
A Practical Approach to Formal Software Verification by
Static Analysis∗

[Extended Abstract]

Arnaud Venet
Kestrel Technology LLC

4984 El Camino Real #230
Los Altos, CA 94022

arnaud@kestreltechnology.com

ABSTRACT
Static analysis by Abstract Interpretation is a promising way
for conducting formal verification of large software appli-
cations. In spite of recent successes in the verification of
aerospace codes, this approach has limited industrial appli-
cability due to the level of expertise required to engineer
static analyzers. In this paper we investigate a pragmatic
approach that consists of focusing on the most critical com-
ponents of the application first. In this approach the user
provides a description of the usage of functionalities in the
critical component via a simple specification language, which
is used to drive a fully automated static analysis engine. We
present experimental results of the application of this ap-
proach to the verification of absence of buffer overflows in a
critical library of the OpenSSH distribution.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical
Verification

Keywords
Static analysis, abstract interpretation, formal verification,
buffer overflow

1. INTRODUCTION
The term static analysis is most often employed for denoting
the detection of software errors or vulnerabilities by auto-
matic inspection of source code. Static analysis tools in this
category–like those commercialized by Coverity [1] or Kloc-
work [2] to name a few–have become increasingly popular
among developers and enjoy widespread use in the software
industry. However, this form of static analysis can only point
to defects in the code but does not guarantee that all have

∗This work was funded by the OSD SBIR contract FA8750-
06-C-0146.

been found, even if only a single class of defects is considered,
like buffer overflows. A static analysis technology called Ab-
stract Interpretation [8, 9] can make stronger claims for cer-
tain classes of software defects. The validity of such claims is
backed by a rigorous mathematical theory underpinning the
implementation of the static analyzer. Decidability issues
are avoided by allowing the analyzer to give indeterminate
results. These indeterminates are mere false positive most of
the time but may also point to a real problem. The effective-
ness of a static analyzer based on Abstract Interpretation is
measured by its precision i.e., the ratio of false positives in
the analyzer’s output. A static analyzer that does not yield
any false positive provides high assurance that the code is
free of a certain class of defects.

Using static analysis to perform formal software verification
sounds attractive at first: there is no need to build a model
of the application, the verification process is fully automated
and is conducted on the very code that will run on the target
platform. However, the reality is somewhat disappointing.
In order to achieve formal verification, the number of false
positives produced by the analyzer must be zero or at least
very small. Reaching this level of precision on real software
systems requires (1) a substantial amount of work tuning
the analysis engine, and (2) an excellent knowledge of the
context in which the application operates (input parameters,
sensor data, interruptions, etc.). For example, the design of
the ASTREE static analyzer [5, 10], which has been used to
verify the correctness of floating-point arithmetic in the elec-
tric flight control code of the Airbus A380, monopolized the
attention of six world-class experts in Abstract Interpreta-
tion during a couple of years. Getting rid of all false positives
required devising highly sophisticated algorithms to handle
the unique characteristics of this code e.g., a domain of ellip-
soids to analyze linear digital filters [5] and a representation
of inequalities for floating-point variables [12].

However, some false positives cannot be removed by just im-
proving the analysis engine, since they require information
on the operating environment of the program that is not
present in the code. For example, in our past experience we
had to analyze the attitude control system of a satellite. The
analyzer that we were using performed well but turned up
a number of false positives that resisted all our attempts to
improve the precision of the algorithms. A careful investiga-
tion of the origin of these false positives revealed that they
were all caused by the lack of information on the variable

Ada Letters, April 2008 92 Volume XXVIII, Number 1

Ada Letters, April 2008 9 Volume XXVIII, Number 12



Application Module

Interface

DSL

Module

Interface

Operational�
environment

Figure 1: Modeling the usage of the module through
its interface.

containing the altitude of the satellite. Simply adding the
assertion that the altitude is always positive was sufficient
to remove all remaining false positives.

This approach requires a close interaction between a group
of experts in Abstract Interpretation and a group of experts
of the application to be verified. It is difficult to imagine it
being applied to a large variety of codes. The major bottle-
neck is the availability of experts in Abstract Interpretation
who are willing to spend time on such projects. Although
it is possible to build a general-purpose static analysis tool
that exhibits good precision and performance in average–
PolySpace Verifier is an example [4]–the number of indeter-
minates will still be too high for the purpose of high assur-
ance. In this paper, we report on ongoing work for mak-
ing Abstract Interpretation-based analyzers easier to use in
practice without sacrificing too much precision. We are in-
vestigating a divide-and-conquer approach that allows ap-
plication experts to use a generic static analysis engines on
the most critical components of a software application. Our
approach is described in Sect. 2. In Sect. 3 we describe an
application of this approach to the verification of absence of
buffer overflows in a critical library of the OpenSSH distri-
bution.

2. DIVIDE-AND-CONQUER APPROACH
Abstract Interpretation is a well defined theory, which pro-
vides a systematic methodology for constructing sound static
analyzers [7]. Static analyzers obtained by a straight appli-
cation of the theoretical framework will not scale to hun-
dreds of thousands of lines of code. Engineering scalable and
sound static analyzers is extremely challenging and requires
specializing the algorithms for the application or familiy of
applications considered [13, 10]. However, if we limit the
size of the programs to be analyzed to a few thousand lines,
then it is possible to build a fairly general static analyzer
that can handle a broad spectrum of programs for a given
property (array-bound compliance, floating-point overflows,
etc.) with high precision. We propose to apply such ana-
lyzers to small critical components of software applications.
This approach is justified by the empirical observation that
many large applications consist of a collection of smaller
components. For example, in our previous work on NASA
flight-control software of Mars missions [13, 6] we observed
that the Mars Exploration Rovers mission control software
is about half a million lines of code. However, it is made
of over one hundred threads, each one acting as an indepen-
dent unit and controlling either a particular instrument (like

the high-gain antenna) or a phase in the mission (like entry-
descent-landing). The monolithic structure of the electric
flight control code of the A380, where interdependent op-
erations may spread over hundreds of thousand lines of, is
unique and mostly due to the fact that the code is automat-
ically generated from higher level specifications.

This approach is viable if an application expert with a lim-
ited grasp of static analysis can successfully use an analyzer
on a module of the application. As we previously observed,
the operational environment of the applications is important
for precision. Our approach adds another dimension to that
problem, since we are now analyzing a module and the in-
teractions between the module and the rest of the code have
to be modeled. We assume that the module comes with
a clearly defined interface. This is not an unrealistic as-
sumption. For example, all threads in the Mars Exploration
Rovers mission control software communicate using a com-
mon mechanism based on message queues, with a carefully
specified format of messages. We propose to use a domain
specific language (DSL) to model the interaction between
the module and therest of the code through its interface
as depicted in Fig. 1. The static analyzer takes as inputs
the code of the module together with the model of its en-
vironment. The DSL provides a precise formal definition of
the context in which the module is executed in a form that
is easily intelligible by the user. We are currently working
on a DSL for a family of representative program properties
verifiable by static analysis.

We have chosen the OpenSSH 4.3 application bundle [3] as
a realistic application for demonstrating the feasibility of
our approach. The applications in OpenSSH use a com-
mon buffer library for the internal storage of data transmit-
ted across the networks. This library implements dynamic
buffers that transparently grow in order to fit the data stored
therein. The buffer library is a critical component of the ap-
plication bundle that is implemented using sophisticated al-
gorithms. A buffer in OpenSSH is implemented in an object-
oriented style, using a structure that contains information
about the size of the buffer and the space available. The
buffer structure is defined as follows:

typedef struct {
u_char *buf; /* Buffer for data. */
u_int alloc; /* Number of bytes allocated for data. */
u_int offset; /* Offset of first byte containing data.*/
u_int end; /* Offset of last byte containing data. */

} Buffer;

The basic interface of the buffer library contains the follow-
ing functions:

void buffer_init(Buffer *);
void buffer_clear(Buffer *);
void buffer_free(Buffer *);

u_int buffer_len(Buffer *);
void *buffer_ptr(Buffer *);

void buffer_append(Buffer *, const void *, u_int);
void *buffer_append_space(Buffer *, u_int);

Ada Letters, April 2008 93 Volume XXVIII, Number 1

Ada Letters, April 2008 9 Volume XXVIII, Number 13



buffer_init(&buffer)

buffer_free(&buffer)

buffer_consume(&buffer, len)
req: len >= 0

buffer_append(&buffer, &data, len)
req: 0 <= len <= size(data)

Figure 2: Modeling the usage of the module through
its interface.

void buffer_get(Buffer *, void *, u_int);

void buffer_consume(Buffer *, u_int);
void buffer_consume_end(Buffer *, u_int);

void buffer_dump(Buffer *);

int buffer_get_ret(Buffer *, void *, u_int);
int buffer_consume_ret(Buffer *, u_int);
int buffer_consume_end_ret(Buffer *, u_int);

As previously described the user must supply a model of the
interactions between the module and the rest of the system
in order to enable the separate analysis of the module. The
DSL that we have designed so far for modelling operational
environments is based on state machines describing the or-
der in which the functions in the interface are used, together
with constraints on the arguments of the functions. Some
of these functions store data into the buffer that are read
from a byte array passed in the argument together with the
number of bytes to read, like in the buffer_append func-
tion. Therefore, the interface requirement for such a func-
tion guaranteeing a proper use is that the number of bytes
to read be less than or equal to the size of the byte array
to read from. We have similar interface requirements for
functions that read data from the buffer and store them in a
byte array like buffer_get. Functions of the buffer library
cannot be used in any order. A buffer must first be initial-
ized using the buffer_init function, then any of the buffer
manipulation functions can be applied in any order. The
buffer is finalized and memory disposed of properly by the
buffer_free function. Interface usage and function param-
eter requirements are illustrated in Fig. 2, where we depicted
only a few functions for the sake of clarity.

3. CASE STUDY: OPENSSH’S BUFFER LI-

BRARY
The complexity of the implementation of the buffer library
in OpenSSH comes from the fact that a buffer grows on de-
mand, depending on the size of the data that are written into
it. The growth of the buffer is controlled by the following
function:

/*
* Appends space to the buffer, expanding the buffer if
* necessary. This does not actually copy the data into
* the buffer, but instead returns a pointer to the

* allocated region.
*/

void * buffer_append_space(Buffer *buffer, u_int len)
{

u_int newlen;
void *p;

if (len > BUFFER_MAX_CHUNK)
fatal("buffer_append_space: len %u not supported",

len);

/* If the buffer is empty, start using it from the
beginning. */
if (buffer->offset == buffer->end) {

buffer->offset = 0;
buffer->end = 0;

}
restart:

/* If there is enough space to store all data, store it
now. */
if (buffer->end + len < buffer->alloc) {

p = buffer->buf + buffer->end;
buffer->end += len;
return p;

}
/*
* If the buffer is quite empty, but all data is at
* the end, move the data to the beginning and retry.
*/

if(buffer->offset > MIN(buffer->alloc, BUFFER_MAX_CHUNK))
{

memmove(buffer->buf, buffer->buf + buffer->offset,
buffer->end - buffer->offset);
buffer->end -= buffer->offset;
buffer->offset = 0;
goto restart;

}
/* Increase the size of the buffer and retry. */

newlen = buffer->alloc + len + 32768;
if (newlen > BUFFER_MAX_LEN)

fatal("buffer_append_space: alloc %u not supported",
newlen);

buffer->buf = xrealloc(buffer->buf, newlen);
buffer->alloc = newlen;
goto restart;
/* NOTREACHED */

}

This function is quite complex and uses comparisons be-
tween the size of the data to store in the buffer and the avail-
able space to reallocate a buffer sufficiently large. Buffers
are used throughout the OpenSSH distribution to store all
data communicated through the network. They are the key
data structure in the application and constitute an excellent
example for our study. We want to verify that this imple-
mentation is not prone to buffer overflows.

We have developed a generic static analyzer for buffer over-
flows using Kestrel Technology’s static analysis development
platform CodeHawk. This analyzer features an efficient im-
plementation of the polyhedral abstract domain [11] and
optimized fixpoint interation algorithms. The analyzer is
generic in the sense that it does not contain algorithms that
deal with a particular code architecture. For example, con-
sider the two following functions extracted from the buffer
library:

/* Consumes the given number of bytes
from the beginning of the buffer. */

Ada Letters, April 2008 94 Volume XXVIII, Number 1

Ada Letters, April 2008 9 Volume XXVIII, Number 14



int
buffer_consume_ret(Buffer *buffer, u_int bytes)
{

if (bytes > buffer->end - buffer->offset) {
error("buffer_consume_ret: trying to get more

bytes than in buffer");
return (-1);

}
buffer->offset += bytes;
return (0);

}

void
buffer_consume(Buffer *buffer, u_int bytes)
{

if (buffer_consume_ret(buffer, bytes) == -1)
fatal("buffer_consume: buffer error");

}

In order to analyze the code precisely, the static analy-
sis engine must be able to infer a correlation between the
return value of function buffer_consume_ret and the in-
variant bytes > buffer->end - buffer->offset. The AS-
TREE analyzer handles a similar problem by using a spe-
cial domain for finding correlations among Boolean and nu-
merical variables [10]. In our case, the analyzer performs
a sequence of interleaved forward and backward invariant
propagations that achieves the same result. This algorithm
is completely generic and may handle other forms of cor-
relations among variables that are not necessarily Boolean.
Note that this algorithm is not intended to scale to large
codes, this is not our purpose here. We rather want a precise
analyzer that can handle smaller codes with good precision
without the need of manually fine-tuning the algorithms.

The buffer library contains 162 pointer checks that represent
the safety conditions associated to each pointer operation in
the library. The analysis runs in 35 seconds and is able to
prove all 162 checks.

4. CONCLUSION
We have presented a divide-and-conquer approach that al-
lows a user who is not an expert in static analysis to conduct
formal software verification of small critical components of
an application. Our approach is not compositional, in the
sense that we do not verify the whole application by com-
bining the results of individual components. Rather, we aim
at providing a methodology and an accompanying toolset of
fully automated static analyzers for verifying the most crit-
ical components of an application. The DSL will be helpful
for saving environment models of previous analyses, in effect
enabling development of libraries for reuse and giving clues
for divide-and-conquer in other applications. We have suc-
cessfully applied our approach to the verification of a com-
plex critical module of the OpenSSH distribution. We vow
to pursue these experiments and build a larger benchmark
of open-source applications.

5. REFERENCES
[1] Coverity. http://www.coverity.com.

[2] Klocwork. http://www.klocwork.com.

[3] Open ssh. http://www.openssh.org.

[4] Polyspace verifier.
http://www.mathworks.com/products/polyspace.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. In
Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and
Implementation (PLDI’03), pages 196–207. ACM
Press, June 7–14 2003.

[6] G. Brat and A. Venet. Precise and scalable static
program analysis of NASA flight software. In
Proceedings of the 2005 IEEE Aerospace Conference,
2005.

[7] P. Cousot. The calculational design of a generic
abstract interpreter. In M. Broy and R. Steinbrüggen,
editors, Calculational System Design. NATO ASI
Series F. IOS Press, Amsterdam, 1999.

[8] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Proceedings of the 4th Symposium on Principles of
Programming Languages, pages 238–353, 1977.

[9] P. Cousot and R. Cousot. Systematic design of
program analysis frameworks. In Conference Record of
the Sixth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 269–282. ACM Press, New York, NY, 1979.

[10] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,

A. Miné, D. Monniaux, and X. Rival. The ASTRÉE
Analyser. In Proceedings of the European Symposium
on Programming (ESOP’05), volume 3444 of Lecture
Notes in Computer Science, pages 21–30, 2005.

[11] P. Cousot and N. Halbwachs. Automatic discovery of
linear restraints among variables of a program. In
Conference Record of the Fifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84–97. ACM Press,
New York, NY, 1978.

[12] A. Miné. Relational abstract domains for the detection
of floating-point run-time errors. In ESOP’04, volume
2986 of LNCS, pages 3–17. Springer, 2004.

[13] A. Venet and G. Brat. Precise and efficient static
array bound checking for large embedded C programs.
In Proceedings of the International Conference on
Programming Language Design and Implementation,
pages 231–242, 2004.

Ada Letters, April 2008 95 Volume XXVIII, Number 1

Ada Letters, April 2008 9 Volume XXVIII, Number 15




