Abstract Interpretation of the π-Calculus

Amaud Venet*

LIX, École Polytechnique, 91128 Palaiseau, France.

venet@lix.polytechnique.fr

http://lix.polytechnique.fr/~venet

Abstract. We are concerned with the static analysis of the communication topology for systems of mobile processes. For this purpose we construct an abstract interpretation of a large fragment of the π-calculus which can be used as a metalanguage to specify the behaviour of these systems. The abstract domain is expressive enough to give accurate descriptions of infinite and non-uniform distributions of processes and communication channels. We design appropriate widening operators for the automatic inference of such information.

1 Introduction

The static analysis of communicating processes with dynamically changing structure - commonly called mobile processes - has been mostly studied in the particular case of CML-like programs [NN94, Col95a, Col95b]. The design of these analyses heavily depends on type and control-flow information that is specific to CML. In this paper we propose an analysis of communications in the π-calculus [Mil91, MPW92]. Our choice is motivated by the fact that the π-calculus is a widely accepted model for describing mobile processes. It is fairly simple and yet very expressive, since it can encode data structures [Mil91], higher-order communication [Mil91, San94a] and various λ-calculi [Mil92].

Our purpose is to analyze the communication topology of a system of mobile processes, i.e. the distribution of processes and communication channels during the evolution of the system. In the standard semantics of the π-calculus this information is encoded within a process algebra. We construct a refinement of this semantics where an instance of a process at a certain stage of evolution of the system is represented by the sequence of internal computations that lead to it. The communication channels are represented in turn as the congruence classes of an equivalence relation over the communication ports of all process instances. This semantic model originated in the study of data structures [Jon81] and has been successfully applied to the alias analysis of ML-like programs by A. Deutsch [Deu92a, Deu92b, Deu94] who designed a powerful analysis based on Abstract Interpretation [CC77, CC92].

C. Colin [Col95b] further extended Deutsch’s work and built an analysis for a subset of CML which can discover non-uniform descriptions of infinitely growing communication topologies. However, the whole framework relies on having a

* This work was partly supported by ESPRIT BRA 8130 LOMAPS.
good approximation of the control-flow of the program before doing the analysis of communications. Whereas a closure analysis can be used for higher-order CML programs, there is no realistic solution for the \(\pi\)-calculus where the only kind of computation is communication. Therefore we design a new abstract interpretation which gets rid of this problem and still ensures a comparable level of accuracy. We use the technique of \textit{cofiltered domains} introduced in [Ven96] which allows us to infer \textit{simultaneously} an approximation of control-flow and communications.

The paper is organized as follows. In Sect. 2 we present the syntax and semantics of the \(\pi\)-calculus. The refined semantics is described in Sect. 3. In Sect. 4 we present the basic concepts of Abstract Interpretation. We construct an abstract domain for the analysis of the \(\pi\)-calculus in Sect. 5. The abstract semantics of the \(\pi\)-calculus is described in Sect. 6. In Sect. 7 we design widening operators in order to make the analysis effective.

\section{The \(\pi\)-Calculus}

The basic entities in the \(\pi\)-calculus are \textit{names}, which are provided to represent communication channels. The key point is that computation is restricted to the transmission and reception of names along channels. There are various possibilities of defining processes in the \(\pi\)-calculus, depending on the way communication, recursion and nondeterminism are handled. Our presentation is based on a subset of the \textit{polyadic} \(\pi\)-calculus [Mil91]. Let \(X = \{x, y, \ldots\}\) be an infinite set of names. The syntax of \(\pi\)-terms \(P = \{P, Q, \ldots\}\) is given by the following grammar:

\[
P ::= \sum_{i \in I} \pi_i.P_i \quad \text{guarded sum of finitely many processes}
\]

\[
| \quad P \parallel Q \quad \text{parallel composition}
\]

\[
| \quad \nu x.P \quad \text{restriction}
\]

\[
| \quad \lambda x.P \quad \text{guarded replication}
\]

\[
\pi ::= t | o \quad \text{atomic action}
\]

\[
| \quad t ::= x(y) \quad \text{input}
\]

\[
| \quad o ::= y[x] \quad \text{output}
\]

where \(y\) is a (possibly empty) tuple \((y_1, \ldots, y_n)\) of pairwise distinct names. We denote by \(\emptyset\) the empty sum of processes (that is when \(I = \emptyset\)). We call a nonempty sum \(\sum_{i \in I} \pi_i.P_i\) of processes an \textit{agent}, and a replication\(^2\) \(\lambda x.P\) a \textit{server}. We use the common abbreviation that consists of omitting the trailing \(\emptyset\) in \(\pi\)-terms. The restriction \(\nu x.P\) binds the name \(x\) in \(P\) and an input guard \(x(y_1, \ldots, y_n)\) in \(P\) binds the names \(y_1, \ldots, y_n\) in \(P\). We denote by \(fn(P)\) the set of names occurring free in a process \(P\). If \(x\) and \(y\) are tuples of names of the same length, we denote by \(\{y/x\}\) the substitution that maps any \(x_i\) to \(y_i\). The standard operational semantics of the \(\pi\)-calculus is given by a structural congruence \(\equiv\) and a reduction relation defined in Fig. 1 and Fig. 2.

\(^2\) We use a restricted form of replication inspired from the one involved in the definition of \(\mu\text{CR}\) [Mau95]. Yet it is expressive enough to perform all major constructions in the \(\pi\)-calculus (data structures, higher-order communication, etc.).
Let \equiv be the smallest congruence relation on P which satisfies the following axioms:

- $P \equiv Q$ if P and Q are α-convertible.
- $(P/\equiv, |, 0)$ is a commutative monoid.
- $\nu x.\nu y.P \equiv \nu y.\nu x.P$.
- $\nu x.0 \equiv 0$.
- $\nu x.(P | Q) \equiv P | \nu x.Q$ whenever x is not free in P.

\[\begin{array}{c}
\frac{P \rightarrow P'}{P | Q \rightarrow P' | Q} & \frac{P \rightarrow P'}{\nu x.P \rightarrow \nu x.P'} \\
(\cdots + x(y).P + \cdots) | (\cdots + \pi[z].Q + \cdots) \rightarrow \{z/y\}P | Q & \nu x(y).P | (\cdots + \pi[z].Q + \cdots) \rightarrow \{z/y\}P | \nu x(y).P | Q \\
\end{array} \]

\[\begin{array}{c}
P \equiv P' & P' \rightarrow Q' \\
\hline
P \rightarrow Q & Q' \equiv Q
\end{array} \]

Fig. 1. Structural congruence

Fig. 2. Process reduction

We model a system S of mobile processes by a closed π-term. The evolution of the system is determined by the internal communications. The structural laws allow us to rewrite a π-term in order to bring communicands in juxtaposition. They are the analogue of the heating/cooling rules of the Chemical Abstract Machine [BB92]. In the chemical metaphor, a π-term is a syntactic encoding of a "solution of floating ions", i.e. a multiset of agents and servers, in which reaction is communication. The structural congruence identifies all encodings of the same solution. In particular, any closed process P is structurally equivalent to a term of the following form:

\[\nu x_1 \cdots \nu x_n (A_1 | \cdots | A_m | S_1 | \cdots | S_n) \]

where the A_i are agents and the S_j are servers, such that each name occurring free in any one of the A_i or S_j lies in $\{x_1, \ldots, x_l\}$. Intuitively, this π-term exhibits the communication topology of P, i.e. all active agents and servers linked together by communication channels. Whereas the A_i and S_j are unique (up to permutation of the indices), the decomposition (\ast) is not, because of α-renaming and the possibility to add and remove useless channel names by structural rewriting.\(^3\)

\(^3\) If $x \not\in \text{fn}(P)$, $\nu x.P \equiv P$.

Hence, we will define this notion more formally and unambiguously using hypergraphs.

The notion of hypergraph is a generalization of that of graph where an edge can connect more than two vertices. More precisely, an undirected hypergraph H labelled over L is given by a set V of vertices, a set E of hyperedges, a boundary function $\partial : E \to \varphi(V)$, and a labelling function $\lambda : E \to L$. We identify hypergraphs which only differ by a bijective renaming of their vertices and hyperedges, i.e. we consider abstract hypergraphs.

Definition 1 Communication Topology. Let P be a closed π-term and $A_1, \ldots, A_m, S_1, \ldots, S_n$ be the agents and servers appearing in decomposition (\ast). The communication topology $\mathcal{T}_c(P)$ of P is the undirected hypergraph $(V, E, \partial, \lambda)$ labelled over the set $\{a, s\}$ where:

1. $V = \bigcup_{i=1}^{m} fn(A_i) \cup \bigcup_{j=1}^{n} fn(S_j)$.
2. $E = \{(a, 1), \ldots, (a, m), (s, 1), \ldots, (s, n)\}$.
3. $\partial(a, i) = fn(A_i)$, $\partial(s, j) = fn(S_j)$.
4. $\forall (t, x) \in E : \lambda(t, x) = t$. \square

Note that the definition is not ambiguous because we are working with abstract hypergraphs. Hyperedges represent processes that are “glued” together via vertices which are communication ports. The labelling of hyperedges represents the type of each process appearing in the communication topology, either agent (a) or server (s).

Given a system S of mobile processes represented as a closed term of the π-calculus, we are interested in the communication topology of the system at any stage of its evolution, that is in the following set of hypergraphs:

$$\mathcal{T}_c^n(S) \overset{\text{def}}{=} \{ \mathcal{T}_c(P) \mid S \to^* P \}$$

Example 1. Let S be the closed π-term

$$\nu (a_1 \omega x_1 \bar{a}(x_1) \nu y \nu z \bar{a}(y, z) \bar{a}(z))$$

After $n > 0$ computation steps, the system is structurally equivalent to the process

$$\nu \omega x_1 \ldots \omega x_n (\bar{a}(x_1, x_2) \ldots \bar{a}(x_{n-1}, x_n) \bar{a}(x_n) \nu y \nu z \bar{a}(y, z) \bar{a}(z))$$

whose communication topology is given by the following hypergraph:
where boxes (resp. circles) represent hyperedges (resp. vertices).

Our goal is to discover automatically a finitely representable superset of $\mathcal{T}_{\pi}(S)$. We will apply techniques coming from the area of alias analysis [Ven96], but this requires first to refine the standard semantics of the π-calculus.

3 Nonstandard Semantics of the π-Calculus

Let S be a closed π-term. A careful inspection of the reduction rules of Fig. 2 shows that any active agent or server of a process P such that $S \to P$, is a residual of a subterm of S, i.e. a process sQ, where s is a substitution and Q is a subterm of S. In particular, several residuals of a same subterm of S can only be obtained by repeated requests to a server via communication. Thereby, we can uniquely identify an active process in P with the sequence of requests to servers during the computation $S \to P$ that contributed to create the process, together with the subterm of S from which it is a residual.

We use this idea to construct a new operational semantics of the system S of mobile processes.

In order to simplify the presentation of the semantics, we assume that S is in normal form, given by the following grammar:

$$
N ::= 0 | \nu x_1 \ldots \nu x_m.\left(\sum_{i \in I} AS_i\right) \mid \sum_{i \in I} \pi_i N_i
$$

where $I \neq \emptyset$ and ν, π are the atomic actions of the π-calculus defined in Sect. 2. Moreover, we require that all variable bindings in S be pairwise distinct. Any process can always be brought into normal form by using the structural laws.

We uniquely label each occurrence of an agent or a server in S. Let $\mathcal{L}(S)$ be the set of these labels, and $\mathcal{A}(S)$ be the subset corresponding to all labels of agents. For any $\ell \in \mathcal{L}(S)$, we denote by S_ℓ the process labelled by ℓ. A configuration in our operational semantics is a pair (Φ, \rightsquigarrow) where:

1. Φ is a function from $\mathcal{L}(S)$ into $\hat{\mathcal{A}}(\mathcal{A}(S)^\pi)$ such that, for each $\ell \in \mathcal{L}(S)$, $\Phi(\ell)$ is finite.
2. \rightsquigarrow is an equivalence relation over the following set:

$$
\text{Ports}(\Phi) \triangleq \{(\ell, L, x) \mid \ell \in \mathcal{L}(S), L \in \Phi(\ell), x \in \text{fn}(S_\ell)\}
$$

The function Φ associates to each label ℓ the set of residuals of S_ℓ in the configuration. A residual is identified with the sequence of agent labels which were involved in the creation of the process via requests to servers. $\text{Ports}(\Phi)$ is the set of communication ports corresponding to the distribution of processes Φ. The communication channels are given by the congruence classes of the channel relation \rightsquigarrow which expresses the links between ports. Note that since we use the \rightsquigarrow relation, we get rid of problems of name generation and α-conversion.

\footnote{This idea is somehow related to the notion of locality developed for process algebras [BCHK94, Sm94b].}
as it is the case in the standard semantics. The nonstandard semantics gives
more information than what is really needed to define the communication topo-
logy. However, this higher level of expressivity is required to design an accurate
abstract interpretation, as we will see in Sect. 5.

We denote by \(\mathcal{C}(S) \) the set of all configurations \((\Phi, \rightsquigarrow) \). If \(\Phi \in \mathcal{L}(S) \longrightarrow \rho \) \((A(S^*)) \) and \(\rho \) is a binary relation over \(\text{Ports}(\Phi) \), we denote by \([\rho]_{\Phi}\) the smallest equivalence relation over \(\text{Ports}(\Phi) \) containing \(\rho \). We denote by \(\cup \) the pointwise inclusion on \(\mathcal{L}(S) \longrightarrow \rho \) \((A(S^*)) \). The nonstandard operational semantics of \(S \) is given by a transition relation \(\Rightarrow \) on \(\mathcal{C}(S) \) defined in Fig. 3 and Fig. 4. The semantic rules require a few explanations. In the case of communication between
two agents (Fig. 3), the instances of \(S_{t_i} \) and \(S_{t_j} \) are removed from \(\Phi \) and new
instances of the \(S_{t_i} \) and \(S_{t_j} \) are created with the same residual as their parent
process. The channel relation is defined on the process distribution \(\Phi \cup \Phi' \) in-
cluding the communicants and the newly released processes. The relation \(\rightsquigarrow_c \)
implies communication, i.e., it links \(y_i \) and \(t_i \) in all spawned processes that
involve these names. The role of \(\rightsquigarrow_i \) and \(\rightsquigarrow_o \) is to bind the free names in the \(S_{t_i} \)
and \(S_{t_j} \) to the corresponding ones in the parent processes. Finally \(\rightsquigarrow_p \) relates all
occurrences of a newly created name among the processes spawned by the sender
and the receiver. This information is then propagated to all other ports by the
transitive closure involved in \([-]_{\Phi'} \). Once this has been done, the restriction
of \(\rightsquigarrow' \) to \(\text{Ports}(\Phi') \) eliminates all information relative to the communicants.
The situation is almost identical for a communication between an agent and a
server (Fig. 4), except that the instance of the server is not deleted. The newly
spawned instances of the \(S_{t_i} \) are assigned the residual \(L_{o_L}_{o_L} \), thus formalizing our
intuition about the meaning of residuals.

In our context, given a closed \(\pi \)-term \(S \) in normal form, we are interested in
computing an upper-approximate of the collecting semantics \([\text{CC77}]\) \(S \) of
\(S \), that is the set \(\{P \mid S \Rightarrow P\} \) of descendants of the initial configuration
in the standard operational semantics. Thereby, we connect the nonstandard
operational semantics with the standard one via a relation \(\kappa \in \rho(P \times \mathcal{C}(S)) \)
defined as follows. If \(\mathcal{L}(S) = \{\ell_1, \ldots, \ell_n\} \) and, for all \(i \in \{1, \ldots, n\} \), \(\Phi(\ell_i) = \{L_{\ell_i,1}, \ldots, L_{\ell_i,k_i}\} \), then

\[
(\rho, (\Phi, \rightsquigarrow)) \in \kappa
\]

whenever \(p \equiv \nu x_1 \cdots \nu x_m (P_{1,1} \cdots P_{1,k_1} \cdots P_{n,1} \cdots P_{n,k_n}) \) where:

- For all \(i \in \{1, \ldots, n\} \) and \(j \in \{1, \ldots, k_i\} \), \(P_{i,j} = s_{i,j} S_{\ell_i} \), where \(s_{i,j} \) is a
substitution such that \(s_{i,j}(\text{fn}(S_{\ell_i})) \subseteq \{x_1, \ldots, x_m\} \).
- \(\forall i, j \in \{1, \ldots, n\} : \forall x \in \text{fn}(S_{\ell_i}) : \forall y \in \text{fn}(S_{\ell_j}) : \forall p \in \{1, \ldots, k_i\} : \forall q \in \{1, \ldots, k_j\} : s_{i,j}(x) = s_{i,j}(y) \iff (\ell_i, L_{\ell_i}, x) \rightsquigarrow (\ell_j, L_{\ell_j}, y) \).

If \(S = v x_1 \cdots v x_n (S_{t_1} \cdots S_{t_n}) \) we denote by \(c_S \) the nonstandard configuration
\((\Phi_S, \rightsquigarrow_S) \) where

\[
\Phi_S(\ell) = \begin{cases} \{\varepsilon\} & \text{if } \ell = \ell_i \text{ for } i \in \{1, \ldots, n\} \\ \emptyset & \text{otherwise} \end{cases}
\]
and \(\equiv_s = \{(\ell_i, v, x), (\ell_j, v, x) \mid 1 \leq i, j \leq n, x \in \text{fn}(S_{\ell_i}) \cap \text{fn}(S_{\ell_j})\}\). Note that \((S, c_S) \in \kappa\). The nonstandard collecting semantics \(S^\#_S\) is given by \(\{c \mid c_S \models c\}\).

Theorem 2. Let \(\Gamma: \psi(\mathcal{C}(S)) \rightarrow \psi(\mathcal{P})\) be the function that sends any set \(C\) of configurations to \(\{p \mid \exists c \in C: (p, c) \in \kappa\}\). Then, \(S_S = \Gamma(S^\#_S)\).

This means that the standard and nonstandard collecting semantics of the \(\pi\)-calculus are equivalent. Note that \(\kappa\) provides a direct way to compute the communication topology associated to a nonstandard configuration \((\Phi, \equiv_s)\), the vertices being given by the congruence classes of \(\equiv_s\).

Example 2. Consider the \(\pi\)-term \(S\) of Example 1 (which is in normal form) that we label as follows:

\[
\nu(x).v.x.(\ell_1 : T[x] \parallel \ell_2 : M(y).v.z.(\ell_3 : e[y, z] \parallel \ell_4 : T[z]))
\]

If \(c_S \models (\Phi, \equiv_s)\), for \(n > 0\), then

\[
\Phi = \left\{ \begin{array}{ll}
\ell_1 & \Rightarrow \emptyset \\
\ell_2 & \Rightarrow \{e\} \\
\ell_3 & \Rightarrow \{\ell_1, \ell_4^i \mid 0 \leq i < n\} \\
\ell_4 & \Rightarrow \{\ell_1, \ell_4^i \mid 0 \leq i < n\} \end{array} \right.
\]

and \(\equiv_s\) is the smallest equivalence relation on \(\text{Ports}(\Phi)\) such that:

- \((\ell_3, \ell_1, \ell_4, y) \equiv_s (\ell_3, \ell_1, \ell_4, z) \iff i = j + 1\)
- \((\ell_1, \ell_1, \ell_4^i, z) \equiv_s (\ell_3, \ell_1, \ell_4^{i+1}, z)\)
- \((\ell_1, \ell_1, \ell_4^i, l) \equiv_s (\ell_2, e, l)\)
- \((\ell_3, \ell_1, \ell_4, c) \equiv_s (\ell_2, e, c), \text{for all } i \in \{0, \ldots, n - 1\}\)

It now remains to build an abstract interpretation of the \(\pi\)-calculus based upon the nonstandard semantics.

4 Abstract Interpretation

Abstract Interpretation [CC77, CC92] provides general frameworks to reason about semantic approximation. Typically, this problem amounts to finding an upper-approximate of the least fixpoint \(S^\#\) of a \(\cup\)-complete endomorphism \(F^\#\) over a complete lattice \((\mathcal{D}, \subseteq, \cup, \bot, \supseteq, \sqsubset, \sqsupset, \sqsubseteq, \sqsupseteq)\), the concrete semantic function.

Example 3. The nonstandard collecting semantics \(S^\#_S\) of a system \(S\) of mobile processes can be shown to be equal to the least fixpoint of the \(\cup\)-complete morphism \(F_S\) defined over \((\psi(\mathcal{C}(S)), \subseteq, \emptyset, \cup, \mathcal{C}(S), \cap)\) as follows (see [CC77]):

\[
F_S \triangleq \lambda X : \{c_S\} \cup \{c \mid \exists c' \in X : c' \Rightarrow c\}
\]

We can thereby apply an abstract interpretation framework to the analysis of the \(\pi\)-calculus. \(\square\)
If
\(- \ell_i, \ell_o \in \mathcal{L}(S),\)
\(L_i \in \Phi(\ell_i), L_o \in \Phi(\ell_o),\)
\(- S_{\ell_i} = \cdots + x(y_1, \ldots, y_m)\nu_{\ell_i}^1 \cdots \nu_{\ell_i}^n | S_{\ell_i 1} \cdots | S_{\ell_i n} + \cdots,\)
\(- S_{\ell_o} = \cdots + x(y_1, \ldots, y_m)\nu_{\ell_o}^1 \cdots \nu_{\ell_o}^n | S_{\ell_o 1} \cdots | S_{\ell_o n} + \cdots,\)
\(- (\ell_i, L_i, x) \sim \sim (\ell_o, L_o, z),\)

then
\[(\Phi, \sim \sim) \Rightarrow (\Phi', \sim \sim')\]

where:
- If we put
\[\Phi_i(\ell) = \begin{cases} \Phi(\ell \rightarrow \{\ell_o\}) & \text{if } \ell = \ell_{\eta} \text{ for } \eta \in \{i, o\} \\ \Phi(\ell) & \text{otherwise} \end{cases}\]

then
\[\Phi'(\ell) = \begin{cases} \Phi'(\ell) \cup \{\ell_o\} & \text{if } \ell = \ell_{\eta} \text{ for } \eta \in \{i, o\}, k \in \{1, \ldots, n_o\} \\ \Phi'(\ell) & \text{otherwise} \end{cases}\]

- \(\sim \sim' = [\sim \sim \cup \sim \sim_1 \cup \sim \sim_2 \cup \sim \sim_3 \cup \sim \sim_4] \cap (\text{Ports}(\Phi') \times \text{Ports}(\Phi'))\)

where:
- \(\sim \sim_1 = \{(\ell_j, L_{\eta_j}, y_{\eta_j}), (\ell_k, L_{\eta_k}, t_{\eta_k}) \mid 1 \leq j \leq m, 1 \leq k \leq n, 1 \leq h \leq m, y_{\eta_j} \in \text{fn}(S_{\ell_j}), t_{\eta_k} \in \text{fn}(S_{\ell_k})\},\)
- \(\sim \sim_2 = \{(\ell_{\eta_j}, y_{\eta_j}), (\ell_{\eta_k}, t_{\eta_k}) \mid 1 \leq j \leq m, y_{\eta_j} \in \text{fn}(S_{\ell_{\eta_j}}) \cap \text{fn}(S_{\ell_{\eta_k}})\},\)
- \(\sim \sim_3 = \{(\ell_{\eta_j}, v_{\eta_j}), (\ell_{\eta_k}, v_{\eta_k}) \mid 1 \leq j \leq n, 1 \leq k \leq n, v_{\eta_j} \in \text{fn}(S_{\ell_{\eta_j}}) \cap \text{fn}(S_{\ell_{\eta_k}})\},\)
- \(\sim \sim_4 = \{(\ell_{\eta_j}, v_{\eta_j}), (\ell_{\eta_k}, v_{\eta_k}) \mid 1 \leq j \leq m, 1 \leq k \leq l, v_{\eta_j} \in \text{fn}(S_{\ell_{\eta_j}}) \cap \text{fn}(S_{\ell_{\eta_k}})\},\)

\[\text{Fig. 3. Interagent communication}\]

Following [CC92], the semantic approximation is achieved via an abstract semantic specification given by a preordered set \((D^x, \preceq)\), the abstract semantic domain, related to \(D^x\) by a concretization function \(\gamma : D^y \longrightarrow D^x\), an abstract basis \(\bot \in D^x\), and an abstract semantic function \(F^x : D^y \longrightarrow D^x\), such that:

1. \(\bot^x \sqsubseteq^x \gamma(\bot^y)\).
2. \(\forall x, y \in D^x : x \preceq y \Rightarrow \gamma(x) \sqsubseteq^y \gamma(y)\).
3. \(\forall x \in D^x : F^x \circ \gamma(x) \sqsubseteq^x \gamma \circ F^x(x)\).

In order to compute effectively an approximation of \(S^x\), we introduce the notion of widening operator.

Definition 3 Widening Operator [CC77, CC92]. A widening on \((D^x, \preceq)\) is a binary operator \(\nabla : D^x \times D^x \longrightarrow D^x\) which satisfies the following properties:

1. \(\forall x, y \in D^x : x \preceq x \nabla y\).
If
 \(- \ell_i, \ell_0 \in L(S),\)
 \(- L_i \in \Phi(\ell_i), L_0 \in \Phi(\ell_0),\)
 \(- S_{\ell_i} \equiv x_{y_1}, y \vdash_{\ell_i} \cdots \vdash_{\ell_i} (S_{\ell_i} \mid \cdots \mid S_{\ell_{0}}),\)
 \(- S_{\ell_0} \equiv \cdots \vdash_{\ell_1}, y \vdash_{\ell_0} \cdots \vdash_{\ell_0} (S_{\ell_0} \mid \cdots \mid S_{\ell_{0}}) + \cdots,\)
 \(- (\ell_i, L_i, x) \sim (\ell_0, L_0, z),\)

then

\[(\Phi, \sim) \Rightarrow \left(\Phi', \sim'\right) \]

where:
- If we put
 \[\Phi'(\ell) = \begin{cases} \Phi(\ell) - \{L_0\} & \text{if } \ell = \ell_0 \\ \Phi(\ell) & \text{otherwise} \end{cases} \]

 then

\[\Phi'(\ell) = \begin{cases} \Phi'(\ell) \cup \{L_0\} & \text{if } \ell = \ell_0 \text{ for } k \in \{1, \ldots, n_0\} \\ \Phi'(\ell) \cup \{L_0, \ell_0\} & \text{if } \ell = \ell_k \text{ for } k \in \{1, \ldots, n_0\} \\ \Phi'(\ell) & \text{otherwise} \end{cases} \]

- \(\sim' = [\sim \cup \sim\ell \cup \sim\ell_0 \cup \sim\ell \cup \sim\ell'] \cap (\text{Ports}(\Phi') \times \text{Ports}(\Phi))\) where:
 - \(\sim\ell = \{(\ell_j, L_{\ell_0}, L_{\ell_1} y_{h_1}), (\ell_k, L_{\ell_0}, L_{\ell_1} t_{h_1}) \mid 1 \leq j \leq n_{\ell_0}, 1 \leq k \leq n_{\ell_0}, 1 \leq h \leq m, y_{h_1} \in \text{fn}(S_{\ell_0}), t_{h_1} \in \text{fn}(S_{\ell_1})\}\)
 - \(\sim\ell_0 = \{((\ell_j, L_{\ell_0}, u), (\ell_k, L_{\ell_0}, u)) \mid 1 \leq j \leq n_{\ell_0}, u \in \text{fn}(S_{\ell_0}) \cap \text{fn}(S_{\ell_1})\}\)
 - \(\sim\ell = \{((\ell_j, L_{\ell_0}, u), (\ell_k, L_{\ell_0}, u)) \mid 1 \leq j \leq n_{\ell_0}, u \in \text{fn}(S_{\ell_0}) \cap \text{fn}(S_{\ell_1})\}\)
 - \(\sim\ell = \{((\ell_j, L_{\ell_0}, v_{h_1}), (\ell_k, L_{\ell_0}, v_{h_1}) \mid j, k \in \{1, \ldots, n_{\ell_0}\}, h \in \{1, \ldots, l_{\ell_0}\}, v_{h_1} \in \text{fn}(S_{\ell_0}) \cap \text{fn}(S_{\ell_1})\} \cup \{(\ell_j, L_{\ell_0}, L_{\ell_1} v_{h_1}), (\ell_k, L_{\ell_0}, L_{\ell_1} v_{h_1}) \mid j, k \in \{1, \ldots, n_{\ell_0}\}, h \in \{1, \ldots, l_{\ell_0}\}, v_{h_1} \in \text{fn}(S_{\ell_0}) \cap \text{fn}(S_{\ell_1})\}\}

Fig. 4. Agent-server communication

2. \(\forall x, y \in D^\ell : y \leq x \nabla y,\)

3. For every sequence \(x_{n \geq 0}\) of elements of \(D^\ell\), the sequence \(x_{n \geq 0}\) inductively defined as follows:

\[
\begin{align*}
x_{n \geq 0} &= x_0 \\
x_{n+1} &= x_n \nabla x_{n+1}
\end{align*}
\]

is ultimately stationary.

The approximation of the least fixpoint is obtained as the limit of an abstract iteration sequence with widening.
Theorem 4 Abstract Iterates [CC92]. The iteration sequence \((F^N_n)_{n \geq 0}\) defined as:
\[
\begin{align*}
F^N_0 &= \perp^N \\
F^N_{n+1} &= F^N_n \quad \text{if } F(F^N_n) \preceq F^N_n \\
&= F^N_n \nabla F(F^N_n) \quad \text{otherwise}
\end{align*}
\]
is ultimately stationary and its limit \(S^N\) satisfies \(S^N \sqsubseteq^3 \gamma(S^N)\). Moreover, if \(N \geq 0\) is such that \(F^N_N = F^N_{N+1}\), then \(\forall n \geq N : F^N_n = F^N_N\).

We now have to construct an abstract domain \((D^\ast, \preceq)\) approximating \(\mathcal{C}(S)\) via a concretization function \(\gamma : D^\ast \longrightarrow \mathcal{C}(S)\).

5 Abstract Semantic Domain

We construct \(D^\ast\) as a set of abstract configurations \((\Phi^\ast, \tau(\perp^\ast))\) defined as follows. We represent a set of residuals of a process \(S_I\) by a rational language. More precisely, let \(A\) be the set of automata \((Q, I, T, \tau)\), where \(Q\) is a finite set of states, \(I, T \subseteq Q\) are the initial and final states, and \(\tau \in \varsigma(Q \times A(S) \times Q)\) is the transition relation. In order to keep \(A\) small and representable, we suppose that all states come from an infinite recursive set \(Q\). For any automaton \(A\) in \(A\), we denote by \(\text{Paths}(A)\) the set of successful paths of \(A\), and by \(\tau(A)\) the set of transitions of \(A\). An abstract distribution of processes \(\Phi^\ast\) is a function from \(\mathcal{L}(S)\) into \(A\). An abstract communication port is a tuple \((\ell, i, t, x)\) where \(\ell \in \mathcal{L}(S), x \in fn(S_I), i\) and \(t\) being respectively initial and final states of the automaton \(\Phi^\ast(\ell)\). It describes all concrete ports \((L, L, x)\) where \(L\) is a word labelling a path\(^5\) from \(i\) to \(t\) in \(\Phi^\ast(\ell)\). We denote by \(\text{Ports}^\ast(\Phi^\ast)\) the set of all abstract communication ports associated to \(\Phi^\ast\).

Our representation of the abstract channel relation is based upon a numerical encoding of paths. The aim of this construction is to be able to represent non-uniform channel relations, i.e., to distinguish instances of a process which is recursively spawned. Intuitively, if \(\ell\) is the label of such a process, the automaton \(\Phi^\ast(\ell)\), which is an approximation of the residuals of \(S_I\), certainly contains cycles (since there is potentially an infinity of instances of \(S_I\)). The encoding amounts to assigning a counter to each of these cycles and to identify a residual \(L\) of \(S_I\) by the number of times a path labelled by \(L\) runs through each cycle, i.e., by a tuple of counter values. This idea was first introduced by A. Deutsch [Deu92a, Deu92b] in the context of alias analysis, with a different formulation though. In order to avoid having to find cycles and also to ensure a better precision, we will actually assign a counter to each arrow of the automaton. We now give a formal definition of this construction.

If \(p\) is a successful path in \((Q, I, T, \tau)\), we denote by \(p^\circ\) its commutative image, that is the function from \(\tau\) into the set of integers \(\mathbb{N}\), which maps any transition of the automaton to the number of times it occurs in \(p\). If \(\ell_1, \ell_2 \in \mathcal{L}(S)\) and

\(^5\) We can reduce the number of abstract ports to consider by requiring that there be at least one path in \(\Phi^\ast(\ell)\) from \(i\) to \(t\).
\(\Phi^a(\ell_i) = (Q_i, I_i, T_i, \tau_i) \) for \(i \in \{1, 2\} \), the channel relation between abstract ports is given by a set of tuples \((\ell_1, i_1, t_1, x) \mapsto (\ell_2, i_2, t_2, y)\) where \(\nu \in (\tau_1 \rightarrow \mathbb{N}) \times (\tau_2 \rightarrow \mathbb{N}) \). If we denote by \(i(p) \) (resp. \(t(p) \)) the initial (resp. final) state of a successful path \(p \) of an automaton, this abstract channel relation denotes all pairs \((\ell_1, i_1, t_1, x) \mapsto (\ell_2, i_2, t_2, y)\) for which there exists a successful path \(p_j \) in \(\Phi^a(\ell_j) \) labelled by \(L_j \), such that \(i(p_j) = i_j \) and \(t(p_j) = t_j \), for each \(j \in \{1, 2\} \), and \(\nu = (p_1, p_2) \). Considering commutative images of paths instead of tuples of counter values alleviates us from introducing explicit counter variables which would have led to intricate problems of renaming when it had come to defining the abstract semantics. In the following we will tacitly use the isomorphism:

\[(\tau_1 \rightarrow \mathbb{N}) \times (\tau_2 \rightarrow \mathbb{N}) \cong (\tau_1 \oplus \tau_2) \rightarrow \mathbb{N}\]

where \(\oplus \) denotes the coproduct in the category \textbf{Sets} of sets and functions (i.e., the disjoint union).

In order to guarantee finite representability for the abstract configurations, we require that the set:

\[(\ell_1, i_1, t_1, x) \mapsto (\ell_2, i_2, t_2, y) \cong \{\nu | (\ell_1, i_1, t_1, x) \mapsto (\ell_2, i_2, t_2, y)\}\]

be effectively given. This can be achieved by considering an abstract numerical domain, that is a representable class of subsets of \((\tau_1 \oplus \tau_2) \rightarrow \mathbb{N}\). Several numerical domains have already been developed for abstract interpretation using various kinds of representations: intervals [CC76], arithmetic congruences [Gra89], affine equalities [Kar76], convex polyhedra [CH78] or congruence equalities [Gre91]. They all can be described in an abstract way. Let \textbf{FinSets} be the category of finite sets and functions. If \(f : V \rightarrow W \) is a function between finite sets, we define \(\forall f : \varphi(V) \rightarrow \varphi(W) \) to be the function that maps any \(X \in \varphi(V) \rightarrow \mathbb{N} \) to the set:

\[\{\mu : W \rightarrow \mathbb{N} | \exists \nu \in X : \mu = \lambda w \cdot \sum_{v \in f^{-1}(w)} \nu(v)\}\]

\textbf{Definition 5 Abstract Numerical Domain.} An abstract numerical domain is a functor \(\forall^a : \textbf{FinSets} \rightarrow \textbf{PosSets} \) that sends any finite set \(V \) to a poset that comes with the structure of a lattice \((\forall^a V, \subseteq, \sqcup, \sqcap, \emptyset, \top, \bot)\) and a monotone map \(\gamma : (\forall^a V, \subseteq) \rightarrow (\varphi(V) \rightarrow \mathbb{N}, \subseteq) \). We will omit the subscript \(\forall \) whenever it will be clear from the context. Moreover, if \(V \rightarrow W \) is an arrow in \textbf{FinSets}, then \(\forall f \circ \gamma \subseteq \gamma W \circ \forall f \).

\textbf{Example 4.} We denote by \(\mathbb{Q} \) the field of rational numbers, Karr's abstract numerical domain [Kar76] associates to each finite set \(V \) the set of all affine subspaces of \(V \rightarrow \mathbb{Q} \).\footnote{An affine subspace of \(V \rightarrow \mathbb{Q} \) is a set \(\{p + \lambda_1 e_1 + \cdots + \lambda_n e_n | \lambda_1, \ldots, \lambda_n \in \mathbb{Q}\} \) where \(p, e_1, \ldots, e_n \) are elements of \(V \rightarrow \mathbb{Q} \) addition and multiplication by a scalar being defined componentwise.}
X^d of \mathcal{V}^dV to $X^d \cap (V \rightarrow \mathbb{N})$, whereas \prod^d_V is the intersection and \sqcup^d_V the sum of affine subspaces. An affine subspace of $V \rightarrow \mathbb{Q}$ can equivalently be seen as the set of solutions $\text{Sol}(S)$ of a system S of affine equations $a_1\ell_1 + \cdots + a_n\ell_n = c$ over the variables $V = \{\ell_1, \ldots, \ell_n\}$. □

Thereby, an abstract channel relation \bowtie^d can equivalently be seen as a function of domain $\text{Ports}(\Phi^d_1) \times \text{Ports}(\Phi^d_2)$ that maps any pair $((\ell_1, i_1, t_1, x), (\ell_2, i_2, t_2, y))$ of abstract ports to the element $(\ell_1, i_1, t_1, x) \bowtie^d (\ell_2, i_2, t_2, y)$ of $\mathcal{V}^d(\tau_1 \oplus \tau_2)$. We leave the choice of the abstract numerical domain \mathcal{V}^d as a parameter of our analysis.

Following [Ven96], we provide \mathcal{D}^d with the structure of a cofibered domain. Given two automata $A_1 = (Q_1, F_1, T_1, \tau_1)$ and $A_2 = (Q_2, F_2, T_2, \tau_2)$, we define a morphism $f : A_1 \rightarrow A_2$ as a pair of functions $f_1 : Q_1 \rightarrow Q_2$ and $f_2 : \tau_1 \rightarrow \tau_2$ satisfying the following conditions:

1. $f_1(T_1) \subseteq T_2$.
2. $f_2(T_1) \subseteq T_2$.
3. $\forall q, \ell, q' : f_2(q, \ell, q') = (f_1(q), \ell, f_1(q'))$.

A can thereby be turned into a category. We denote by $\Phi^d(S)$ the product category $\prod_{\ell \in \mathcal{L}(S)} A$. An object of $\Phi^d(S)$ is an abstract distribution of processes previously defined. We now construct a functor Δ from $\Phi^d(S)$ into the category PoSets of partially ordered sets and monotone maps. The image of an object $\Phi^d(S)$ in $\Phi^d(S)$ is the set of all abstract channel relations \bowtie^d over Φ^d ordered by inclusion. We call $\Delta \Phi^d$ the fiber of Δ over Φ^d. Now let $\Phi^d_1 \rightarrow \Phi^d_2$ be a morphism in $\Phi^d(S)$. ΔF maps any abstract channel relation \bowtie^d_1 in Φ^d_1 to the relation \bowtie^d_2 such that, for all $(\ell_1, \ell'_1, t_1, x), (\ell_2, \ell'_2, t_2, y) \in \text{Ports}(\Phi^d_2)$, the set $(\ell_1, \ell'_1, x) \bowtie^d_2 (\ell_2, \ell'_2, y)$ is defined as:

$$\sqcup^d_{\tau_1 \oplus \tau_2} \mathcal{V}^d(F(\ell_1) \oplus F(\ell_2))((\ell_1, i_1, t_1, x) \bowtie^d_1 (\ell_2, i_2, t_2, y)) | F(\ell_1)_{1(ij)} = \ell'_1, \ell_2, i_2, f_2(q_2, \ell, q'_2), \ell'_2, f_1(q_1), \ell, q_1, 1 \leq j \leq 2$$

where $\Phi^d_2(\ell_j) = (Q_j, F_j, T_j, \tau_j)$, for $j \in \{1, 2\}$. We define the preorder \preceq on \mathcal{D}^d from the Grothendieck construction [BW90] applied to Δ, i.e., $\Phi^d_1 \preceq (\Phi^d_2, \bowtie^d_2)$ iff there exists a morphism $\Phi^d_1 \rightarrow \Phi^d_2$ such that $\Delta F(\bowtie^d_1) \subseteq \bowtie^d_2$. We call Δ the display associated to the cofibered domain (\mathcal{D}^d, \preceq). Intuitively, \mathcal{D}^d consists of a category of posets “glued” together. The cofibered structure will play a major rôle in the definition of the abstract semantics and widening operators.

The concretization function $\gamma : \mathcal{D}^d \rightarrow \mathcal{C}(S)$ sends any abstract configuration (Φ^d_1, \bowtie^d_1) to the set of concrete configurations (Φ, \bowtie) for which there exists a family of functions $(A_1 : \Phi(\ell) \rightarrow \text{Paths}(\Phi^d(\ell)))_{\ell \in \mathcal{L}(S)}$ satisfying the following conditions:

7 For each $\ell \in \mathcal{L}(S)$, $F(\ell) : \Phi^d_1(\ell) \rightarrow \Phi^d_2(\ell)$ is a morphism of automata.
1. For all $\ell \in \mathcal{L}(S)$ and $L \in \Phi(\ell)$, the path $\Lambda_{\ell}(L)$ is labelled by L.

2. Let $(\ell_1, L_1, x), (\ell_2, L_2, y)$ be distinct ports of Φ, and p_j be the path $\Lambda_{\ell_j}(L_j)$, for $j \in \{1, 2\}$. We denote by $t_j, j \in \{1, 2\}$, the sets of transitions of $\Phi^d(\ell_j)$.

Then, $(\ell_1, L_1, x) \rightarrow (\ell_2, L_2, y)$ implies that

$$(p_1, p_2) \in \gamma_r \cap (L_1, t(p_1), \ell_1, t(p_2), \ell_2, t(p_2), y))$$

Proposition 6. $\forall \gamma_1, \gamma_2 \in \mathcal{X} : \gamma_1 \preceq \gamma_2 \rightarrow \gamma(\gamma_1) \subseteq \gamma(\gamma_2)$.

Example 5. We carry on with Example 2. Let $\Phi^d \in \Phi^d(S)$ be the abstract distribution of processes defined by the following automata:

\[
\begin{array}{cccc}
\Phi^d(\ell_1) & \Phi^d(\ell_2) & \Phi^d(\ell_3) & \Phi^d(\ell_4) \\
\rightarrow & \rightarrow & \rightarrow & \rightarrow
\end{array}
\]

where we associate distinct counter variables $\{i, j, i', j'\}$ to each transition of the automata. If $\ell_1, \ell_2 \in \mathcal{L}(S)$, and c is a counter variable associated to a transition $\sigma \in \tau(\Phi^d(\ell_i))$ for $i \in \{1, 2\}$, we denote by c_i a counter variable associated to the canonical image of σ into $\tau(\Phi^d(\ell_1)) \oplus \tau(\Phi^d(\ell_2))$. We use Karr's abstract numerical domain, hence systems of affine equations represent the abstract values. Now let \approx^{Φ^d} be the abstract channel relation of Δ^d that satisfies:

\[
\begin{align*}
(\ell_1, q_1, q_1, l) \approx^{\Phi^d} (\ell_2, q_2, q_2, l) = & \top^d \\
(\ell_1, q_1, q_1, l) \approx^{\Phi^d} (\ell_4, q_4, q_4, l) = & \top^d \\
(\ell_2, q_2, q_2, l) \approx^{\Phi^d} (\ell_4, q_4, q_4, l) = & \top^d \\
(\ell_3, q_3, q_3, c) \approx^{\Phi^d} (\ell_3, q_3, q_3, c) = & \top^d \\
(\ell_3, q_3, q_3, c) \approx^{\Phi^d} (\ell_2, q_2, q_2, c) = & \top^d \\
(\ell_3, q_3, q_3, c) \approx^{\Phi^d} (\ell_3, q_3, q_3, c) = & \{i_1 = i_2 = 1\} \\
(\ell_4, q_4, q_4, z) \approx^{\Phi^d} (\ell_3, q_3, q_3, z) = & \{j_1 = j_2 + 1\} \\
(\ell_4, q_4, q_4, z) \approx^{\Phi^d} (\ell_3, q_3, q_3, z) = & \{i'_1 = i_2\} \\
(\ell_4, q_4, q_4, z) \approx^{\Phi^d} (\ell_3, q_3, q_3, z) = & \{j'_1 = j_2\}
\end{align*}
\]

the other components being defined symmetrically. Thus \approx^{Φ^d} denotes exactly all communication channels that may be created during the evolution of S.

8 We do not require the channel relation to denote reflexivity since this information can be extracted from Φ.

6 Abstract Semantics of the \(\pi \)-Calculus

Before defining the abstract semantics, we need some additional properties of abstract numerical domains. Let \(V \xrightarrow{f} W \) be an injective map in \(\text{FinSets} \). Any abstract numerical domain \(\gamma^2 : \text{FinSets} \to \text{PoSets} \) provides two computable functions, an embedding \(\bar{f} : \gamma^2 V \to \gamma^3 W \), and a projection \(\bar{f} : \gamma^3 W \to \gamma^2 V \), satisfying the following conditions:

1. \(\forall X^\# \in \gamma^2 V : \forall \nu \in \gamma_X(X^\#) : \{ \mu \in W \to \mathbb{N} | \mu \circ f = \nu \} \subseteq \gamma^3 W(\bar{f}(X^\#)) \).
2. \(\forall \nu^\# \in \gamma^2 W : \forall \nu \in \gamma_X(1^\#) : \nu \circ f \in \gamma(\bar{f}(1^\#)) \).

If \(S \) is a system of linear equations over the set of variables \(V \), there is a computable element \(\text{Sol}_V^2(S) \) of \(\gamma^2 V \) which upper-approximates the set of variable assignments in \(V \to \mathbb{N} \) that are solutions of \(S \). We will omit the subscript \(V \) whenever it will be clear from the context. Moreover, the lattice \(\gamma^2 V \) is provided with a widening operator.

Example 6. For Karr's abstract numerical domain, \(\bar{f}(Y^\#) \) amounts to the elimination of the coordinates corresponding to the variables \(W - f(V) \) from a system of a point and vectors describing \(Y^\# \). \(\bar{f}(X^\#) \) is described by the same system of affine equations as \(X^\# \). \(\text{Sol}_V^2(S) \) is of course directly expressible in \(\gamma^2 V \). Since \(\gamma^2 V \) satisfies the ascending chain condition, a widening is provided by the join \(\sqcup \).

We first construct the abstract counterpart of the closure operator \([\cdot]_\Phi \) that maps any binary relation \(\rho \) over \(\text{Ports}(\Phi) \) to the smallest equivalence relation containing \(\rho \). This closure operation can be expressed by the following inductive rules:

\[
\begin{align*}
 x \in \text{Ports}(\Phi) & \\
 (x, x) \in \rho & \\
 (x, y) \in \rho, (y, z) \in \rho & \\
 (y, x) \in \rho & \\
 (x, z) \in \rho
\end{align*}
\]

The computation of \([\cdot]_\Phi \) amounts to calculating a least fixpoint in \((\wp(\text{Ports}(\Phi) \times \text{Ports}(\Phi)), \subseteq) \) (see [CCG95]). Thereby, we define the corresponding abstract operation as the limit of an abstract iteration sequence\(^9\) on a fiber of \(\Phi^2 \) using Theorem 4. For this purpose, we introduce a closure relation \(\triangleright \) on abstract channel relations which mimics the inductive rules for \([\cdot]_\Phi \). Let \(\Phi^2 \) be an abstract distribution of processes. We define \(\triangleright \) on \(\Delta \Phi^2 \) as follows:

1. If \(pt_1, pt_2 \in \text{Ports}(\Phi^2) \) and \(\sim_\Phi^2, pt_1, pt_2 \in \Delta \Phi^2 \), then \(\sim_\Phi^2 \triangleright \sim_\Phi^2 \) where, for all \(pt_1, pt_2 \in \text{Ports}(\Phi^2) \):

\[
pt_1 \sim_\Phi^2 pt_2 = \begin{cases} pt_1 \sim_\Phi^2 pt_2 & \text{if } pt_1 = pt_2 \text{ and } pt_2 = pt_1' \\
pt_1 & \text{otherwise}
\end{cases}
\]

\(\Phi^2 \)

\footnote{Note that we only have to cope with the symmetry and transitivity rules (cf. the definition of \(\gamma \)).}
2. Let \(\ell_1, \ell_2, \ell_3 \in \mathcal{L}(S) \) and \(pt_j' = (\ell_j, i_j, t_j, x_j) \in \text{Ports}^\#(\mathcal{D}^\#) \), for \(j \in \{1, 2, 3\} \). We denote by \((Q_j, I_j, T_j, \tau_j)\) the automaton \(\mathcal{D}^\#(\ell_j) \), for \(j \in \{1, 2, 3\} \). Let \(\tau = \tau_1 \odot \tau_2 \odot \tau_3 \) and \(\tau_1 \odot \tau_2 \xrightarrow{f_1} \tau, \tau_2 \odot \tau_3 \xrightarrow{f_2} \tau, \tau_1 \odot \tau_3 \xrightarrow{f_3} \tau \) be the canonical inclusion maps in \textbf{FinSets}. Now let \(\triangledown \otimes \triangledown_1 \in \Delta \mathcal{D}^\# \) and \(X_j = (\ell_j, i_j, t_j, x_j) \trianglelefteq \triangledown \otimes \triangledown_1 (\ell_{j+1}, i_{j+1}, t_{j+1}, x_{j+1}), \) for \(j \in \{1, 2\} \). Then, \(\triangledown \otimes \triangledown_1 \triangledown \otimes \triangledown_2 \) where, for all \(pt_1, pt_2 \in \text{Ports}^\#(\mathcal{D}^\#) \),

\[
pt_1 \triangledown \otimes \triangledown_2 pt_2 = \begin{cases}
\left\{ \left(f_1'(X_1) \cap f_2'(X_2) \right) \right\} & \text{if } pt_1 = pt_1' \text{ and } pt_2 = pt_2' \\
\text{otherwise} &
\end{cases}
\]

The fiber \(\Delta \mathcal{D}^\# \) can be endowed with a lattice structure, the join \(\sqcup \mathcal{D}^\# \) and the meet \(\sqcap \mathcal{D}^\# \) being defined by componentwise application of \(\triangledown \) and \(\triangledown \). We define a similar operator \(\nabla \mathcal{D}^\# \) on \(\Delta \mathcal{D}^\# \) by componentwise application of the widening operators provided by the abstract numerical domain.

Proposition 7. \(\nabla \mathcal{D}^\# \) is a widening operator on \(\Delta \mathcal{D}^\# \).

We define an endomorphism \(F_\triangledown \) on the fiber \(\Delta \mathcal{D}^\# \) as:

\[
F_\triangledown \overset{\text{def}}{=} \lambda(\triangledown \otimes \triangledown) \sqcap \mathcal{D}^\# \{ \triangledown \otimes \triangledown \cdot | \triangledown \otimes \triangledown_1 \triangledown \otimes \triangledown_2 \}
\]

Definition 8 Abstract Closure. Let \(\mathcal{D}^\# \) be an abstract distribution of processes and \(\triangledown \otimes \triangledown \) an element of \(\Delta \mathcal{D}^\# \). The abstract closure \(\triangledown \otimes \triangledown \mathcal{D}^\# \) of \(\triangledown \otimes \triangledown \) is given by the limit of the abstract iteration sequence of Theorem 4 applied to the function \(F_\triangledown \) on the domain \(\Delta \mathcal{D}^\# \), with \(\triangledown \otimes \triangledown \) as abstract basis and \(\nabla \mathcal{D}^\# \) as widening operator. \(\square \)

Note that this closure operation enforces transitivity on an abstract channel relation \(\triangledown \otimes \triangledown \). It may cause an important loss of accuracy, since the union of transitive relations (which is what is denoted by \(\triangledown \otimes \triangledown \)) is in general not transitive. In fact, as we will see when we will define the abstract semantics, we only need to perform this closure operation on a relation \(\triangledown \otimes \triangledown = \triangledown \otimes \triangledown_1 \cup \triangledown \otimes \triangledown_2 \) where \(\triangledown \otimes \triangledown_1 \) denotes concrete channel relations and \(\triangledown \otimes \triangledown_2 \) contains additional relations between ports in the domain of \(\triangledown \otimes \triangledown_1 \) and some newly created ports. Therefore, it is possible to modify the rules defining \(\triangledown \) so that they can only be applied to pairs involving a new port, leaving the relation \(\triangledown \otimes \triangledown_1 \) unchanged\(^{10} \). In order to keep the presentation simple, we do not detail this improvement of the analysis.

We define the abstract semantics of the \(\pi \)-calculus by a transition relation \(\Rightarrow^\# \) on \(\mathcal{D}^\# \) which mimics \(\Rightarrow \). Let \((\mathcal{D}^\#, \triangledown \otimes \triangledown) \) be an abstract configuration and \(\ell_0 \in \mathcal{L}(S) \) such that:

\[
S_{\ell_0} = \cdots \Rightarrow^\# [t_1, \ldots, t_m] \cdot \alpha_1 \cdots \alpha_m \cdot \nu_0^\circ \cdot \cdot \cdot (S_{\ell_0} \mid \cdots \mid S_{\ell_0}^+) \cdots
\]

We have a transition \((\mathcal{D}^\#, \triangledown \otimes \triangledown) \Rightarrow^\# (\mathcal{D}^\#, \triangledown \otimes \triangledown) \) whenever there is \(\ell_i \in \mathcal{L}(S) \), such that \(S_{\ell_i} \) is one of the following processes:

\[\text{This was pointed out to us by Alain Deutsch.}\]
\[x(y_1, \ldots, y_m) \nu x_1^\ell \ldots \nu x_i^\ell, \nu x_1^{\ell_i} \ldots \nu x_i^{\ell_i}, (S_{\ell_i} \mid \ldots \mid S_{\ell_i}) + \]
\[x(y_1, \ldots, y_m) \nu x_1^\ell \ldots \nu x_i^\ell, \nu x_1^{\ell_i} \ldots \nu x_i^{\ell_i}, (S_{\ell_i} \mid \ldots \mid S_{\ell_i}) \]

and
\[(\ell_i, s_i, t_i, x) \leadsto \ldots \leadsto (\ell_o, s_o, t_o, z) \neq \emptyset\]

for two abstract ports \((\ell_i, s_i, t_i, x)\) and \((\ell_o, s_o, t_o, z)\). In other words, there is the possibility of a communication between two residuals of \(S_{\ell_i}\) and \(S_{\ell_o}\) in a concrete configuration abstracted by \((\Phi^\ell, \ldots, \Phi^\ell)\). We denote by \(X_{\ell_i}^\ell\) the abstract value \((\ell_i, s_i, t_i, x) \leadsto \ldots \leadsto (\ell_o, s_o, t_o, z)\).

We define \(X_{\ell_i}^\ell\) as follows:
\[
X_{\ell_i}^\ell(\ell) \defeq \begin{cases}
\Phi^\ell(\ell) \oplus A^{-1} & \text{if } \ell = \ell_i^{\ell_i} \text{ for } \eta \in \{i, o\}, \ k \in \{1, \ldots, n_\eta\} \\
\Phi^\ell(\ell) & \text{otherwise}
\end{cases}
\]

where \(A_i\) and \(A_o\) are automata representing the residuals of the newly spawned processes, and \(\oplus\) denotes the coproduct in \(\mathbb{A}\). Whatever \(S_{\ell_i}\) may be, agent or server, \(A_o\) is always defined as the automaton \((Q_o, \{s_o\}, \{t_o\}, \tau_o)\), where, for \(\eta \in \{i, o\}, Q_\eta\) (resp. \(\tau_\eta\)) is the set of states (resp. transitions) of \(\Phi^\ell(\eta)\). Indeed, in the nonstandard semantics the residuals of the processes spawned by the sender are always inherited from their parent agent. For \(A_i\) there are two different cases depending on the type of \(S_{\ell_i}\):

1. \(S_{\ell_i}\) is an agent. Then we put
 \[A_i \defeq (Q_i, \{s_i\}, \{t_i\}, \tau_i)\]

2. \(S_{\ell_i}\) is a server. We suppose that we are provided with a distinguished element \(\Omega\) in the set \(Q\) of all states of the automata in \(\mathbb{A}\). Let \(Q_\eta \xrightarrow{\xi} Q_o \oplus \{\Omega\}\) and \(Q_o \xrightarrow{\xi} Q_o \oplus \{\Omega\}\) be the canonical inclusion maps in \(\text{FinSets}\). We denote by \(\tau_o \xrightarrow{\xi} \tau_o\) the function that maps any transition \((q, \ell, q')\) to \((\xi_1(q), \ell, \xi_1(q'))\). Then we put
 \[A_i \defeq (Q_o \oplus \{\Omega\}, \{s_o\}, \{\xi_1(\Omega)\}, \tau_o)\]

where \(\tau_o \defeq \{(\xi_1(q), \ell, \xi_1(q')) \mid (q, \ell, q') \in \tau_o\} \cup \{(s_o, \ell_o, \xi_1(\Omega))\}\). This is the abstract counterpart of assigning the residual \(I_o, \ell_o\) to the processes created by the server in the concrete semantics.

We denote by \(A_o \xrightarrow{\ell_i} \Phi_h^\ell(\ell_i)\) the canonical inclusion morphism in \(\mathbb{A}\) for \(\eta \in \{i, o\}, \ell \in \{1, \ldots, n_\eta\}\). Note that the sets of residuals denoted by \(\Phi_h^\ell\) are larger than the ones denoted by \(\Phi^\ell\). Indeed, we are not allowed to remove anything since we have lost all information about the number of residuals of each \(S_{\ell_i}\).

The abstract channel relation \(\leadsto\) mimics the concrete one:
\[
\leadsto \defeq [\Delta^{\text{Fun}}(\Phi^\ell)] \cup \Phi^\ell_0 \cup \Phi^\ell_1 \cup \Phi^\ell_0 \cup \Phi^\ell_1 \cup \Phi^\ell_0 \cup \Phi^\ell_1
\]

where, for all \(\ell \in L(S)\), \(\Phi^\ell(\ell) \xrightarrow{\xi} \Phi^\ell_0(\ell)\) is the canonical inclusion morphism in \(\mathbb{A}\). The definitions of \(\Phi^\ell_0\), \(\Phi^\ell_1\), \(\Phi^\ell_0\), \(\Phi^\ell_1\), \(\Phi^\ell_0\), and \(\Phi^\ell_1\) follow the lines of their concrete counterparts in Fig. 3 and Fig. 4. We distinguish two cases, depending on the type of \(S_{\ell_i}\).
Interagent Communication. If S_{t_0} is an agent, the abstract semantics of communication is summarized in Fig. 5. We have represented the automata corresponding to the residuals of $S_{t_i}, S_{o_i}, S_{e_i}$ and S_{e_0}, the latter being two processes spawned by the sender and the receiver after the communication occurred.

The abstract channel relation $\sim^{c}_\mathcal{F}$ performs the binding between the names y_h and t_h involved in the communication. Since $X^c_\mathcal{F}$ denotes residuals of S_{o_i} and S_{t_0} that may communicate, we use this same abstract numerical value to denote all possible channels between the ports associated to y_h and t_h. This can be stated formally as follows. For all $j \in \{1, \ldots, n_i\}$, $k \in \{1, \ldots, n_o\}$, $h \in \{1, \ldots, m\}$, $y_h \in fn(S_{e_j})$ and $t_h \in fn(S_{e_k})$, we put

$$(e_j^j, (e_j^i)_1(s_i), (e_j^j)_1(t_i), y_h) \sim^{c}_\mathcal{F} (e_k^j, (e_k^o)_1(s_o), (e_k^o)_1(t_o), t_h) \iff$$

$$\forall^c ((e_j^j)_2 \oplus (e_k^o)_2)(X^c_\mathcal{F})$$

For any other abstract ports $pt_1, pt_2 \in Ports^c(\mathcal{F}_\mathcal{F})$, we put $pt_1 \sim^{c}_\mathcal{F} pt_2 \iff \varrho^c$.

The abstract channel relations \sim^{c}_i and \sim^{c}_o bind the free names in the instances of S_{t_i} and S_{o_i} to the corresponding ones in the processes released after the communication. Their role is thereby to propagate the scope of free names. The abstract numerical value associated to the relation \sim^{c}_i, for example, is the
solution in the abstract numerical domain of the system of equations $\tau = \tau'$, where τ is any transition in the automaton corresponding to S_{i_0} and τ' is the copy of τ in the automaton associated to the newly created process S_{i_1}, as shown in Fig. 5. The definition of \astar_0 is similar. The meaning of these operations at the concrete level is to bind pairs of ports with the same residuals. Since we abstract a residual by the number of times a path labelled by this residual runs through each transition of the automaton, our definition is quite natural. This can be stated more formally as follows. For all $\eta \in \{i, o\}$, $k \in \{1, \ldots, n_\eta\}$ and $u \in \text{fn}(S_{i_0}) \cap \text{fn}(S_{i_1})$, we put

$$(\ell_\eta, \mathcal{F}(\ell_\eta)_1(s_\eta), \mathcal{F}(\ell_\eta)_1(t_\eta), u) \leadsto (\ell_\eta, (l^k_\eta)_1(s_\eta), ((l^k_\eta))_1(t_\eta), u) \equiv \text{Sol}^k(S^k_\eta)$$

where S^k_η is the system of affine equations over $\tau(\Phi^k_\eta(\ell_\eta)) \oplus \tau(\Psi^k_\eta(\ell_\eta))$ defined as follows:

$$\begin{cases}
\zeta_1 \circ \mathcal{F}(\ell_\eta)_2(\sigma) = \zeta_2 \circ (l^k_\eta)_2(\sigma) \\
\sigma \in \tau_\eta
\end{cases}$$

where $\tau(\Phi^k_\eta(\ell_\eta)) \xrightarrow{\zeta_1} \tau(\Psi^k_\eta(\ell_\eta)) \oplus \tau(\Phi^k_\eta(\ell_\eta)) \xrightarrow{\zeta_2} \tau(\Psi^k_\eta(\ell_\eta))$ are the canonical inclusion maps in FinSets. For any other abstract ports $pt_1, pt_2 \in \text{Ports}^k(\Phi^k_\eta)$, we put $pt_1 \astar_0 pt_2 \equiv \Psi^k_\eta$.

Fig. 6. Abstract agent-server communication
The abstract channel relation \(\tau^\mu_{\beta} \) binds the new ports created by the communication in the spawned processes. Since all processes released during a communication by either the sender or the receiver have the same residuals, we define \(\tau^\mu_{\beta} \) similarly to \(\tau^\mu_{\alpha} \) and \(\tau^\mu_{\beta_{\alpha}} \) as the abstract solution of a system of linear equations. That is, for all \(\eta \in \{i, o\}, j, k \in \{1, \ldots, n_\eta\} \), with \(j \neq k \), and \(j \in \{1, \ldots, l_\eta\} \) such that \(v_{\eta j}^k \in \text{fn}(S_{\eta j}^i) \cap \text{fn}(S_{\eta j}^o) \), we put

\[
(\ell_{\eta j}^i (\ell_{\eta j}^o)_{1} (s_{\eta j}), (\ell_{\eta j}^o)_{1} (t_{\eta j}), u) \tau_{\eta j}^\mu_{\beta} (\ell_{\eta j}^i (\ell_{\eta j}^o)_{1} (s_{\eta j}), (\ell_{\eta j}^o)_{1} (t_{\eta j}), u) \equiv \text{Sol}^\mu_{\beta}(S_{\eta j}^i)
\]

where \(S_{\eta j}^i \) is the system of affine equations over \(\tau(\Phi^i_{\alpha}(\ell_{\eta j}^i)) \oplus \tau(\Phi^o_{\alpha}(\ell_{\eta j}^o)) \) defined as follows:

\[
\begin{aligned}
\{ \theta_1 \circ (\ell_{\eta j}^i)_{2}(\sigma) = \theta_2 \circ (\ell_{\eta j}^o)_{2}(\sigma) \\
\quad \sigma \in \tau_\eta \}
\end{aligned}
\]

where \(\tau(\Phi^o_{\alpha}(\ell_{\eta j}^o)) \longrightarrow \theta_1 \tau(\Phi^i_{\alpha}(\ell_{\eta j}^i)) \oplus \tau(\Phi^o_{\alpha}(\ell_{\eta j}^o)) \leftarrow \theta_2 \tau(\Phi^i_{\alpha}(\ell_{\eta j}^i)) \) are the canonical inclusion maps in \(\text{FinSets} \). For any other abstract ports \(pt_1, pt_2 \in \text{Ports}^\mu(\Phi^a) \), we put \(pt_1 \tau_{\eta j}^\mu_{\beta} pt_2 \equiv \emptyset^a \).

Agent-Server Communication. If \(S_{\eta j}^i \) is a server, the abstract semantics of communication is summarized in Fig. 6. The abstract channel relations \(\tau^\mu_{\alpha} \) and \(\tau^\mu_{\beta} \) are constructed exactly as above. The situation is quite different for \(\tau^\mu_{\alpha} \) and \(\tau^\mu_{\beta} \), because the automata corresponding to the processes spawned by \(S_{\eta j}^i \) are copies of the automaton associated to \(S_{\eta j}^o \) suffixed with a transition labelled by \(\ell_\alpha \).

The definition of \(\tau^\mu_{\alpha} \) is very similar to the definition of \(\tau^\mu_{\alpha} \) in the previous case. The binding between the names involved in the communication is performed by taking the solution of the system of equations \(\sigma' = \sigma'' \) in the abstract numerical domain, as illustrated in Fig. 6. Since residuals of the processes released by the receiver are suffixed with \(\ell_\alpha \), we furthermore require that the corresponding transition be crossed exactly once. This operation can be formalized as follows. For all \(j \in \{1, \ldots, n_\eta\}, k \in \{1, \ldots, n_\eta\}, h \in \{1, \ldots, m_\eta\}, y_{\eta} \in \text{fn}(S_{\eta j}^i) \) and \(t_{\eta j} \in \text{fn}(S_{\eta j}^o) \), we put

\[
(\ell_{\eta j}^i, (\ell_{\eta j}^o)_{1} \circ \xi_1 (s_{\eta j}), (\ell_{\eta j}^o)_{1} \circ \xi_1 (t_{\eta j}), y_{\eta}) \tau_{\eta j}^\mu_{\alpha} (\ell_{\eta j}^o, (\ell_{\eta j}^o)_{1} (s_{\eta j}), (\ell_{\eta j}^o)_{1} (t_{\eta j}), t_{\eta}) \equiv \text{Sol}^\mu_{\alpha}(S_{\eta j}^i)
\]

where \(S_{\eta j}^i \) is the system of affine equations over \(\tau(\Phi^i_{\alpha}(\ell_{\eta j}^i)) \oplus \tau(\Phi^o_{\alpha}(\ell_{\eta j}^o)) \) defined as follows:

\[
\begin{aligned}
\{ \zeta_1 \circ (\ell_{\eta j}^i)_{2}(\sigma) = \zeta_2 \circ (\ell_{\eta j}^o)_{2}(\sigma) \\
\quad \sigma \in \tau_\eta \}
\end{aligned}
\]

where \(\tau(\Phi^o_{\alpha}(\ell_{\eta j}^o)) \longrightarrow \zeta_1 \tau(\Phi^i_{\alpha}(\ell_{\eta j}^i)) \oplus \tau(\Phi^o_{\alpha}(\ell_{\eta j}^o)) \leftarrow \zeta_2 \tau(\Phi^i_{\alpha}(\ell_{\eta j}^i)) \) are the canonical inclusion maps in \(\text{FinSets} \). For any other abstract ports \(pt_1, pt_2 \in \text{Ports}^\mu(\Phi^a) \), we put \(pt_1 \tau_{\eta j}^\mu_{\alpha} pt_2 \equiv \emptyset^a \).

\[11\] Reflexivity is implicit by definition of \(\gamma^* \).
The definition of \(\sim \) is slightly more delicate. The residuals of the processes spawned by the server are represented by a copy of the automaton associated to the sender and \(\sim \) relates the instances of \(S_\ell \) which may communicate with \(S_\ell \) to the instances of \(S_\ell \) which have been effectively spawned by the communication. Thereby, the abstract numerical value associated to \(\sim \) consists of \(X_\ell \) for which each \(\sigma \) has been mapped to its copy \(\sigma'' \) in the automaton corresponding to \(S_\ell \) (see Fig. 6), together with the constraint that the additional transition labelled by \(\ell_0 \) must be crossed once. This can be stated formally as follows. Let \(\tau' \overset{\ell}{\longrightarrow} \tau' \) and \(\tau_1 \overset{\ell_1}{\longrightarrow} \tau_2 \) be the canonical inclusion maps in \(\text{FinSets} \). For all \(k \in \{1, \ldots, n_i\} \) and \(u \in \text{fin}(S_\ell) \cap \text{fin}(S_\ell) \), we put

\[
(l_i, \mathcal{F}(l_1)_{l_1}(s_0), \mathcal{F}(l_1)(t_1), u) \sim^k (l_2, (\ell_1)_1 \circ \xi_1(s_0), (\ell_2)_1 \circ \xi_2(\Omega), u) \overset{\mathcal{V}}{\rightarrow} \\
\mathcal{V}^k(\mathcal{F}(l_2)_{l_2}(s_0), \mathcal{F}(l_2)(t_2), u) \subseteq \mathcal{V}^k(\mathcal{F}(l_2)_{l_2}(s_0), \mathcal{F}(l_2)(t_2), u) \subseteq \mathcal{V}^k(\mathcal{F}(l_2)_{l_2}(s_0), \mathcal{F}(l_2)(t_2), u)
\]

For any other abstract ports \(p_1, p_2 \in \text{Ports}(\Phi_\ell) \), we put \(p_1 \sim^k p_2 \) if \(\forall \).

Definition 9 Abstract Semantic Function. Let \(\phi^k = (\Phi_\ell, \sim^k) \) be an abstract configuration. For any configuration \((\Phi_\ell, \sim^k) \) such that \(\phi^k \Rightarrow^k (\Phi_\ell, \sim^k) \), we denote by \(\mathcal{F}[\Phi_\ell, \sim^k] : \Phi^k \rightarrow \Phi^k \) the canonical inclusion morphism.

Let \(\Phi^k_\ell \) be the colimit in \(\Phi^k(S) \) of the diagram \(\{ \mathcal{F}[\Phi_\ell, \sim^k] : \Phi^k \rightarrow \Phi^k \mid \phi^k \Rightarrow^k (\Phi_\ell, \sim^k) \} \) and \(\{ \mathcal{F}[\Phi_\ell, \sim^k] : \Phi^k \rightarrow \Phi^k \mid \phi^k \Rightarrow^k (\Phi_\ell, \sim^k) \} \) be the colimiting cocone. We define the abstract semantic function \(F^k : \mathcal{D}^k \rightarrow \mathcal{D}^k \) as follows:

\[
F^k(\phi^k) \overset{\text{def}}{=} \bigsqcup_{\Phi^k_\ell} \{ \Delta \mathcal{F}[\Phi_\ell, \sim^k]((\Phi_\ell, \sim^k)) \mid \phi^k \Rightarrow^k (\Phi_\ell, \sim^k) \}
\]

□

Theorem 10 Soundness of the Abstract Semantics.

\[
F_S \circ \gamma \subseteq \gamma \circ F^k
\]

It now remains to define a widening operator on \(\mathcal{D}^k \) in order to make the abstract semantics of \(S \) computable.

7 Widening Operators

There is a generic method to construct widening operators on cofibered domains by combining the widenings defined locally on each fiber [Ven96]. This requires to extend the notion of widening to categories.
Definition 11 Widening on a Category. Let \(\mathbb{C} \) be a category. A widening operator \(\triangledown \) on \(\mathbb{C} \) associates to any two objects \(X, Y \) of \(\mathbb{C} \) two arrows:

\[
X \xrightarrow{X \triangledown_1 Y} X \triangledown Y \xleftarrow{X \triangledown_2 Y} Y
\]

such that for any sequence of objects \((X_n)_{n \geq 0}\), the sequence of arrows \((X_n \triangledown)_{n \geq 0}\) in \(\mathbb{C} \) defined by:

\[
\begin{cases}
X_0 = X_0 \\
X_{n+1} = X_{n} \triangledown X_{n+1} \\
f_{n} = X_{n} \triangledown \triangledown_{1} X_{n+1}
\end{cases}
\]

is ultimately pseudo-stationary, i.e., there exists \(N \) such that, for all \(n \geq N \), \(f_{n} \) is an isomorphism. Moreover we require \(\triangledown \) to be stable under isomorphism, that is, whenever \(X \cong X' \) and \(Y \cong Y' \), then \(X \triangledown Y \cong X' \triangledown Y' \). □

Assuming that \(\Phi^{\mathcal{D}_i}(S) \) is provided with a widening \(\triangledown \), we construct a widening operator \(\triangledown^{\mathcal{D}_i} \) on \(\mathcal{D}_i \) as follows. Let \((\phi_1^i, \sim^{\mathcal{D}_i}_1)\) and \((\phi_2^i, \sim^{\mathcal{D}_i}_2)\) be abstract configurations, \((\phi_1^i, \sim^{\mathcal{D}_i}_1) \triangledown^{\mathcal{D}_i}(\phi_2^i, \sim^{\mathcal{D}_i}_2)\) is given by:

- \((\phi_1^i, \sim^{\mathcal{D}_i}_1) \triangledown_{\phi_1^i} \phi_2^i \Delta((\phi_1^i \triangledown_1 \phi_2^i)^{-1} \circ (\phi_1^i \triangledown_2 \phi_2^i))((\sim^{\mathcal{D}_i}_2))\) when \(\phi_1^i \triangledown_1 \phi_2^i \) is an isomorphism,

- \((\phi_1^i \triangledown \phi_2^i, \Delta((\phi_1^i \triangledown_1 \phi_2^i)((\sim^{\mathcal{D}_i}_1) \triangledown \phi_1^i \triangledown \phi_2^i \Delta(\phi_1^i \triangledown_2 \phi_2^i))((\sim^{\mathcal{D}_i}_2))))\) otherwise.

Intuitively the first case means that when the fiber is "stable", i.e., \(\phi_1^i \triangledown_1 \phi_2^i \) is an isomorphism, we "transfer" the abstract channel relation \(\sim^{\mathcal{D}_i}_2 \) into the fiber and we make the widening with \(\sim^{\mathcal{D}_i}_1 \):

\[
\xymatrix{\phi_1^i \ar[r]_{\phi_1^i \triangledown \phi_2^i, \Delta((\phi_1^i \triangledown_1 \phi_2^i)^{-1} \circ (\phi_1^i \triangledown_2 \phi_2^i))((\sim^{\mathcal{D}_i}_2))} & \phi_2^i \phi_1^i \triangledown_2 \phi_2^i \phi_2^i}
\]

\[\triangledown_{\phi_1^i} \left\{ \phi_1^i \triangledown_1 \phi_2^i \Delta((\phi_1^i \triangledown_1 \phi_2^i)^{-1} \circ (\phi_1^i \triangledown_2 \phi_2^i))((\sim^{\mathcal{D}_i}_2)) \right\}
\]

Otherwise we transfer \(\sim^{\mathcal{D}_i}_1 \) and \(\sim^{\mathcal{D}_i}_2 \) into the fiber over \(\phi_1^i \triangledown \phi_2^i \) and we make the widening in this fiber:

\[
\xymatrix{\phi_1^i \ar[r]_{\phi_1^i \triangledown \phi_2^i} & \phi_1^i \triangledown_2 \phi_2^i \phi_2^i \ar[r]_{\phi_1^i \triangledown \phi_2^i} & \phi_2^i \phi_1^i \triangledown_2 \phi_2^i \phi_2^i}
\]

\[\sim^{\mathcal{D}_i}_1 \sim^{\mathcal{D}_i}_2 \phi_1^i \triangledown \phi_2^i \phi_1^i \triangledown \phi_2^i \phi_2^i \Delta((\phi_1^i \triangledown_1 \phi_2^i))((\sim^{\mathcal{D}_i}_1) \phi_1^i \triangledown_2 \phi_2^i \Delta(\phi_1^i \triangledown_2 \phi_2^i))((\sim^{\mathcal{D}_i}_2)) \sim^{\mathcal{D}_i}_2 \phi_1^i \triangledown \phi_2^i \phi_2^i}
\]

Theorem 12. \(\triangledown^{\mathcal{D}_i} \) is a widening operator on \((\mathcal{D}_i, \leq)\).
We now define a widening ∇ on $\Phi(S)$ by componentwise application of a widening ∇_S on A. The idea is to fold states in an automaton $A = (Q, I, T, \tau)$ with respect to some “similarity” criterion which is represented by an equivalence relation $\equiv^A(S)$ on Q. The folding operation is achieved by quotienting the automaton with respect to this relation.

Example 7. Let k be a nonnegative integer. For any $q \in Q$, we denote by $L_{\leq k}(q)$ the set of words labelling a path in A originating from q and of length bounded by k. We define \equiv_A as follows:

$$q \equiv_A q' \iff L_{\leq k}(q) = L_{\leq k}(q')$$

This folding criterion is inspired by the k-limiting approximation of [JM81].

Definition 13 Quotient of an Automaton. Let $A = (Q, I, T, \tau)$ be an automaton of A and \sim be an equivalence relation on Q. We denote by $\pi_\sim : Q \longrightarrow Q/\sim$ the canonical projection onto the quotient set. The quotient A/\sim of A by \sim is then defined as

$$A/\sim \overset{\text{def}}{=} (Q/\sim, \pi_\sim(I), \pi_\sim(T), \{(\pi_\sim(q), \ell, \pi_\sim(q')) \mid (q, \ell, q') \in \tau\})$$

Example 8. Let \equiv_δ be the smallest equivalence relation on Q such that:

1. $\forall i, i' \in I : i \equiv_\delta i'$.
2. $\forall (q, \ell, r), (q', \ell', r') \in \tau : q \equiv_\delta q' \land \ell = \ell' \implies r \equiv_\delta r'$.

Then it is obvious that the quotient automaton A/\equiv_δ is deterministic. This is an approximate procedure to make an automaton deterministic.

Let A_1, A_2 be two automata. We denote by $A_i \xrightarrow{e_i} A_1 \oplus A_2$, $i \in \{1, 2\}$, the canonical inclusion morphisms in A. If for each automaton A in A we have a computable equivalence relation $\equiv_A(S)$ on the states of A, we put

$$A_1 \nabla_A A_2 \overset{\text{def}}{=} (A_1 \oplus A_2)/\equiv_{A_1 \oplus A_2}$$

If $A_1 \oplus A_2 \xrightarrow{\pi} (A_1 \oplus A_2)/\equiv_{A_1 \oplus A_2}$ is the morphism of automata induced by the canonical projection $\pi_{A_1 \oplus A_2}$, we put $A_i \nabla_A A_2 \overset{\text{def}}{=} \pi \circ e_i$, for $i \in \{1, 2\}$.

We cannot say much about ∇_A in whole generality. We have to check by hand that each operator defined in this way satisfies the properties of Definition 11.

Proposition 14. The operator ∇_A defined from the equivalence relations \equiv_A of Example 7 is a widening on A.

12 Strictly speaking Q/\sim is a representative of the quotient set in Q.
13 The language recognized by the quotient automaton can be larger than the original one.
It only remains to define the abstract basis $\bot_\omega = (\bot_\omega, \cdots, \bot_\omega)$ in order to compute the iteration sequence. If S is the labelled π-term $\nu x_1 \cdots \nu x_m. (\ell_1 : A S_1 | \cdots | \ell_n : A S_n)$, where the $A S_i$ are either agents or servers, ϕ_ω_\bot is defined as follows:

$$\phi_\omega_\bot(\ell) \equiv \begin{cases} \{(\Omega), \{\Omega\}, \{\Omega\}, \emptyset\} & \text{if } \ell \in \{\ell_1, \ldots, \ell_n\} \\ (\emptyset, \emptyset, \emptyset, \emptyset) & \text{otherwise} \end{cases}$$

For all distinct $\ell, \ell' \in \{\ell_1, \ldots, \ell_n\}$ and all $x \in fn(S_\ell) \cap fn(S_{\ell'})$, we put

$$(\ell, \Omega, \Omega, x) \equiv (\ell', \Omega, \Omega, x) \equiv \top_\omega$$

Example 9. If we use the widening of Example 7 and enforce the automata to be deterministic with the procedure of Example 8, the limit of the abstract iteration sequence corresponding to the π-term S of Example 2 is given by the abstract configuration defined in Example 5. Our analysis is thus able to infer non-uniform communication topologies. \qed

8 Conclusion

We have presented an analysis of communications in the π-calculus based on Abstract Interpretation. This analysis is able to infer accurate descriptions of the communication topology of a system S of mobile processes, since it can distinguish instances of recursively spawned processes, as illustrated by Examples 5 and 9. This can be applied in particular to problems of security in distributed systems, where this kind of information is required to ensure that confidential data cannot be accessed by unauthorized elements of the system. Another possible application would be to use the information about the communication topology to statically derive an allocation strategy of the processes on a multiprocessor architecture which optimizes the communication cost. Future work will focus on the implementation of the analysis and the experimental study of its usefulness for these applications.

Further extensions to the abstract interpretation of the π-calculus are to be investigated. One can enrich the abstract domain to take into account the number of instances of a process. This may improve the analysis and give interesting information for compilation (channels used only once, finite communication topologies, etc.). However the major extension is to consider π-terms with free variables in order to achieve modular analysis. This requires to modify the non-standard semantics in order to model interaction with the environment. Finally, other directions for the approximation of the communication topology should be studied, like hypergraph grammars in the style of [Hab92].

Acknowledgements: I am grateful to Torben Amtoft, Radhia Cousot, Patrick Cousot and Ian Mackie for helpful comments on first versions of this paper. All diagrams have been designed using Paul Taylor’s and Paul Gastin’s EiTeX packages.
References

