Abstract Interpretation of the w-Calculus

Arnaud Venet*

LIX, Ecole Polytechnique, 91128 Palaiseau, France.
venet@lix.polytechnique.fr
http://lix.polytechnique.fr/~venet

Abstract. We are concerned with the static analysis of the commu-
nication topology for systems of mobile processes. For this purpose we
construct an abstract interpretation of a large fragment of the 7-calculus
which can be used as a metalanguage to specify the behaviour of these
systems. The abstract domain is expressive enough to give accurate de-
scriptions of infinite and non-uniform distributions of processes and com-
munication channels. We design appropriate widening operators for the
automatic inference of such information.

1 Introduction

The static analysis of communicating processes with dynamically changing struc-
ture - commonly called mobile processes - has been mostly studied in the par-
ticular case of cML-like programs [NN94, Col95a, Col95b]. The design of these
analyses heavily depends on type and control-flow information that is specific
to CML. In this paper we propose an analysis of communications in the -
calculus [Mil91, MPW92]. Our choice is motivated by the fact that the 7-calculus
is a widely accepted model for describing mobile processes. It is fairly simple and
yet very expressive, since it can encode data structures [Mil91], higher-order
communication [Mil91, San94a] and various A-calculi [Mil92].

Our purpose is to analyze the communication topology of a system of mobile
processes, i.e. the distribution of processes and communication channels during
the evolution of the system. In the standard semantics of the w-calculus this
information is encoded within a process algebra. We construct a refinement of
this semantics where an instance of a process at a certain stage of evolution of
the system is represented by the sequence of internal computations that lead
to it. The communication channels are represented in turn as the congruence
classes of an equivalence relation over the communication ports of all process
instances. This semantic model originated in the study of data structures [Jon81]
and has been successfully applied to the alias analysis of ML-like programs by
A. Deutsch [Deu92a, Deu92b, Deu94] who designed a powerful analysis based on
Abstract Interpretation [CC77, CC92].

C. Colby [Col95b] further extended Deutsch’s work and built an analysis for
a subset of CML which can discover non-uniform descriptions of infinitely grow-
ing communication topologies. However, the whole framework relies on having a

* This work was partly supported by ESPRIT BRA 8130 LOMAPS.

good approximation of the control-flow of the program before doing the analy-
sis of communications. Whereas a closure analysis can be used for higher-order
CML programs, there is no realistic solution for the m-calculus where the only
kind of computation is communication. Therefore we design a new abstract in-
terpretation which gets rid of this problem and still ensures a comparable level
of accuracy. We use the technique of cofibered domains introduced in [Ven96)
which allows us to infer simultaneously an approximation of control-flow and
communications.

The paper is organized as follows. In Sect. 2 we present the syntax and seman-
tics of the m-calculus. The refined semantics is described in Sect. 3. In Sect. 4 we
present the basic concepts of Abstract Interpretation. We construct an abstract
domain for the analysis of the m-calculus in Sect. 5. The abstract semantics of
the w-calculus is described in Sect. 6. In Sect. 7 we design widening operators in
order to make the analysis effective.

2 The w-Calculus

The basic entities in the w-calculus are names, which are provided to represent
communication channels. The key point is that computation is restricted to the
transmission and reception of names along channels. There are various possibili-
ties of defining processes in the 7-calculus, depending on the way communication,
recursion and nondeterminism are handled. Our presentation is based on a sub-
set of the polyadic w-calculus [Mil91]. Let X = {z,y,...} be an infinite set of
names. The syntax of 7-terms P = {P, (), ...} is given by the following grammar:

P =3 ;7. P; guarded sum of finitely many processes

| P|@Q parallel composition
| vz.P restriction
| P guarded replication
™ u=t]o atomic action
v o= z(y) input
o =T[y] output

where y is a (possibly empty) tuple (yi,...,yn) of pairwise distinct names. We
denote by 0 the empty sum of processes (that is when I = §§). We call a nonempty
sum), m;.P; of processes an agent, and a replication? !t.P a server. We use
the common abbreviation that consists of omitting the trailing .0 in 7-terms.
The restriction vaz.P binds the name z in P and an input guard z(y1, .. .,ys).P
binds the names y1, .. ., y, in P. We denote by fn(P) the set of names occurring
free in a process P. If x and y are tuples of names of the same length, we denote
by {y/x} the substitution that maps any z; to y;. The standard operational
semantics of the w-calculus is given by a structural congruence = and a reduction
relation defined in Fig. 1 and Fig. 2.

2 We use a restricted form of replication inspired from the one involved in the definition
of PIcT [Tur95]. Yet it is expressive enough to perform all major constructions in the
m-calculus (data structures, higher-order communication, etc.).

Let = be the smallest congruence relation on P which satisfies the following
axioms:

P =@ if P and Q are a-convertible.

— (P/=,],0) is a commutative monoid.
— vewy. P =vyve.P.
- vz.0=0.

— vz.(P| Q) = P | vz.Q whenever z is not free in P.

Fig. 1. Structural congruence

PP PP
PlQ—P|Q ve.P — ve.P'

(ot o @)-P+) | (o +TEQ+) > {2/yIP | Q
a(y).P| (o472 Q+) > {/y}P la(v).P | Q

P=P P -=Q Q=Q
P—qQ

Fig. 2. Process reduction

We model a system S of mobile processes by a closed 7-term. The evolution
of the system is determined by the internal communications. The structural laws
allow us to rewrite a m-term in order to bring communicands in juxtaposition.
They are the analogue of the heating/cooling rules of the Chemical Abstract
Machine [BB92]. In the chemical metaphore, a 7-term is a syntactic encoding
of a “solution of floating ions”, i.e. a multiset of agents and servers, in which
reaction is communication. The structural congruence identifies all encodings of
the same solution. In particular, any closed process P is structurally equivalent
to a term of the following form:

vy ..ovxp (AL | | A [S1] - | Sk) (%)

where the A; are agents and the S; are servers, such that each name occurring
free in any one of the A; or S; liesin {z1, ..., x;}. Intuitively, this 7-term exhibits
the communication topology of P, i.e. all active agents and servers linked together
by communication channels. Whereas the A; and S; are unique (up to permuta-
tion of the indices), the decomposition (x) is not, because of a-renaming and the
possibility to add and remove useless channel names by structural rewriting®.

$1f x & fn(P), ve.P = P.

Hence, we will define this notion more formally and unambiguously using hyper-
graphs.

The notion of hypergraph is a generalization of that of graph where an edge
can connect more than two vertices. More precisely, an undirected hypergraph
H labelled over L is given by a set V of wertices, a set E of hyperedges, a

boundary function d : E — p(V'), and a labelling function A : E —— L. We
identify hypergraphs which only differ by a bijective renaming of their vertices
and hyperedges, i.e. we consider abstract hypergraphs.

Definition 1 Communication Topology. Let P be a closed w-term and A,
eeey A, S1,..., S, be the agents and servers appearing in decomposition (*).
The communication topology T.(P) of P is the undirected hypergraph (V, E, 0, A)
labelled over the set {a, s} where:

1. V= U?ll fn(A;) U U?:l fn(SJ)

2. E={(a,1),...,(a,m),(s,1),...,(s,m)}.

3. 5(a,z) = fn(Al)a a(S,]) :fn(SJ)

4. Y(t,x) € E: \(t,z) =t. O

Note that the definition is not ambiguous because we are working with abstract
hypergraphs. Hyperedges represent processes that are “glued” together via ver-
tices which are communication ports. The labelling of hyperedges represents the
type of each process appearing in the communication topology, either agent (a)
or server (s).

Given a system S of mobile processes represented as a closed term of the
m-calculus, we are interested in the communication topology of the system at
any stage of its evolution, that is in the following set of hypergraphs:

T(S) Z{T.(P) | S = P}
Ezxample 1. Let S be the closed m-term
viweve.(l[z] N(y).vz.(y, 2] | [[2]))

After n > 0 computation steps, the system is structurally equivalent to the
process

viwewzy ... v, (€zo, v1] | - | Ewn_1,zn] | {[zn] N (y).v2.(Ely, 2] | [2]))

whose communication topology is given by the following hypergraph:

OO =0

=

where boxes (resp. circles) represent hyperedges (resp. vertices). O

Our goal is to discover automatically a finitely representable superset of 7*(.5).
We will apply techniques coming from the area of alias analysis [Ven96], but this
requires first to refine the standard semantics of the w-calculus.

3 Nonstandard Semantics of the w-Calculus

Let S be a closed m-term. A careful inspection of the reduction rules of Fig. 2
shows that any active agent or server of a process P such that S = P, is a
residual of a subprocess of S, i.e. a process s@), where s is a substitution and @
is a subterm of S. In particular, several residuals of a same subprocess of S can
only be obtained by repeated requests to a server via communication. Thereby,
we can uniquely identify an active process in P with the sequence of requests to
servers during the computation S = P that contributed to create the process,
together with the subprocess of S from which it is a residual*. We use this idea
to construct a new operational semantics of the system S of mobile processes.

In order to simplify the presentation of the semantics, we assume that S is
in normal form, given by the following grammar:

N =:=0|vzy...ven.(ASL]| - | ASy)
AS u=U.N| > mi.N;

where I # () and ¢, 7 are the atomic actions of the w-calculus defined in Sect. 2.
Moreover, we require that all variable bindings in S be pairwise distinct. Any
process can always be brought into normal form by using the structural laws.
We uniquely label each occurrence of an agent or a server in S. Let £(.5) be the
set of these labels, and A(S) be the subset corresponding to all labels of agents.
For any ¢ € L(S), we denote by Sy the process labelled by £. A configuration in
our operational semantics is a pair (@, «~) where:

1. @ is a function from £(S) into p(A(S)*) such that, for each £ € L(S), ®(¢)
is finite.
2. e~ is an equivalence relation over the following set:

Ports(®) L {(¢,L,z) | L € L(S),L € B(£),z € fn(Se)}

The function @ associates to each label £ the set of residuals of Sy in the con-
figuration. A residual is identified with the sequence of agent labels which were
involved in the creation of the process via requests to servers. Ports(®) is the
set of communication ports corresponding to the distribution of processes @.
The communication channels are given by the congruence classes of the channel
relation «~ which expresses the links between ports. Note that since we use
the «~ relation, we get rid of problems of name generation and a-conversion

* This idea is somehow related to the notion of locality developed for process alge-
bras [BCHK94, San94b].

as it is the case in the standard semantics. The nonstandard semantics gives
more information than what is really needed to define the communication topol-
ogy. However, this higher level of expressivity is required to design an accurate
abstract interpretation, as we will see in Sect. 5.

We denote by C(S) the set of all configurations (@, «~). If & € L(S) —
p(A(S)*) and p is a binary relation over Ports(®), we denote by [p]s the smallest
equivalence relation over Ports(®) containing p. We denote by U the pointwise

inclusion on £(S) — p(A(S)*). The nonstandard operational semantics of S
is given by a transition relation = on C(S) defined in Fig. 3 and Fig. 4. The se-
mantic rules require a few explanations. In the case of communication between
two agents (Fig. 3), the instances of Sy, and Sy, are removed from @ and new
instances of the Sff and Sy are created with the same residual as their parent

process. The channel relation is defined on the process distribution & U ¢’ in-
cluding the communicands and the newly released processes. The relation e,
implements communication, i.e. it links y; and #; in all spawned processes that
involve these names. The role of «~; and «, is to bind the free names in the S,
and Sy to the corresponding ones in the parent processes. Finally «~, relates all
occurrences of a newly created name among the processes spawned by the sender
and the receiver. This information is then propagated to all other ports by the
transitive closure involved in [—] ;.5 - Once this has been done, the restriction
of e~' to Ports(®') eliminates all information relative to the communicands.
The situation is almost identical for a communication between an agent and a
server (Fig. 4), except that the instance of the server is not deleted. The newly
spawned instances of the S7 are assigned the residual L,.(,, thus formalizing our
intuition about the meaning of residuals.

In our context, given a closed 7-term S in normal form, we are interested
in computing an upper-approximate of the collecting semantics [CC77] Ss of
S, that is the set {P | S = P} of descendants of the initial configuration
in the standard operational semantics. Thereby, we connect the nonstandard
operational semantics with the standard one via a relation & € (P x C(S))
defined as follows. If £(S) = {¢1,...,4,} and, for all i € {1,...,n}, ((;) =
{Lgi71, R Lgi7ki}, then

(P, (@, 0v)) € K
whenever p=vey .. . v&m. (Poya |- | Py |- | Peya |-+ | Pe, k) where:
—Forallie {l,...,n} and j € {1,...,k;}, Py, j; = 5i;5¢;, where s;; is a
substitution such that s; ;(fn(Se;)) C {z1,...,2m}.
= Vi,j e {l,...,n} : Vo € fn(Sy,) : Yy € fn(Sy;) : Vp € {1,...,k;i} : Vg €
{1,.. '7kj} D80 p(T) = Sfj7q(y) > (li, Ly p,) o (Zjaijyqay)

If S =vay...vx.(Se, | -+ | Se,) we denote by cg the nonstandard configuration
(@5, Ms) where

955(6):{{5} if ¢ =¢; forie{l,...,n}

0 otherwise

and S = [{((Zi,é‘,l’), (€j757m)) | 1 < i;j < n,r € fn(SZ.) ﬂfn(sij)}]qsy Note
that (S, cs) € k. The nonstandard collecting semantics Sg is given by {c| cs =

c}.

Theorem 2. Let I' : p(C(S)) — p(P) be the function that sends any set C
of configurations to {p | Ic € C : (p,c) € k}. Then, Sg = F(Sg).

This means that the standard and nonstandard collecting semantics of the -
calculus are equivalent. Note that x provides a direct way to compute the commu-
nication topology associated to a nonstandard configuration (@, «~), the vertices
being given by the congruence classes of «w.

Ezample 2. Consider the m-term S of Example 1 (which is in normal form) that
we label as follows:

viwewz.(Ly 1z] ||| L2 N(y).vz.((€s:€ly, 2] ||| a:1[2])])

If cs = (P, ~), for n > 0, then

Zl |—>(Z)
52 g {8}
by {00071

and e~ is the smallest equivalence relation on Ports(®) such that:

= (b3, 01 547) (b3, 01.6},2) = i=j+1

(547£1 7)M (53761-52717Z)

(54751 l) (627571)

(53,51 54,) (EQ,&‘,C),fOI‘ alliE{O,...,n—l} O

It now remains to build an abstract interpretation of the w-calculus based upon
the nonstandard semantics.

4 Abstract Interpretation

Abstract Interpretation [CC77, CC92] provides general frameworks to reason
about semantic approzimation. Typically, this problem amounts to finding an
upper-approximate of the least fixpoint S? of a Uf-complete endomorphism F?
over a complete lattice (D%, C3, 15 LB T3 M9), the concrete semantic function.

Ezample 3. The nonstandard collecting semantics Sg of a system S of mobile
processes can be shown to be equal to the least fixpoint of the U-complete mor-
phism Fg defined over (p(C(S5)), C,0,U,C(S),N) as follows (see [CCT77]):

def

Fs = XX -{es}U{c|I e X: = ¢}

We can thereby apply an abstract interpretation framework to the analysis of
the m-calculus. O

If

-l b, € L(S),

— L€ ®(¢;),L, € 9({,), ’ .

= Se =t @y, Ym) vt vy (S [| Spri) + 0

= Se, =+ 2, t] o] v (Se | | Spre) + 00,

- (gzaLlam) o (KO,LO,Z),
then

(@,) = (&', &)

where:

— If we put

B (1) = o) —{L,} ift= é.n for n € {i,0}
o(0) otherwise
then
& () = () U{Ly} if £ =0} for n e {i,o}, ke {1,...,n,}
BREAG otherwise

— ewi= e U e U e U sy U oy] o0, N (Ports(@') x Ports(®')) where:
o ovwe= {((€, Lisyn), (€5, Loy tn)) | 1 < j < il <k <moy1 < h <
m,yn € fn(Sy),th € fn(Se)}-
o evy={((ly, Ly,u), (&, Ly,w)) | 1 < j < mypyu € fn(Se,) N fn(Sy)}, for
n € {i,o}.
o cmv, = {((E%,LN,UZ),(E,’;,LN,UZ)) | 3,k € {1,...,n,},h € {1,...,1,},
vy € fn(Sg) N fn(Se)}, for n € {i, 0}

Fig. 3. Interagent communication

Following [CC92], the semantic approximation is achieved via an abstract
semantic specification given by a preordered set (D? <), the abstract semantic

domain, related to D by a concretization function v : D! —— DI, an abstract
basis 1L* € DF, and an abstract semantic function F* : D¥ —— DF, such that:
1. L8 CaH(h).

2. Vo,y € D 1w Ry = y(z) T 4(y).

3. Vo € Dt Flory(x) Cf yo Fi(x).

In order to compute effectively an approximation of S?, we introduce the notion
of widening operator.

Definition 3 Widening Operator [CC77, CC92]. A widening on (D*, <) is
a binary operator V : D x D¥ —— DF which satisfies the following properties:

1. Ve,ye Dtz <2 Vy.

If

— 0,0, € L(S),
— Ly e $(¢;), L, e@(é)
St =ty)00}] (S | o | Sy,
- SZU :'”_'_Z[tl)"')t]I/’l)1 VUI?O'(S@, | | Sl(",'o)+"'7
- (fz,Lz,CL') oy (€O7L07z)7
then
(@, e) = (P, ')
where:
— If we put
&) —{L,} iflL=1¢,
T _
o) = {@(Z) otherwise
then

BT (O)U{L,.l,} if € =10F for ke {1,...,n;}
0) otherwise

T U{L,} ifl=(Fforke{l,...,n,}
SZS’(f)z{SZST {

N [eweUevvs U e U e,

U
® o= {((657L0~507yh) (» Lo
m,yn € fn(Sy),th € fn(Sz';)}

e~y pie N (Ports(®') x Ports(®')) where:
n) | 1<j<nyl<k<n,l<h<

o ;= {((li, Li,u), (€, Lo-lo,u)) | 1 < j < miyu € fn(Se,) N fn(Sy)}-

o o= {((Lo, Lo,), (6, Lo,w)) | 1 < j < ngyu € f(Se,) 0 f(Sgy)).

o «w,= {((t},Lo,v}), (€5, Lo,v7)) | Gk € {1,...,m.},h € {1,--.,10},
vi € fn(Sy) N fn(Se)} U AW, Lo-bo, vy), (6, Lo-lo,vy)) | Gk €
{1,...,ns},h e {1,...,l;},v} € fn(Sﬁ-) N fn(Se)}.

Fig. 4. Agent-server communication

2. Ve,y €Dt iy <z Vy.
3. For every sequence (z,,)n>0 of elements of D, the sequence (Z’Z)nzg induc-
tively defined as follows:

o = 2o
er+1 = :L'X V Zpi
is ultimately stationary. O

The approximation of the least fixpoint is obtained as the limit of an abstract
iteration sequence with widening.

Theorem 4 Abstract Iterates [CC92]. The iteration sequence (F)n>o de-
fined as:
Fy =18
FY = FY if F(EY) < FY
=FY V F(FY) otherwise

is ultimately stationary and its limit S* satisfies S* T8 v(S*). Moreover, if N > 0
is such that Fy = FyN |, then¥n > N : FY = Fy.

We now have to construct an abstract domain (D¥, <) approximating C(S) via

a concretization function v : D¥ —— C(S).

5 Abstract Semantic Domain

We construct D* as a set of abstract configurations (&%, «v#) defined as follows.
We represent a set of residuals of a process S; by a rational language. More
precisely, let A be the set of automata (Q,I,T,7), where @ is a finite set of
states, I,T C @ are the initial and final states, and 7 € p(Q x A(S) x Q) is
the transition relation. In order to keep A small and representable, we suppose
that all states come from an infinite recursive set Q. For any automaton A in
A, we denote by Paths(A) the set of successful paths of A, and by 7(A) the
set of transitions of A. An abstract distribution of processes &F is a function
from £(S) into A. An abstract communication port is a tuple (¢,i,t,) where
L€ L(S), x € fn(Sy), i and t being respectively initial and final states of the
automaton &f(¢). It describes all concrete ports (¢, L,z) where L is a word
labelling a path® from i to ¢ in (). We denote by Ports*(®*) the set of all
abstract communication ports associated to &*.

Our representation of the abstract channel relation is based upon a numerical
encoding of paths. The aim of this construction is to be able to represent non-
uniform channel relations, i.e. to distinguish instances of a process which is
recursively spawned. Intuitively, if £ is the label of such a process, the automaton
@*(¢), which is an approximation of the residuals of Sy, certainly contains cycles
(since there is potentially an infinity of instances of Sy). The encoding amounts
to assigning a counter to each of these cycles and to identify a residual L of Sy by
the number of times a path labelled by L runs through each cycle, i.e. by a tuple
of counter values. This idea was first introduced by A. Deutsch [Deu92a, Deu92b]
in the context of alias analysis, with a different formulation though. In order to
avoid having to find cycles and also to ensure a better precision, we will actually
assign a counter to each arrow of the automaton. We now give a formal definition
of this construction.

If p is a successful path in (Q, I, T,), we denote by p° its commutative image,
that is the function from 7 into the set of integers N, which maps any transition
of the automaton to the number of times it occurs in p. If ¢1,¢> € L(S) and

> We can reduce the number of abstract ports to consider by requiring that there be
at least one path in &*(¢) from i to t.

&4 () = (Qi, I;, Ty, ;) for i € {1,2}, the channel relation between abstract ports
is given by a set of tuples (£1,i1,t1,)« (ls,is,ts,y) where v € (1, — N) x
(ro — N). If we denote by i(p) (resp. t(p)) the initial (resp. final) state of
a successful path p of an automaton, this abstract channel relation denotes all
pairs (¢1,L1,2) e ({2, Ls,y) for which there exists a successful path p; in
®%(¢;) labelled by L;, such that i(p;) = i; and t(p;) = t;, for each j € {1,2},
and v = (p},ps). Considering commutative images of paths instead of tuples
of counter values alleviates us from introducing explicit counter variables which
would have led to intricate problems of renaming when it had come to defining
the abstract semantics. In the following we will tacitly use the isomorphism:

(7'1 —>N) X (7'2 —>N) ;(Tl EBTQ) — N
where @ denotes the coproduct in the category Sets of sets and functions (i.e.
the disjoint union).

In order to guarantee finite representability for the abstract configurations,
we require that the set:

(617 7:17 tl: x)wﬁ(glv 7:27 t27 y) d:ﬁ {V | (617 ilv t17 x)e\zﬁ)ﬁ(€17 Z'?v t27 y)}
be effectively given. This can be achieved by considering an abstract numeri-

cal domain, that is a representable class of subsets of (11 @) — N. Sev-
eral numerical domains have already been developed for abstract interpreta-
tion using various kinds of representations: intervals [CC76], arithmetic congru-
ences [Gra89], affine equalities [Kar76], convex polyhedra [CHT78] or congruence
equalities [Gra91]. They all can be described in an abstract way. Let FinSets be

the category of finite sets and functions. If f: V —— W is a function between
finite sets, we define Vf : p(V — N) — (W —— N) to be the function
that maps any X € p(V —— N) to the set:

{p:W —N|TeX: p=w- Z v(v)}
vEf~H(w)
Definition 5 Abstract Numerical Domain. An abstract numerical domain

is a functor V! : FinSets — PoSets that sends any finite set V' to a poset
that comes with the structure of a lattice (V#V, CF, |_|§/7 @g/, I‘Iié/7 T%,) and a mono-

tone map vy : (VFV, C*) —— (p(V — N), C). We will omit the subscript V'
whenever it will be clear from the context. Moreover, if V. —— W is an arrow
in FinSets, then Vf o vy C v o Vi, O
Example 4. We denote by Q the field of rational numbers. Karr’s abstract numer-
ical domain [Kar76] associates to each finite set V' the set of all affine subspaces

of V.—— Q endowed with its canonical affine structure®. vy sends any element

5 An affine subspace of V —— Q is a set {p+Aier 4+ Aen|A,...; A € Q}

where p, e1, ..., e, are elements of V —— Q, addition and multiplication by a
scalar being defined componentwise.

X! of VEV to XN (V — N), whereas M, is the intersection and LI, the sum

of affine subspaces. An affine subspace of V. —— Q can equivalently be seen as
the set of solutions Sol(S) of a system S of affine equations ay.v1 +- - -+ay,.v, = ¢
over the variables V' = {vy,...,v,}. O

Thereby, an abstract channel relation e~# can equivalently be seen as a function
of domain Portsﬁ(zﬁﬁ) X Portsﬁ(sﬁﬁ) that maps any pair ((¢1,41,t1,), ({2, i2,t2,Y))
of abstract ports to the element (£1,4y,t1,)ew?(la, i, t2,y) of V1 © 7). We
leave the choice of the abstract numerical domain V¥ as a parameter of our
analysis.

Following [Ven96], we provide D* with the structure of a cofibered domain.
Given two automata A; = (Q1, 1,71, 71) and Ay = (Q2, 5, T, 72), we define a

morphism A AN As as a pair of functions f; : Q1 — Q2 and fo: 731 — T
satisfying the following conditions:

1. fi(h) C L.
2. fi(Th) C Ts.

3. V(qaga ql) €7 f2(q7£7q,) = (fl(q)7£7fl(q’))

A can thereby be turned into a category. We denote by &#(S) the product cat-
egory [lpep(s) A An object of ®#(S) is an abstract distribution of processes
previously defined. We now construct a functor A from ¢#(S) into the cate-
gory PoSets of partially ordered sets and monotone maps. The image of an
object @* in #*(S) is the set of all abstract channel relations «w* over &f or-
dered by inclusion. We call A®* the fiber of A over . Now let ¢ . & be
a morphism” in @¥(S). AF maps any abstract channel relation «w?; in & to
the relation «~?y such that, for all (¢y,i),t,,z), (02,1, th,y) € Ports*($%), the
set (1,1, 1), x) ety (ls, i, th,y) is defined as:

U ra IVE(F(01)2 @ F(€2)2) (€1, i, tr, @) ensby (o, iny £,) | F(€7)1(i5) = 0%
F()(ty) =1,
1<j<2}

where @g(&) = (Qj,1;,T;, 1), for j € {1,2}. We define the preorder < on
Dt from the Grothendieck construction [BW90] applied to A, ie. (8%, emf) <
(8%, emsts) iff there exists a morphism & Z. @ such that AF(ewl]) C emly.
We call A the display associated to the cofibered domain (D¥, <). Intuitively,
Dt consists of a category of posets “glued” together. The cofibered structure
will play a major role in the definition of the abstract semantics and widening
operators.

The concretization function v : D¥ —— C(S) sends any abstract configura-
tion (&%, ~v¥) to the set of concrete configurations (@, ~~) for which there exists
a family of functions (A : #(¢) — Paths($*(()))scr(s) satisfying the following
conditions:

7 For each £ € L(S), F(£) : ' () — H4(¢) is a morphism of automata.

1. For all £ € £(S) and L € ¢(¢), the path A,(L) is labelled by L.

2. Let (€1, Ly,), (£2, L2, y) be distinct® ports of $, and p; be the path Ay, (L;),
for j € {1,2}. We denote by 7, j € {1,2}, the set of transitions of &*(¢;).
Then, (él,Ll,.I') R (52, LQ,y) implies that

(pi)apg) € 7T1€BT2((£17i(pl)at(pl)am)wﬁ(g%i(p?):t(p?);y))

Proposition6. V¢! ¢l e D! : & <& = () C ().

Ezample 5. We carry on with Example 2. Let &* € &*(S) be the abstract distri-
bution of processes defined by the following automata:

@) @

Zl, i 61, il
@i @O0,
(1) (L) Ph(L3) (L)

where we associate distinct counter variables {1i, j,1’, j'} to each transition of the
automata. If £, ¢, € £(S), and c is a counter variable associated to a transition
o € T(¥4(¢;)), for i € {1,2}, we denote by c; a counter variable associated to the
canonical image of o into 7(®%(£))D7(®*(¢2)). We use Karr’s abstract numerical
domain, hence systems of affine equations represent the abstract values. Now let
e~ be the abstract channel relation of A®* that satisfies:

,

((627(]27(]27) :Tﬁ
((€4vq47q47) = Tﬂ
((€4vq47q47) = Tﬂ
(Z3aq37qéac) (Z3aq37q37) :Tﬁ
(53;%‘7%70)”") (ZQ,(]Q,Q%,C) :Tﬁ
()

ip =i, =1
£3aq37q{,37y ew-)ﬁ(fmq&qé,,z) = { ~1 ~2 }

ji=j2+1
sy 01y s 2) oot (b g3 € 2) = {

Elvqlaqlvl)w
Elvqlaqlvl)w
62,(]2,(]2,”("""’

“eny

#
i
i
#
#

i'y =iy
o
J1=]2

the other components being defined symmetrically. Thus «~# denotes ezactly all
communication channels that may be created during the evolution of S. d

8 We do not require the channel relation to denote reflexivity since this information
can be extracted from &.

6 Abstract Semantics of the w-Calculus

Before defining the abstract semantics, we need some additional properties of
abstract numerical domains. Let V' L. W be an injective map in FinSets.
Any abstract numerical domain V* : FinSets — PoSets provides two com-
putable functions, an embedding ? : VIV —— VEW, and a projection ? :
VEW —— VIV satisfying the following conditions:

LVXPeVV Wweyy(XH):{peW — N|pof=v}C WW(?(Xﬂ)).
2. VYt e VW 1w € v (YH) s vo f € w((Y1),

If S is a system of linear equations over the set of variables V', there is a com-
putable element Sol%,(S) of V!V which upper-approximates the set of variable

assignments in V' —— N that are solutions of S. We will omit the subscript V'
whenever it will be clear from the context. Moreover, the lattice V#V is provided
with a widening operator.

(_
Ezample 6. For Karr’s abstract numerical domain, f (Y'*) amounts to the elimi-
nation of the coordinates corresponding to the variables W — f(V') from a system

of a point and vectors describing Y. ?(X #) is described by the same system of

affine equations as X*. Sol%,(S) is of course directly expressible in V¥V Since

V#V satisfies the ascending chain condition, a widening is provided by the join
#

Lt O

We first construct the abstract counterpart of the closure operator [—]s that
maps any binary relation p over Ports(®) to the smallest equivalence relation
containing p. This closure operation can be expressed by the following inductive

rules:
x € Ports(P) (z,y) €p

(z,2) €p (y,x) €Ep
(x.y)€p (y,2)€p
(z,2) € p
The computation of [p]g amounts to calculating a least fixpoint in (p(Ports(P) x
Ports(®)),C) (see [CCI5]). Thereby, we define the corresponding abstract op-
eration as the limit of an abstract iteration sequence’ on a fiber of Df using
Theorem 4. For this purpose, we introduce a closure relation > on abstract chan-
nel relations which mimics the inductive rules for [~]¢. Let &% be an abstract
distribution of processes. We define > on A@* as follows:

1. If pt}, pth € Portsﬁ(sﬁﬁ) and «wf; € AP then «wt >emty where, for all
pty, pty € Ports*(d1):

4 if pt, = pt!, and pt, = pt’
§ _ [pty e~ pty if pty = pt, and pty, = pt)
ptl?Winh_{(Z)ﬁ otherwise

® Note that we only have to cope with the symmetry and transitivity rules (cf. the
definition of).

2. Let l1,€5, 05 € L(S) and pt}; = ({;,ij,t5,7;) € Ports*(#), for j € {1,2,3}.
We denote by (Qj,I;,Tj,7;) the automaton &*(¢;), for j € {1,2,3}. Let
T=n®m & and 7 B 19— T, T2@7'3>£>T, 7'1697'3>£>Tbe
the canonical inclusion maps in FinSets. Now let «w; € A®* and X; =
(Kj,ij,tj,xj) W\")ﬂl (£j+1,ij+1,tj+1,$j+1), forj € {1,2} Then, Wﬁ1l><"~‘>ﬁ2
where, for all pt,, pt, € Portsﬁ(sﬁﬁ),

— = — .
ol _) B(AX)NE f2(Xe)) if pty = pt) and pt, = pty
Pty 2 Pty .

P otherwise
The fiber A®*# can be endowed with a lattice structure, the join Lig: and the
meet Mg: being defined by componentwise application of U* and M. We define
similarly an operator Vg; on Ad* by componentwise application of the widening
operators provided by the abstract numerical domain.

Proposition 7. Vg: is a widening operator on A®H.

We define an endomorphism Fl, on the fiber A®* as:
Fp = M) - | {omPe | it}

Definition 8 Abstract Closure. Let ! be an abstract distribution of pro-
cesses and ~w# an element of A@?. The abstract closure [«~#]g: of «w? is given
by the limit of the abstract iteration sequence of Theorem 4 applied to the func-
tion Fy on the domain Ad*, with «w? as abstract basis and Vg: as widening
operator. O

Note that this closure operation enforces transitivity on an abstract channel
relation e~f. It may cause an important loss of accuracy, since the union of
transitive relations (which is what is denoted by «wF) is in general not transi-
tive. In fact, as we will see when we will define the abstract semantics, we only
need to perform this closure operation on a relation «ww? = aw#; U «wfy where
!, denotes concrete channel relations and «~¥, contains additional relations
between ports in the domain of «~#; and some newly created ports. Therefore,
it is possible to modify the rules defining [> so that they can only be applied to
pairs involving a new port, leaving the relation «~#; unchanged!®. In order to
keep the presentation simple, we do not detail this improvement of the analysis.

We define the abstract semantics of the w-calculus by a transition relation =*
on D which mimics =. Let (¢*, «~+*) be an abstract configuration and ¢, € £(S)
such that:

Se, =+ Z[tr, st vo] v (Sey || Sgre) 00

We have a transition (¢!, av?) =¥ (8}, «w?,) whenever there is ¢; € £(S), such
that Sy, is one of the following processes:

10 This was pointed out to us by Alain Deutsch.

— ot w(Yrs e Ym) w0y vy (Se e [Spmi) -

= 2(ys,. .. ym).vvl .. .VU;i.(S[% |- S[;u)
and

(€3, 83, ti, x)wﬁ(eo: So,t0,2) # (I
for two abstract ports (¢;,s;,t;,x) and ({,,S,,t0,2). In other words, there is
the possibility of a communication between two residuals of S, and Sy, in a
concrete configuration abstracted by (&, «~*). We denote by X! the abstract
value (€;, s;,ti,) e (Lo, 50, t0, 2).
We define @ﬁ. as follows:
(1) {@g(@) e A, ifl= 6‘7’;, forn e {i,o}, ke {1,...,n,}
P (L) otherwise

where A; and A, are automata representing the residuals of the newly spawned
processes, and @ denotes the coproduct in A. Whatever Sy, may be, agent or
server, A, is always defined as the automaton (Q,,{s.},{to},7.), where, for
n € {i,o}, Q, (resp. 7,) is the set of states (resp. transitions) of ®*(¢,). Indeed, in
the nonstandard semantics the residuals of the processes spawned by the sender
are always inherited from their parent agent. For A; there are two different cases
depending on the type of Sy,:

1. Sy, is an agent. Then we put

Ai = Qi {si}, {ti},)
2. Sy, is a server. We suppose that we are provided with a distinguished element
2 in the set Q of all states of the automata in A. Let Q, o, Qo @ {12}
and {2} L2, Qo & {£2} be the canonical inclusion maps in FinSets. We

denote by 7, ——» 7, the function that maps any transition (g,¢,q") to
(&1(q),£,&1(q"))- Then we put

Ai Qo ® {2}, {&(s0)}, {&(D)},77)

where 7, = {(€&1(0),£,61(0) | (¢,4,4") € 7o} U {(&(to), Lo, &2(2))}. This
is the abstract counterpart of assigning the residual L,.f, to the processes
created by the server in the concrete semantics.

1
We denote by A, L g (657) the canonical inclusion morphism in A, for n €

{i,o}, 1 € {1,...,n,}. Note that the sets of residuals denoted by @4 are larger
than the ones denoted by ®!. Indeed, we are not allowed to remove anything
since we have lost all information about the number of residuals of each S.
The abstract channel relation «~!, mimics the concrete one:
(’W')ﬂo d:ef [A]:(M’i) u@u. (’W')’ic uqsu. (’W')nl UQE (’W')uo UQE Mﬂll]q&u.

where, for all £ € L£(S), ®*(¢) L3 ®%(¢) is the canonical inclusion morphism
in A. The definitions of «wf,, «w!; «w!, and «w!, follow the lines of their
concrete counterparts in Fig. 3 and Fig. 4. We distinguish two cases, depending
on the type of Sy,.

Fig. 5. Abstract interagent communication

Interagent Communication. If Sy, is an agent, the abstract semantics of
communication is summarized in Fig. 5. We have represented the automata cor-
responding to the residuals of Sy, , S,, Sy and Sy, the latter being two processes
spawned by the sender and the receiver after the communication occurred.

The abstract channel relation «~#,. performs the binding between the names
yn and t;, involved in the communication. Since X? denotes residuals of Sy,
and S;, that may communicate, we use this same abstract numerical value to
denote all possible channels between the ports associated to y, and t;. This
can be stated formally as follows. For all j € {1,...,n;}, k € {1,...,n,}, h €
{1,...,m}, yp € fn(Sﬁ-) and t;, € fn(Se), we put

(€, (e (s0), ()2t yn) e €8, ()1 (80), ()1 (to) b)) =
VE((e])2 @ (15)2) (XE)
),

For any other abstract ports pt,, pt, € Ports®(®2), we put pt, em? pt, = Q8.
The abstract channel relations «w!; and «~!, bind the free names in the
instances of Sy, and Sy, to the corresponding ones in the processes released after
the communication. Their réle is thereby to propagate the scope of free names.
The abstract numerical value associated to the relation «w!;, for example, is the

Fig. 6. Abstract agent-server communication

solution in the abstract numerical domain of the system of equations 7 = 7/,
where 7 is any transition in the automaton corresponding to Sy, and 7' is the
copy of 7 in the automaton associated to the newly created process S,;, as shown

in Fig. 5. The definition of «!, is similar. The meaning of these operations at
the concrete level is to bind pairs of ports with the same residuals. Since we
abstract a residual by the number of times a path labelled by this residual runs
through each transition of the automaton, our definition is quite natural. This
can be stated more formally as follows. For all n € {i,0}, k € {1,...,n,} and
u € fn(Se,) N fn(Se:), we put

(s F)1 (50), Fly)s (),)by (05, (1)1 (50), (1)1 (), 0) 2 Sl (SE)
where S} is the system of affine equations over (P}) ® (P} (£%)) defined as
follows: .

o Fly)2(0) = G20 (1g)2(0)
o €Ty

where (& (£,)) — (@4 ((,)) & T(BL(5)) <= 7(¥5(£5)) are the canonical
inclusion maps in FinSets. For any other abstract ports pt,, pt, € Portsﬁ(diﬁ.),
we put pt, et pt, = (B8,

The abstract channel relation e~#, binds the new ports created by the com-
munication in the spawned processes. Since all processes released during a com-
munication by either the sender or the receiver have the same residuals, we
define «~f, similarly to «~%; and ew?, as the abstract solution of a system of
linear equations. That is, for all n € {i,0}, j,k € {1,...,n,}, with j # k', and
j€{1,...,1,} such that v} € fn(Sg) N fn(Se), we put

(&777 (L'z/)l(s?‘l)a (L%)l(tn)a u)(’w')ﬁu(gga (Lvl?/)l(sﬂ% (Lg)l(tn)) = So lﬂ(SJ k)

ik : pi B ok
where S7* is the system of affine equations over 7(®4(¢7)) @ 7(®4((;)) defined

as follows: '
{91 o (t7)2(0) = b2 0 (13)2(0)
0 €Ty
where (%4 (¢1)) D (#h (6)) @ T(Pa(Lh)) ~=— r(B4(LE)) are the canonical

inclusion maps in FinSets. For any other abstract ports pt,, pt, € Ports”(sﬁﬁ.),
we put pt e’ pty = 0F.

Agent-Server Communication. If Sy, is a server, the abstract semantics of
communication is summarized in Fig. 6. The abstract channel relations esf,
and «wf, are constructed exactly as above. The situation is quite different for
et and «wf., because the automata corresponding to the processes spawned
by Sg, are copies of the automaton associated to Sy, suffixed with a transition
labelled by £,.

The definition of «~F. is very similar to the definition of «~¥; in the pre-
vious case. The binding between the names involved in the communication is
performed by taking the solution of the system of equations ¢’ = ¢ in the ab-
stract numerical domain, as illustrated in Fig. 6. Since residuals of the processes
released by the receiver are suffixed with ¢,, we furthermore require that the cor-
responding transition be crossed exactly once. This operation can be formalized
as follows. For all j € {1,...,n;}, k € {1,...,n.}, h € {1,...,m}, yn € fn(S,)
and t, € fn(Se), we put Z

(657 (Lg)l o 61 (80)7 (Lg)l o SZ(Q)Jyh)Mﬁc(Zﬁa (L,g)l(so)y (Lls)l(to)) = So lﬁ(sj k)

where SZF is the system of affine equations over (P, (Zg)) @ 7(P% (€%)) defined

as follows:]
Gio(1)2(&i(to), o, &2(2)) = 1
(1o ()203(0) = Go(1h)a(0)
g €T,
where (5 (01)) — 7(B4(¢1)) @ (B4 (0F)) «=— 7(BL(L%)) are the canonical

inclusion maps in FinSets. For any other abstract ports pt,, pt, € Portsﬁ(sﬁﬁ.),
we put pt; ewfopty = PF

' Reflexivity is implicit by definition of .

The definition of «~#; is slightly more delicate. The residuals of the processes
spawned by the server are represented by a copy of the automaton associated to
the sender and «w!; relates the instances of Sy, which may communicate with
S¢, to the instances of Sz{ which have been effectively spawned by the commu-

nication. Thereby, the abstract numerical value associated to «w!; consists of
X! for which each o has been mapped to its copy ¢’ in the automaton corre-
sponding to S,; (see Fig. 6), together with the constraint that the additional

transition labelled by ¢, must be crossed once. This can be stated formally as

def X1 X2 . . .
follows. Let 7/ = 7; @ 7, and 7; = 7/, 7, »— 7] be the canonical inclusion

maps in FinSets. For all k € {1,...,n;} and u € fn(S¢;) N fn(Sp), we put
(€5, F (€)1 (s0), F (€)1 (t:), w) em (65, (F)1 0 &1 (s0), ()1 0 &0(2),u) =
V()2 @ (8)) (B ® (va o IO T, S0k (i o), o () = 1))

For any other abstract ports pt,, pt, € Ports*(®2), we put pt,e—i;pt, = 04,

Definition 9 Abstract Semantic Function. Let ¢! = (& «~') be an ab-
stract configuration. For any configuration (®%,«w?,) such that ¢! =! (&},

ew»ﬁ.), we denote by f[@ﬁ., eweﬁ.] c Pt > @ﬁ. the canonical inclusion morphism.
Let @fir be the colimit in ##(S) of the diagram {F[®5, et] : & — & | f =1
(B, awte)}t and {FH[BL, emb,y] « B4 — &8 | ¢ = (B, «w?,)} be the coli-

miting cocone. We define the abstract semantic function F* : Df —~ DF as
follows:

Fi(E) E ||, {AFI[B), wba)(omb) | & =F (@, L))

Theorem 10 Soundness of the Abstract Semantics.
FsoyC~voF ’

It now remains to define a widening operator on D¥ in order to make the abstract
semantics of S computable.

7 Widening Operators

There is a generic method to construct widening operators on cofibered domains
by combining the widenings defined locally on each fiber [Ven96]. This requires
to extend the notion of widening to categories.

Definition 11 Widening on a Category. Let C be a category. A widening
operator V on C associates to any two objects X, Y of C two arrows:

v XV,V Yoy XV,V ,

v
such that for any sequence of objects (X,,),>0, the sequence of arrows (XY In,
XY)n>o in C defined by:

XOV =Xy
Xnv+1 = XerXn+1

fnv = XrY ?1 Xn+t1

is ultimately pseudo-stationary, i.e. there exists N such that, for all n > N, fY
is an isomorphism. Moreover we require V to be stable under isomorphism, that
is, whenever X = X' and Y =Y’, then X VY = X'V Y. O

Assuming that ®#(S) is provided with a widening V, we construct a widening
operator V# on D! as follows. Let (&%, av?1) and ($%, ex?,) be abstract config-
urations, (@, eml;) V(@ emty) is given by:

— (B, ety Vs A V1 85) 7" 0 (& V5 @) (wts)) when & ¥y #% s an
isomorphism,
— (B VB, ABE V1 B5) (1) Vi ¢ g ABE V2 85)(wno%)) otherwise.

Intuitively the first case means that when the fiber is “stable”, i.e. &% ?1 ®! is

an isomorphism, we “transfer” the abstract channel relation «w?, into the fiber
and we make the widening with ewf;:

ot Vo ah)! &tV , &}
ot (21 V123) ot v o -l V272 o

(’v\/“)ﬂl
Vot {A(@? Viah) o (@ Tadh))(emts)

Otherwise we transfer ew!; and ew!, into the fiber over ® v &% and we make
the widening in this fiber:

PV, P PV,

P! - BV P

7

Theorem 12. V! is a widening operator on (D¥, <).

We now define a widening V on #%(S) by componentwise application of a
widening Va on A. The idea is to fold states in an automaton A = (Q,I,T, 1)
with respect to some “similarity” criterion which is represented by an equiva-
lence relation =3 on (). The folding operation is achieved by quotienting the
automaton with respect to this relation.

Ezample 7. Let k be a nonnegative integer. For any ¢ €), we denote by L<(q)
the set of words labelling a path in A originating from ¢ and of length bounded
by k. We define EZ as follows:

¢=%d = L<i(a) = L<i(d)
This folding criterion is inspired by the k-limiting approximation of [JM81]. O

Definition 13 Quotient of an Automaton. Let A = (Q,I,7,7) be an au-
tomaton of A and ~ be an equivalence relation on (). We denote by 7. :

Q — @/~ the canonical projection onto the quotient set'?. The quotient A/ ..
of A by ~ is then defined as

Al Q) smn(D), 7o (D), {(mn(q), ;7 () | (q,6,) € T})

Ezample 8. Let =5 be the smallest equivalence relation on) such that:

1. Vi,i' el:i=s1i.

2. Y(q,l,r), (¢, 0,r")eT:q=s ¢ N =V = r=571".
Then it is obvious that the quotient automaton A/=, is deterministic. This is
an approximate'® procedure to make an automaton deterministic. O

Let Ay, Ay be two automata. We denote by A; —— A; & Ay, i € {1,2}, the
canonical inclusion morphisms in A. If for each automaton A in A we have a
computable equivalence relation EZ on the states of A, we put

A1 Vo As = (A1 @ Ay)/

=V
—A1DA2

A @A —— (A ®A)/

—v is the morphism of automata induced by the
—A1DA

canonical projection T_Y ., Weput A ?l Ay E roe;, forie {1,2}.
1 2
We cannot say much about V in whole generality. We have to check by hand
that each operator defined in this way satisfies the properties of Definition 11.

Proposition 14. The operator Vs defined from the equivalence relations EZ of
Ezample 7 is a widening on A.

2 Strictly speaking @/~ is a representative of the quotient set in Q.
3 The language recognized by the quotient automaton can be larger than the original
one.

It only remains to define the abstract basis L% = (@i, «~f |) in order to compute
the iteration sequence. If S is the labelled 7-term vz, ...vx,.(6; : ASy | -~ |
Ly ASy), where the AS; are either agents or servers, 9511 is defined as follows:

aer [({02},{02},{02},0) if £ € {tr,...,0,}
20 = {(@,@,@,@) otherwise

For all distinct ¢,¢" € {¢y,...,£,} and all x € fn(S;) N fn(Se), we put
(gv ‘Qa ‘Qv x)wul(gla ‘Qv Q: ilf) d:ef Tﬂ

Example 9. If we use the widening of Example 7 and enforce the automata to
be deterministic with the procedure of Example 8, the limit of the abstract
iteration sequence corresponding to the w-term S of Example 2 is given by the
abstract configuration defined in Example 5. Our analysis is thus able to infer
non-uniform communication topologies. O

8 Conclusion

We have presented an analysis of communications in the m-calculus based on
Abstract Interpretation. This analysis is able to infer accurate descriptions of
the communication topology of a system S of mobile processes, since it can dis-
tinguish instances of recursively spawned processes, as illustrated by Examples 5
and 9. This can be applied in particular to problems of security in distributed sys-
tems, where this kind of information is required to ensure that confidential data
cannot be accessed by unauthorized elements of the system. Another possible
application would be to use the information about the communication topology
to statically derive an allocation strategy of the processes on a multiprocessor
architecture which optimizes the communication cost. Future work will focus on
the implementation of the analysis and the experimental study of its usefulness
for these applications.

Further extensions to the abstract interpretation of the w-calculus are to be
investigated. One can enrich the abstract domain to take into account the num-
ber of instances of a process. This may improve the analysis and give interest-
ing information for compilation (channels used only once, finite communication
topologies, etc.). However the major extension is to consider n-terms with free
variables in order to achieve modular analysis. This requires to modify the non-
standard semantics in order to model interaction with the environment. Finally,
other directions for the approximation of the communication topology should be
studied, like hypergraph grammars in the style of [Hab92].

Acknowledgements: I am grateful to Torben Amtoft, Radhia Cousot, Patrick
Cousot and Ian Mackie for helpful comments on first versions of this paper.
All diagrams have been designed using Paul Taylor’s and Paul Gastin’s BTEX
packages.

References

[BB92]

G. Berry and G. Boudol. The chemical abstract machine. Theoretical Com-
puter Science, 96:217-248, 1992.

[BCHK94] G. Boudol, I. Castellani, M. Hennessy, and A Kiehn. A theory of processes

[BW90]

[CCT6]

(eleZgd

[CC92]

[CC95]

[CHTS]
[Col95a]

[Col95b]

[Deu92a)

[Deu92b]

[Deu94]

[Grag89]

[Gra91]

[Hab92]

with localities. Formal Aspects of Computing, 6(2):165-200, 1994.

M. Barr and C. Wells. Category Theory for Computing Science. Prentice
Hall, 1990.

P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In Proceedings of the 2™ International Symposium on Program-
ming, pages 106-130, Paris, 1976. Dunod.

P. Cousot and R. Cousot. Abstract interpretation : a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Conference Record of the 4" ACM Symposium on Principles of
Programming Languages, pages 238-252, Los Angeles, California, U.S.A.,
1977.

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
logic and computation, 2(4):511-547, August 1992.

P. Cousot and R. Cousot. Compositional and inductive semantic definitions
in fixpoint, equational, constraint, closure-condition, rule-based and game
theoretic form. In Conference on Computer-Aided Verification, 7th Inter-
national Conference, CAV’95, volume 939 of Lecture Notes in Computer
Science, pages 293-308. Springer-Verlag, 1995. Invited paper.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In 5* POPL. ACM Press, 1978.

C. Colby. Analyzing the communication topology of concurrent programs.
In Symposium on Partial Evaluation and Program Manipulation, 1995.

C. Colby. Determining storage properties of sequential and concurrent pro-
grams with assignment and structured data. In Proceedings of the Second
International Static Analysis Symposium, volume 983 of Lecture Notes in
Computer Science, pages 64-81. Springer-Verlag, 1995.

A. Deutsch. Operational models of programming languages and representa-
tions of relations on reqular languages with application to the static determi-
nation of dynamic aliasing properties of data. PhD thesis, University Paris
VI (France), 1992.

A. Deutsch. A storeless model of aliasing and its abstraction using finite
representations of right-regular equivalence relations. In Proceedings of the
1992 International Conference on Computer Languages, pages 2-13. IEEE
Computer Society Press, Los Alamitos, California, U.S.A., 1992.

A. Deutsch. Interprocedural may-alias analysis for pointers : beyond k-
limiting. In ACM SIGPLAN’9} Conference on Programming Language De-
sign and Implementation. ACM Press, 1994.

P. Granger. Static analysis of arithmetical congruences. International Jour-
nal of Computer Mathematics, 30:165—-190, 1989.

P. Granger. Static analysis of linear congruence equalities among variables
of a program. In TAPSOFT’91, volume 493. Lecture Notes in Computer
Science, 1991.

A. Habel. Hyperedge replacement: grammars and languages, volume 643 of
Lecture Notes in Computer Science. Springer-Verlag, 1992.

[TMS81]

[Jon81]
[Kar76]

[Mil91]

[Mil92]
[MPW92]

[NN94]

[San94a]

[San94b]

[Tur95]

[Ven96]

N. Jones and S. Muchnick. Flow analysis and optimization of lisp-like struc-
tures. In Program Flow Analysis: Theory and Applications, pages 102-131.
Prentice Hall, 1981.

H.B.M Jonkers. Abstract storage structures. In De Bakker and Van Vliet,
editors, Algorithmic languages, pages 321-343. IFIP, 1981.

M. Karr. Affine relationships among variables of a program. Acta Infor-
matica, pages 133-151, 1976.

R. Milner. The polyadic w-calculus: a tutorial. In Proceedings of the In-
ternational Summer School on Logic and Algebra of Specification. Springer
Verlag, 1991.

R. Milner. Functions as processes. Journal of Mathematical Structures in
Computer Science, 2, 1992.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. In-
formation and Computation, 100:1 — 77, 1992.

H. R. Nielson and F. Nielson. Higher-order concurrent programs with fi-
nite communication topology. In 215 ACM Symposium on Principles of
Programming Languages, 1994.

D. Sangiorgi. Ezpressing mobility in process algebras: first-order and higher-
order paradigms. PhD thesis, University of Edinburgh, 1994.

D. Sangiorgi. Locality and true-concurrency in calculi for mobile processes.
In International Symposium on Theoretical Aspects of Computer Software,
Lecture Notes in Computer Science, 1994.

D. N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation.
PhD thesis, Edinburgh University, 1995.

A. Venet. Abstract cofibered domains: Application to the alias analysis
of untyped programs. In Proc. of the Third International Static Analysis
Symposium SAS’96, volume 1145 of Lecture Notes in Computer Science,
pages 366-382. Springer-Verlag, 1996.

