computable element Solg/ (S) of V¥V which upper-approximates the set of
solutions of S in V' — N. For all previously cited numerical domains, V¥ can be
shown to be a functor from the category Finset of finite sets and functions to
Pos. We will omit the subscript V' in the previous definitions whenever it will
be clear from the context.

Ezample 6. In Karr’s domain [Kar76], an element of (V' — N) is upper-
approximated by an affine subspace of QV, where Q is the field of rational
numbers. An affine subspace of Q¥ can be defined by a system of affine equa-
tions over the set of variables V. Any function f : V' — W induces a linear
map fo : Q¥ — QW. Thus V¥f is the function that sends any affine subspace
of Q” to its image by fo. If f is an injection, ? is the orthogonal projection of
affine subspaces of Q" onto QY. If S is a system of equations defining an affine
subspace E of QV, ?(E) is the solution in Q" of the system obtained from S
by replacing every occurrence of a variable z by f(z). Finally, for any system of
affine equations S, Solié/ (S) is computable by standard methods. O

If V and W are finite sets we denote by V & W their disjoint union. We will
tacitly use the natural isomorphism (V — N) x (W — N) = (Ve W) — N
in the sequel. Let R : A — Pos be the functor that sends an automaton
A= (Q,I,7) to Vir ®7),Chy,). Let A = (Q1,11,7) and A = (Qa, I,)
be two automata and A; N As be a morphism between them. We define R¥ f
as follows:

REFENph e - Lo DY X D) (00 ()) |7 € f2 ()

Now to each automaton A = (Q, I, 7) we associate the morphism r? : RfA —
RY A in Pos defined as follows:

K23 = A A vrar (PF(r)

Proposition 13. 2 defines a lax natural transformation Rf ~~~ RY.

(Ida, ?) induces a fiberwise approximation of the cofibered domain associated to
RY. If we denote by D! the cofibered domain given by the display R — Pos,
we obtain a concretization function v : D! — D by composing all previous
approximations.

It now remains to define the abstract semantics of the two assignment in-
structions over DFf. We first need to define the abstract counterpart to the right-
regular equivalence closure operator [—]y. Since the closure of a relation by this
operator can be seen as a fixpoint computation, we will use the techniques of
Sect. 2 to perform an abstract computation locally over a fiber of DF.

Definition 14. Let A = (Q,1,7) be an automaton. We define the binary rela-
. clo # B
tion — over R*A as follows:

() If p*((q1, @), (q},¢5)) = v*, then p clo, pﬁ. where

f — ! !
oy J vt ifr=((g1, %), (q1,92))
pelr) = {J_Ii otherwise

@) Let T =T =Ty = rand T = T1 T & Ty. Let Ty @ Tp »Los T
T5 d T3 LN T and T}, & T3 N T be the canonical inclusion maps in
Finset. If p((q1,%), (df,¢5) = vf and p*((¢},45), (¢}, 45)) = vi, then

clo

Pt =% ph where

ph(r) = {7(?@%) T2 () if r = (a1, 2), (af)
1t otherwise

(iii) If o1 = (g2,a,q3) and 02 = (¢3,a,q3) are in 7, then let Ty = Tp = T,
Si={o}, So={o}and T =T, Ty & S, & Sy. Let T, & Ty =+ T be
the canonical inclusion map and T} ®T5 LN T be the inclusion map such

that fo(o1) € S and fo(o2) € So. Let S be the system of affine equations
over T defined as follows:

{fz(ffl) = fi(o1) +1
f2(02) = fi(o2) +1

If p*((q1,q2), (q1,4%)) = vt then pf clo, pﬂ. where

pilr) = {%(HM) ¥ SolH(S)) i r = ((41,40), ()
¢ 1t otherwise

Let F%, € RFA — R*A be the map defined as:

i l
Ff, = Mof | 4ok | p* =5 ok}

Every previously cited numerical domain comes with a widening operator on
each lattice V#V for any finite set V. Then, for any p* in RfA we define [pﬁ]f4
to be the limit of the iteration sequence with widening of Proposition 2 applied
to Filo, using p* as a basis for the iteration and the widening defined locally on

the fiber RIA. a

We also need the abstract counterpart to the quotient operation w~!L over
languages.

Definition 15. Let (A, p*) be an element of D* and a € A. We define Elim, (A,
gy def o 48 M .
p*) = (AL, pi) as follows:

~If A= (Q,I,7), then Ay = (Qy,I+,74), where Q; = Q, Iy = I and 7y =
TN(Q x (A\{a}) x Q).

of $
—Ifr @ A @ 7 is the natural inclusion map, then p?[=7

(PH. O
We can now define the abstract semantics of the assignment instructions. In
the following we suppose that we are provided with two distinguished elements

2 and ' in Q. Moreover, if f € Q@ — Q' is a function between finite subsets
of @, we will denote by f the function f xIds X f € QX AXQ — Q' x Ax(Q'.

Definition 16 Abstract semantics of := y.w. For any (A, pf) € Df let
((Qer 1o, 7e), p) %2 Elim, (A, p!) and P, & {r € Paths(A4,) | {(r) = y.w}.
We put

QTEQQ@ @Qo@ @{Q}

TEP, TEP,

Let Qo ——» Q+, Qo -~ @+ and {02} LN Q@+, ™ € P,, be the canonical inclu-
sion maps in Finset. We put I; = e(I,) U {o-(2) | m € P} and 74 = &(7s) U
{(0x(2),7,e,(t(r))) | = € Po}. We then define the automaton A; = (Qs, Iy, 7).
Let A; L A T A+ S A; be a coproduct diagram in A and let 7 € P,. We
define the system of affine equations S over 71 ® 7 as follows:

1 if o = L%(Oﬂ'(n)axaeﬂ'(t(ﬂ—)))

o =21 |7, if o =} oE(c)
0 otherwise
ocET DTt

We define the element pf of R*(A;) as follows:

() {Solﬁ(&a if 1 = (o ei(m)), 1 o e(t(m), (1 0 0x(12),15 o ex(t(m))))

T J_ﬂTT @r, Otherwise

Finally we put

{o == y.wl (A, p") = (A, Vo) () L || ttpﬁi]iu)

TEP,

Definition 17 Abstract semantics of = := f(z1,...,2,). For any (A4,p}) €
def

Dt let ((Qo, Lo, 7e), pb) = Elim, (A, p!) and P, & {(my,...,m,) | Vi € {1,...,
n} : m; € Paths(A) A £(m;) = x;}. We put

Qi = Qe P (@Q.) o P {22}

a€cP, i=1 acP,

Let Qo —— Qi) Qo — Q; and {2, 2"} »2*» Q:, a € P, 1 < i <n, be the
canonical inclusion maps in Finset. We put I} = e(l,) U {0a(2) | @ € P.}

and 7 = €(re) U {(0a(£2),7,04(2)) | @ € P} U {(Oa(ﬂ') Ji e (t(m)) [a =
(771,.. ,Tn) € Pol. We then define the automaton A; = (Qy, I, 7). Let
Ay —~ A+ 11 AT S A be a coproduct diagram in A. Let a = (m1,...,7m,) €

P, and i € {1,...,n}. We define the system of affine equations S!, over 7y & 7y
as follows:

Lif o = 13(0a(£2),7,0a(12')) or o = 13(0a(12'), fi, e, (t(mi)))

o=1 lif o = oe(m;)
0 otherwise
ocETIDT;

We define the element pﬁa,i of R¥(A;) as follows, where we put I; = i(r;) and
T; = t(m):

F) {Solﬁ(Sé) if r=((t5(e(L)), 15(e(T2))), (15 (0a (), 15 (5 (T2))))

AT .
Pasi J-ﬁq@q otherwise

Finally we put

for = flan, o o) (A 2 (An Do [] ")

acP, 1<i<n

O

Theorem 18 Soundness of the abstract assignment. Let « be an assign-
ment instruction. For any (A, p*) € D* and any (L, =) € go (A, p'), we have:

{al (L, =) € gov({alt(4, ")
where g is the concretization function from D into D' defined previously.

It remains to define a widening on the category A. The idea is to fold states
in an automaton that “look similar”. This is achieved via the quotient of an
automaton by an equivalence relation.

Definition 19 Quotient of an automaton. Let A = (Q,I,7) be an automa-
ton of A and ~ be an equivalence relation on). We denote by 7. € Q@ — @/~
the canonical projection onto the quotient set?>. We define A/, = (Q [y (D),
r.) where 7 & {(r(q),0,7~(4)) | (¢, 0,4') € T}. O

Let A =(Q,I,7) be an automaton and k > 1 be a fixed integer. For any ¢ € @
we denote by A’;(A) the set of words w € A* of length less than or equal to
k such that there exists a path originating from ¢ in the automaton which is
labelled by w. We define E’% to be the least equivalence relation on) such that:

~(ieDAn@{@el)= (i=ki).

~ ((ga,0) €7) A ((g,0,2) €7) = (01 =% o).

— (A5(A) = A5 (A) A (A5(A) N AF £ 0) = (¢ =% ¢).
Now let A1 = (@1, [1,71), A2 = (Q2, I, 72) be two automata, A their coproduct
and A; — A, Ay 2+ A the canonical inclusion maps. We define

A Vids & A/

We can extend the projection T=t to a morphism of automata T=t € A —
A1V Ay For i € {1,2}, we define

(A1 Vi Az); = fz’% 0 €;

In other words, we make A deterministic and we fold two states that cannot
be distinguished by only looking at prefixes of length at most k of the paths
originating from them. This widening criterion is inspired from the k-limiting
approximation of [JM81].

Proposition 20. For any k € N, V}, is a widening operator on A.

Ezxample 7. Consider the program of Example 5. We use Karr’s abstract numeri-
cal domain. Since it satisfies the ascending chain condition the widening is given
by the join. We use the widening V; on automata. The analysis computes the el-
ement (A, p*) of D!. The automaton A is given by the following diagram® where
a distinct name in the set 7 = {4, 4, k,1,m} has been assigned to each transition:

2 Strictly speaking @)/~ is a representative of the quotient set in Q.

% The auxiliary variables introduced to guarantee the linearity of assignment instruc-
tions have been removed. We have also trimmed the automata produced during the
analysis by eliminating all useless transitions.

If we denote by 7 s 73T «2— 1 a coproduct diagram in Finset, p*((qo, ¢2),
(go, g2)) is given by the following system of affine equations:

u(j) =2(k) =1
2(j) = u(k) =0
u(l) = w2(l)
t1(m) =12(m) =1
L1 (Z = L2 Z) =0
This means that no spurious alias relation has been inferred. d

6 Conclusion

We have described the core of an alias analysis for untyped programs based upon
cofibered domains. Deutsch’s framework [Deu92b, Deu94] can be applied to such
programs by extracting datatype declarations from the results of a first analy-
sis phase (using for example a grammar-based analysis [CC95]). However the
precision of the alias information heavily relies on the approximation of access
paths in data structures by a regular automaton. A separate analysis would pro-
duce poor results whenever the alias information interfers with the control flow
(pointer equality tests, closures). This is especially obvious for mobile processes
where the evolution of a program entirely depends on the sharing of commu-
nication ports. The techniques described in this paper have been successfully
applied to design an analysis of the communications in the w-calculus [Ven96].
Work in progress investigates the application of cofibered domains to analyses
based upon the class of context-sensitive tree grammars introduced in [CC95].

Acknowledgements: I am grateful to Radhia Cousot for helpful comments on
first versions of this work. All diagrams in this paper have been designed using
Paul Taylor’s and Paul Gastin’s ETEX packages.

References

[Bou92] F. Bourdoncle. Abstract interpretation by dynamic partitioning. Journal of
Functional Programming, 2(4), 1992.

[BW90] M. Barr and C. Wells. Category Theory for Computing Science. Prentice
Hall, 1990.

[CCT76] P. Cousot and R. Cousot. Static determination of dynamic properties of pro-
grams. In Proceedings of the 2"¢ International Symposium on Programming,
pages 106-130, Paris, 1976. Dunod.

[CCT77] P. Cousot and R. Cousot. Abstract interpretation : a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the 4" ACM Symposium on Principles of Programming
Languages, pages 238-252, Los Angeles, California, U.S.A., 1977.

[CCT9] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In 6" POPL. ACM Press, 1979.

[CC92a]

[CC92b]

[CC95]

[CHTS]

[Cou78]

[Cou96]

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
logic and computation, 2(4):511-547, August 1992.

P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, Programming Language Implementation and Logic Pro-
gramming, Proceedings of the Fourth International Symposium, PLILP’92,
volume 631 of Lecture Notes in Computer Science, pages 269-295, Leuven,
Belgium, August 1992. Springer-Verlag, Berlin, Germany, 1992.

P. Cousot and R. Cousot. Formal language, grammar and set-constraint-
based program analysis by abstract interpretation. In Conference Record of
FPCA’95. ACM Press, 1995.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5* POPL. ACM Press, 1978.

P. Cousot. Méthodes itératives de construction et d’approzimation de points
fizes d’opérateurs momnotones sur un treillis, analyse sémantique des pro-
grammes. PhD thesis, Université Scientifique et Médicale de Grenoble, 1978.
P. Cousot. Abstract interpretation in categorical form. To appear, 1996.

[Deu92a] A. Deutsch. Operational models of programming languages and representa-

tions of relations on regular languages with application to the static determi-
nation of dynamic aliasing properties of data. PhD thesis, University Paris
VI (France), 1992.

[Deu92b] A. Deutsch. A storeless model of aliasing and its abstraction using finite

[Deud4]

[Gra89]

[Gra91]

[Gra92]

[TM81]

[Jon81]
[Kar76]

[Kel74]

[Ven96]

representations of right-regular equivalence relations. In Proceedings of the
1992 International Conference on Computer Languages, pages 2-13. IEEE
Computer Society Press, Los Alamitos, California, U.S.A., 1992.

A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-
limiting. In ACM SIGPLAN’9) Conference on Programming Language De-
sign and Implementation. ACM Press, 1994.

P. Granger. Static analysis of arithmetical congruences. International Jour-
nal of Computer Mathematics, 30:165—-190, 1989.

P. Granger. Static analysis of linear congruence equalities among variables
of a program. In TAPSOFT’91, volume 493. Lecture Notes in Computer
Science, 1991.

P. Granger. Improving the results of static analyses of programs by local de-
creasing iterations. In 12" Foundations of Software Technology and Theoret-
tcal Computer Science, Lecture Notes in Computer Science. Springer Verlag,
1992.

N. Jones and S. Muchnick. Flow analysis and optimization of lisp-like struc-
tures. In Program Flow Analysis: Theory and Applications, pages 102-131.
Prentice Hall, 1981.

H.B.M Jonkers. Abstract storage structures. In De Bakker and Van Vliet,
editors, Algorithmic languages, pages 321-343. IFIP, 1981.

M. Karr. Affine relationships among variables of a program. Acta Informat-
ica, pages 133-151, 1976.

G.M. Kelly. On clubs and doctrines. In A. Dold and B. Eckmann, editors,
Category seminar, volume 420 of Lecture Notes in Mathematics, pages 181—
256. Springer Verlag, 1974.

A. Venet. Abstract interpretation of the 7-calculus. 5" LOMAPS Workshop
on Analysis and Verification of High-Level Concurrent Languages, 1996.

