
INTRODUCTION

Human interaction with computers is so wide-
spread that almost every aspect of our lives involves
interaction with devices, information systems,
and automated control systems. These computer-
based machines have complex behaviors that com-
prise numerous internal states and events. Yet, the
only “face” the user sees is the interface, always
a highly abstracted description of the underlying
machine behavior. This abstraction is inevitable
because otherwise the user would be subjected to
an enormous, and mostly irrelevant, amount of in-
formation. As such, an important and fundamen-
tal aspect of interface design involves an intricate
process of abstracting information so as to sup-
press irrelevant information and retain the impor-
tant information. The end result of this process is
the information provided to the user on the inter-
face. We argue that every interface designer, ex-
plicitly or implicitly, goes through this process of

abstraction in his or her attempt to make user in-
teraction efficient, reliable, and safe.

From this perspective, the designer’s goal is to
strike a fine balance between providing too much
information (some of which may be unnecessary
to operate the machine) and providing insufficient
information (thereby preventing the user from
operating the machine correctly). Specifically,
when insufficient information is provided to the
user, he or she may not be able to perform the spec-
ified task correctly (e.g., determine the current
mode of the machine and anticipate its next mode
as a consequence of user interaction). As a result,
either the user will be unable to perform the de-
sired task altogether or there will be unexpected,
faulty, and potentially dangerous outcomes. To
illustrate this issue of correctness, consider the
following example:

A modern airliner is flying at 8,000 feet under
autopilot control. The crew receives an air traffic
control directive to climb and level off at 10,000

Formal Analysis and Automatic Generation of User Interfaces:
Approach, Methodology, and an Algorithm

Michael Heymann, Technion, Israel Institute of Technology, Haifa, Israel, and Asaf Degani,
NASA Ames Research Center, Mountain View, California

Objective: We present a formal approach and methodology for the analysis and gen-
eration of user interfaces, with special emphasis on human-automation interaction.
Background:Aconceptual approach for modeling, analyzing, and verifying the infor-
mation content of user interfaces is discussed. Methods: The proposed methodology
is based on two criteria: First, the interface must be correct – that is, given the interface
indications and all related information (user manuals, training material, etc.), the user
must be able to successfully perform the specified tasks. Second, the interface and relat-
ed information must be succinct – that is, the amount of information (mode indications,
mode buttons, parameter settings, etc.) presented to the user must be reduced (abstract-
ed) to the minimum necessary. Results: A step-by-step procedure for generating the
information content of the interface that is both correct and succinct is presented and
then explained and illustrated via two examples. Conclusions: Every user interface is
an abstract description of the underlying system. The correspondence between the
abstracted information presented to the user and the underlying behavior of a given
machine can be analyzed and addressed formally. Applications: The procedure for
generating the information content of user interfaces can be automated, and a software
tool for its implementation has been developed. Potential application areas include
adaptive interface systems and customized/personalized interfaces.

Address correspondence to Asaf Degani, Computational Sciences Division, NASA Ames Research Center, Mountain View,
CA 94035-1000; adegani@mail.arc.nasa.gov. HUMAN FACTORS, Vol. 49, No. 2, April 2007, pp. 311–330. Copyright © 2007,
Human Factors and Ergonomics Society. All rights reserved.



312 April 2007 – Human Factors 

feet. The pilot enters the 10,000-foot altitude con-
straint into the autopilot, engages a mode called
“Vertical Speed,” and then selects the rate of climb
(e.g., 2,000 feet/min); now the aircraft begins
climbing to 10,000. When the aircraft reaches an
altitude of 9,000 feet, air traffic control directs the
crew to descend back to 8,000 feet. In response,
the pilot enters the new altitude of 8,000 feet into
the autopilot.

Under one set of conditions, the aircraft will
continue climbing (at the selected rate of climb of
2,000 feet/min) indefinitely; the aircraft will climb
past 10,000 feet, and unless some control action is
taken by the crew, the aircraft will keep on climb-
ing. In another set of conditions, given the same
pilot input, the aircraft will descend (from 9,000
feet) and then level off at 8,000 feet. Hence the
same pilot input (entering the new 8,000 feet al-
titude constraint into the autopilot) triggers two
different outcomes. Given the autopilot mode indi-
cations and displays and all related user manual
information, it is impossible for the crew to deter-
mine what the aircraft will do.

The problem is not that the autopilot behaves in
unpredictable and unexpected ways. The autopi-
lot, in fact, is fully deterministic: If the newly en-
tered altitude is above a certain reference altitude
(the altitude at which the autopilot begins a grad-
ual maneuver to capture and hold the target alti-
tude), then the aircraft will descend and level off
at 8,000 feet. However, if the newly entered alti-
tude is below this reference altitude, the aircraft
will continue climbing indefinitely. The problem is
that this reference altitude value (which changes as
a function of the aircraft’s speed and altitude) is
not available anywhere on the cockpit displays.
Such an interface is formally defined as “incorrect”
because the pilots, in the process of performing a
specified task (climbing and leveling off), cannot
anticipate the consequences of their interaction
with the machine (Degani & Heymann, 2002).

In most practical systems, user interfaces do not
provide a full and complete description of the un-
derlying behavior of the machine with all its inter-
nal states, events, and parameters. Therefore, a
major concern for designers is to make sure that
the abstracted interface is indeed correct. Current-
ly, this abstraction is performed in a heuristic and
intuition-based manner. Its evaluation process
usually involves many interface design iterations,
costly simulations, and extensive testing. In indus-
tries such as medical equipment, nuclear systems,

and commercial aviation, lengthy and complicat-
ed certification processes are in place to ensure that
the system under consideration, its interface, and
all user interaction aspects are safe and free of de-
sign errors. Yet, despite best efforts by design teams
and certification officials, numerous incidents and
accidents involving incorrect interfaces have been
noted in avionics systems (Rodriguez et al., 2000;
Rushby, 1999), maritime navigation systems (Na-
tional Transportation Safety Board, 1997) and
computer-based medical equipment (Leveson,
1995, Appendix A [the Therac-25 radiation ma-
chine]). Incorrect interfaces can also be found in
Internet applications, automotive systems, and
many consumer electronics devices (see Degani,
2004, for more than 10 examples).

On the flip side of the abstraction problem lies
the case in which the interface provides too much
information and overloads the user with superflu-
ous and irrelevant information. Naturally, design-
ers strive for interfaces (and user-manuals) that
are not only correct but succinct. In most cases,
a small set of modes is preferable to a large set of
modes needed to perform a given task (Norman,
1983). Likewise, short sequences of user inputs are
preferred over lengthy ones. The point here is not
about eliminating functionality and user compre-
hension of the behavior of the system but, rather,
about suppressing superfluous and irrelevant
information that does not add much to the user’s
ability to control and manage the system (Thimble-
by, Blandford, Cairns, Curzon, & Jones, 2002).
The advantage of having succinct displays and
shorter sequences of user inputs is that it mini-
mizes the actual size of the user interface and the
amount of indications that need to be designed and
implemented. It also reduces the perceptual and
cognitive burden on the user.

A Formal Approach to Human-Computer
Interaction and a Literature Review

Many aspects of human-machine interaction,
such as the design of interfaces in terms of their
graphical appearance and layout, are empirical and,
to some extent, artistic (Norman, 2004). Neverthe-
less, the information content of the interface can
be described and analyzed using mathematical,
or formal, methods.

Formal methods is a discipline for studying
how mathematical models of systems can be used
to develop efficient, reliable, and safe designs.
Formal methods are employed to express design



AUTOMATIC GENERATION OF USER INTERFACES 313

specifications and requirements as well as to per-
form systematic analysis and verification. Probab-
ly the earliest work in using formal methods to
address human-computer interaction (HCI) issues
was conducted by Parnas (1969), who used a finite
state machine model to describe user interaction
with a computer terminal. Using this modeling for-
malism, he was able to illustrate several design
flaws such as “almost-alike” modes and inconsis-
tent ways to reach a given mode. Foley and Wallace
(1974) and Jacob (1983) used similar modeling
formalisms for developing general interface design
specifications for HCI. Jacob (1986) and Wasser-
man (1985) used formal methods for specifying
direct manipulation aspects of user interaction in
order to address the concurrent structure of mul-
tiple display objects (e.g., windows) that are open
simultaneously.

By the mid-1980s, researchers in HCI began
using formal methods as a way to analyze and mea-
sure user interaction. Kieras and Polson (1985)
used formal methods to quantify the complexity
of HCI. To do this, they modeled the device and
the user’s tasks as a finite state machine. Because
both the device and the task were represented in
the same formalism, they were able to identify
cases in which the user’s task structure did not cor-
respond with the device’s structure. Bösser and
Melchoir (1992) employed the same approach
and then applied graphing techniques to evaluate
whether all the specified user’s tasks could be
achieved (given the device’s functionality). Degani
(1996) used a variant of a state transition system,
called Statecharts (see Harel, 1987), to develop a
framework that describes the environment, user’s
tasks, device functionality, and interface informa-
tion as four concurrent processes; the intent was
to understand automation-induced mode errors
and to identify a variety of general interface ambi-
guity problems. Duke, Fields, and Harrison (1999)
described a framework for modeling interactive
computer systems in order to express HCI design
specifications such as access control and informa-
tion availability.

An important facet of formal methods is to
prove that a given model of the system fulfills cer-
tain design criteria, or properties. In this context, a
“property” can be a simple statement about some-
thing that the system model does (or does not) do.
Extensive checking is then used to verify that the
model of the system, for example, does not “dead-
lock” (see Dix, 1991; Harrison & Thimbleby,

1990; Palanque & Paternò, 1998; Paternò & San-
toro, 2002). Rushby (1999, 2001) employed model
checking techniques in order to detect inconsis-
tencies between machine and user models by
simultaneously tracking the operation of both
models and then using an iterative search in order
to modify the machine and user model so as to
achieve consistency. Doherty, Campos, and Harri-
son (2000) used logical theorem-proving tech-
niques to investigate the relation between system
state behavior and user interfaces. Thimbleby et al.
(2002) showed how unnecessary interface com-
plexity imposed on the user may be inappropriate
to the user’s task needs and, more importantly,
how an interface designed to hide irrelevant com-
plexity had a beneficial impact on the overall reli-
ability of the system.

Several research groups explored the use of
algorithm-based processes for selecting and 
rendering display widgets. Szekely, Sukaviriya,
Castells, Muthukumarasamy, and Slacher (1996)
developed a framework (called MASTERMIND)
for specifying the user’s task, the functions of the
system, and the requirement and style of the inter-
face so as to create a model-based environment
for user interface development. Browne, Davila,
Rugaber, and Stirewalt (1997) used the MASTER-
MIND framework to develop an approach for auto-
matically rendering user interfaces (e.g., dialogue
boxes and file structure), given the underlying
computer application. Bauer (1996) showed how
a formal description of a computer application
allowed for an automatic generation of interface
widgets (mostly for dialogues and user input se-
quences). Krzystrof and Weld (2004) used an
optimization algorithm for automatically select-
ing, resizing, and rendering display widgets to
accommodate different display sizes (small cell
phones, personal digital assistants, large comput-
er screens, etc.).

Beyond formal interface descriptions, specifi-
cation, evaluations, and algorithm-based render-
ing techniques, many other considerations must
be taken into account to ensure efficient and suc-
cessful human-machine interaction. These include
cognitive and perceptual limitations, human phys-
ical abilities, redundancy of critical information,
consistency, commonality with similar devices,
training implications, and more. Nevertheless, at
the foundation of any interface design rests the
abstraction issue on which we focus our attention
in this paper.



314 April 2007 – Human Factors 

A FORMAL APPROACH FOR 
DESCRIBING HUMAN-AUTOMATION

INTERACTION

The correspondence between the machine’s be-
havior and the abstracted information that is pro-
vided to the user can be formally described and
analyzed by considering the following four ele-
ments: the machine, the user’s tasks, the user inter-
face, and the user’s model of the machine.

Machine

We consider machines that interact with their
human users, the environment, and can act auto-
matically. A widely used formalism to model
machines is to describe them as state transition
systems. A state represents a certain internal con-
figuration of the machine. Transitions represent
discrete state changes that occur in response to
events that fire, or trigger, them. Some of these
transitions occur only if triggered by the user,
whereas others are triggered automatically. In
general, we consider two types of automatic tran-
sitions: those that are triggered by the machine’s
internal dynamics (e.g., timed transitions) and
those that are triggered by the external environ-
ment (e.g., the way an air-conditioning compres-
sor is activated when the temperature reaches a set
value).

To illustrate a typical machine model, consider
Figure 1, which describes the behavior of a semi-
automatic transmission system of a large vehicle.

We shall use the convention in which user-triggered
transitions are depicted as solid lines and auto-
matically triggered transitions are depicted by bro-
ken lines. The transition lines are directed and are
labeled by the triggering event that causes the
machine to move from state to state.

The transmission system in Figure 1 has eight
states. These states are grouped into three clusters,
which we refer to as modes: Low, Medium, and
High. Thus there are several internal “speed-
level” states contained within each mode: low-1,
low-2, low-3 in the Low mode; medium-1 and
medium-2 in the Medium mode; and high-1, high-
2, high-3 in the High mode. The system shifts
automatically between these internal states (based
on torque, throttle, engine rpm, and actual car
speed). Automatic upshifts (to higher speed states)
are denoted by the event up, and automatic down-
shifts (to lower speed states) are denoted by the
event down.

The user interacts with the system by means of
a gear lever: Pushing the lever up shifts to a high-
er torque level, and pulling it down shifts to a
lower one (see Figure1). These user-triggered tran-
sitions are denoted by events push-up and pull-
down, respectively.

User’s Tasks

Generally speaking, users interact with a ma-
chine to achieve a specific set of tasks (Parasur-
aman, Sheridan, & Wickens, 2000). These tasks
vary widely, ranging from common tasks, such as

low-2

high-3high-1

up

down

push-up

pull-down

pull-down

up

down

up

down

up

down

up

down

pull-downpush-up

low-3

pull-down

low-1

pull-down

push-up

high-2

medium-1

push-up

push-up

GEAR LEVER

down

up

medium-2

Figure 1. Transmission system of a vehicle (and the driver’s gear lever).



AUTOMATIC GENERATION OF USER INTERFACES 315

using consumer electronic devices (e.g., VCRs)
and interacting with Web browsers, to more com-
plex tasks, such as operating safety-critical sys-
tems (e.g., medical devices and navigation systems
aboard ships and aircraft). With respect to con-
trolling and supervising automated systems, typ-
ical tasks involve monitoring a machine’s mode
changes (e.g., an automatic landing of an aircraft),
execution of specific sequences of actions (e.g.,
making an online transaction), and supervising a
system such that it does not enter into an illegal
state (e.g., in process control).

It is possible to describe these tasks formally.
This is done by first partitioning the entire ma-
chine’s state-space into disjoint clusters that we
call specification classes. A specification class is
a set of internal states that the design team deter-
mined that the user need not distinguish among.
For example, in the transmission system the three
modes – Low, Medium, and High – are specifica-
tion classes. (These are typically defined by design
teams by using task analytical techniques and
inputs from expert users.) Next, the design team
specifies the task requirements. For example, one
task requirement, which is common to almost all
automated systems that are supervised by humans,
is for the user to track these specification classes,
unambiguously. In the case of the transmission
system, the design team stated that the user must
be able to determine whether the system is in, or
is about to enter into, the Low, Medium, or High
specification class. What this means is that the user
is not required to track every internal state change
of the machine (e.g., transitions between the states
high-1, high-2, and high-3 which are contained 
in the High mode need not be tracked). Using this
approach, one can also formally express other
types of user’s tasks, such as reliably executing a
specified sequence of actions (Degani, Heymann,
& Shafto, 1999).

Interface

In almost every machine, the events that take
place inside the mechanism are purposefully ab-
stracted and the interface displays only a limited
view of these internal states. In most computer
systems, a dedicated software collects events from
the underlying machine and then passes this in-
formation to a special component that generates
the display. In automated control systems such as
autopilots and flight management systems, a dis-
play generator, located between the system and the

interface, takes in selected events from the machine
and provides outputs in the form of commands to
light up (or turn off) display indications. As such,
one aspect of the work described in this paper is
to determine which events must be collected from
the machine and then presented, in the form of in-
dications, on the user interface.

To illustrate this formal approach for consider-
ing interfaces, we return to the vehicle transmission
example. Figure 2a is a suggestion for a simple and
straightforward user interface for the vehicle trans-
mission system. Note that in this proposed design
all internal transitions are removed from the inter-
face and, consequently, from the user’s aware-
ness. As one can see by comparing Figure 2a with
the machine model in Figure 1, the Low mode ac-
tually has three internal states: low-1, low-2, and
low-3. When the user first enters manually into
Low mode, low-1 is the active state (see the small
quarter-circle arrow at the bottom left of Figure 1);
when the driver increases speed, an automatic tran-
sition to low-2 takes place, yet this internal transi-
tion is not evident to the driver, who is only aware
of being in the Low mode. The same applies to
all other internal transitions in the system.

User Model

Manufacturers normally provide users with
information about the working of the machine

(a)

MODE INDICATIONS

push-up

push-up

pull-down

pull-down

push-up

(b)

MEDIUM

HIGH

LOW

MEDIUM

HIGH

LOW

Figure 2. (a) Proposed interface. (b) The corresponding
user model.



316 April 2007 – Human Factors 

by means of user manuals, which describe the
functions of the machine and its behavior as a
consequence of user action and environmental
conditions. Most verbal statements for consumer
electronics, as well as for more complex systems
(e.g., avionics), take the following form: “When
the machine is in mode Aand button X is pushed,
the machines transitions to Mode B.”

The user manual for the transmission system
should be consistent with the interface of Figure
2a. It might tell the driver that when the trans-
mission is in Medium mode, pushing the lever up
would cause the system to shift to High mode, a
downshift would transition the system to Low
mode, and so on. These series of fragmented state-
ments describe to the user how the machine works
as well as how he or she is expected to interact with
it. (Again, however, note that these user manual
statements are abstractions of the actual behavior
of the machine.)

In Figure 2b we incorporated all the user-
triggered transitions of the machine with the three
mode indications (low, medium, high). The resul-
tant description shows how the user, when moni-
toring the machine through the proposed interface,
would see the machine’s behavior. We refer to this
description of the interface indications, and of the
transitions and events that drive them, as the user
model of the machine.

The user model is based on the interface be-
cause it directly relates to the indications displayed
there. Thus, as mentioned earlier and can be read-
ily seen in Figure 2b, the interface is actually em-
bedded in the user model. Therefore, for practical
purposes, we will consider from here on only the
user model in the process of analyzing and gen-
erating interfaces.

INTERFACE CORRECTNESS CRITERIA

For the purpose of the analysis, the machine
model and user’s tasks must be fully specified. (Our
only assumption is that the machine’s behavior is
deterministic and the user’s tasks are within the
machine’s abilities.) This leaves the user model
(and the interface that is embedded in it) as the fo-
cus of the analysis.

One immediate observation about interface
correctness is that the machine’s response to user-
triggered events must be deterministic. That is,
there must not be a situation wherein, starting from
the same mode, an identical user event (e.g., up-

shifting the gear) will sometimes transition the
system into one mode (e.g., Medium) and at other
times transition it into another (e.g., High).

Broadly speaking, there are three user-interface
correctness criteria that should be satisfied in the
process of analyzing and generating interfaces: An
interface is correct if there are no error states, no
restricting states, and no augmenting states:

• An error state occurs when the user interface indi-
cates that the machine is in one mode when, in fact,
the machine is in another. Interfaces with error states
lead to faulty interaction. Frequently (but not al-
ways), error states are caused by the presence of
nondeterministic responses to user interaction.

• A restricting state occurs when the user can trigger
certain mode changes in the machine that are not pre-
sent in the user model and interface. Interfaces with
restricting states tend to surprise and confuse users.

• An augmenting state occurs when the user is told that
certain transitions are available when, in fact, they
cannot be executed by the machine (or are disabled).
Interfaces with augmenting states puzzle users and
have contributed to operational errors.

All three criteria can be expressed mathemati-
cally and therefore can be dealt with using formal
methods of analysis (see Heymann & Degani,
2002).

Nondeterministic Interfaces and Error
States

We begin by analyzing the proposed user mod-
el of Figure 2b. The manual upshift from Medium
to High and the downshift from High to Medi-
um and Medium to Low are always predictable;
the user will be able to anticipate the next mode
of the machine. However, note that the transitions
out of Low depend on the internal states: upshifts
from low-1 and low-2 switch the transmission to
Medium, whereas the upshift from low-3 switch-
es it to High (see Figure 1). Here, the same user-
triggered event (push-up) takes the user to either of
two different machine modes. However, because
the display abstracts from the user which internal
state the system is in, whether the system will
transition to Medium or to High is unpredictable.
In other words, the proposed display, with respect
to user-triggered events, becomes nondeterminis-
tic and may lead to an error state. Therefore, one
must conclude that the proposed interface and
corresponding user model of Figure 2 is incorrect.

Next consider the alternative user model in
Figure 3, in which the display has been modified



AUTOMATIC GENERATION OF USER INTERFACES 317

to partition the Low mode into two submodes
(Low-Aand Low-B). The user manual is modified
correspondingly to explain to the user that the
upshift (push-up) from Low-Atransitions the sys-
tem to Medium, whereas the upshift (push-up)
from Low-B transitions the system to High. We
will now try to analyze the correctness of this user
model, but this time we proceed in a formal way
(Degani & Heymann, 2002).

In any human-machine system, two concurrent
processes are constantly at play: (a) the machine
with its internal states and transitions and (b) the
interface annunciations with the associated user
model transitions. These two processes, or models,
must “march” in synchronization and never en-
counter error states, restricting states, or augment-
ing states. Verification that this is indeed true can
be accomplished by constructing a composite
model that incorporates both the machine model
states and the user model states. In this composi-
tion, we combine corresponding user model states
and machine model states into state pairs and eval-
uate their synchronized march with respect to the
specification classes and the task requirements.

The machine (see Figure1) starts in state low-1,
and the display and user model (see Figure 3) starts
in Low-A, so the first composite state in Figure 4
is “low-1, Low-A.” Upon an internally triggered
automatic shift (event up), the machine transitions
to low-2 and the display to Low-B. Now it is in
composite state “low-2, Low-B,” and all is well.
Another internally triggered automatic transition
up takes the system to the composite state “low-3,
Low-B”. If at this point the user decides to transi-
tion the system manually by pushing up, the com-
posite state that is reached is “high-1, High,” and
all is consistent. If, however, the user had decided
to upshift manually when the machine was still in

push-up

pull-down

push-up

push-up

pull-down

MEDIUM

HIGH

LOW-A LOW-B

up

down

Figure 3. Alternative user model.

LOW-BL-3LOW-BL-2LOW-A

upup

down

up

MEDIUM

up

down

HIGHHIGHHIGH

up

down

up

down

push-up

push-up
push-up

pull-downpull-down

push-up

down

down

m-2

LOW-AL-2

m-1

h-1 h-2 h-3

HIGHm-1

push-up

pull-down

push-up

L-1

pull-down
pull-down

MEDIUM

Figure 4. Composite of the machine and the user model.



318 April 2007 – Human Factors 

state low-2, the machine would transition to state
medium-1 (see Figure 1) and the interface would
transition into High mode (see Figure 3). The new
composite state would be “medium-1, High” (Fig-
ure 4) which is clearly an inconsistency. The dis-
play indicates to the user that he or she is in High
mode, whereas in fact the underlying machine is
in Medium (internal state medium-1).

The composite state “medium-1, High” consti-
tutes an error state because the machine is in one
specification class (Medium) and the user model
is in another (High). Because of this discrepancy
between the models with respect to the specifica-
tion classes, the user model (of Figure 3) is not a
correct abstraction of the underlying machine.
Given such a display, nothing can be done to alle-
viate the fundamental problem; no additional train-
ing, better user manuals, procedures, or any other
countermeasures will help. We therefore can con-
clude that the user model of Figure 3 is incorrect
for the task.

GENERATING USER INTERFACES

The objective of the interface generation pro-
cedure is to derive a user model that is correct for
the specified tasks – namely, one that is free of er-
ror, restricting, and augmenting states. A second
requirement is that this user model must be suc-
cinct. The proposed methodology centers on a sys-
tematic method for reducing the machine model
into a smaller model that still allows the user to
perform correctly all the specified tasks (and such
that the model cannot be reduced further). What
follows is a description of an algorithmic proce-
dure for the generation of user models. The de-
tailed mathematical aspects of this algorithm are
provided in Heymann and Degani (2002). Here we
shall describe the underlying ideas and principles
of the methodology and illustrate the procedure
with the aid of examples–in particular, the already-
familiar example of the transmission system.

Outline of the Algorithmic Approach

The algorithmic approach for generation of suc-
cinct user models and associated interfaces is
based on the fact that not all the system’s internal
states need to be individually presented to the user.
Specifically, two internal states need not be dis-
tinguished whenever (a) they belong to the same
specification class, (b) each user-triggered event

that is available and active in one of the states is
also available and active in the other, and (c) start-
ing from either of the two states and triggered by
the same event sequence, the state pairs visited al-
so satisfy Conditions a and b. Such state pairs that
need not be distinguished by the user are referred
to as compatible. Thus, the first step of the inter-
face generation algorithm consists of finding all
the compatible state pairs. From these pairs, all the
(largest possible) sets of compatible states – called
maximal compatibles – are then computed.

The next step of the algorithm consists of gen-
erating a reduced user model. The user model’s
states are composed of maximal compatible state
sets, which constitute the user model’s building
blocks. In general, not all the maximal compatibles
need to be chosen for the reduced model, and fre-
quently the designer has more than one choice in
selecting appropriate compatible sets. The key to
a suitable selection is that the selected set must
constitute a cover of the original machine’s state
set. That is, each state of the original machine must
be a member of at least one selected maximal com-
patible (this constitutes the cover property). The
state set is selected by first choosing maximal
compatibles that constitute a minimal cover of the
machine’s state set (i.e., none of the selected max-
imal compatibles can be omitted from the selected
set without violating the cover property). If neces-
sary, additional maximal compatibles are incre-
mentally added to the selected minimal cover so as
to ensure that the set of target states of each tran-
sition emanating from a maximal compatible is
included in some maximal compatible of the
selected set. (In the worst case, this incremental
addition of maximal compatibles will terminate
when all maximal compatibles are chosen. In other
words, the set of all maximal compatibles is the
upper bound for the reduced user model state set.)

Once the state set of the reduced model has
been selected as described, the next step is to deter-
mine the transitions in the reduced model. These
are defined so as to be consistent with the original
machine model and with the partition of the state
set into specification classes. Three subtle issues
arise and are dealt with in this connection: (a) sets
of distinct event that need not be distinguished and
can be grouped together, (b) events that can be de-
leted because their presence in the reduced model
is redundant, and (c) transition nondeterminism
that can be eliminated from the reduced model.
The resultant reduced machine model constitutes



AUTOMATIC GENERATION OF USER INTERFACES 319

the user model. The required interface is then ex-
tracted from this model.

Compatible States

The user model must enable the user to oper-
ate the machine correctly with respect to his or her
tasks and requirements. Thus, although the user is
required to track, unambiguously, the specification
classes visited by the system, the user need not
track every internal state of the machine. In the
transmission example there is no need for users
to distinguish between two internal states (say,
medium-1 and medium-2 of the Medium mode)
if, following any event sequence, (a) they always
end up in the same specification class (e.g., High)
and (b) the same set of user-triggered events is
available, regardless of which of the two internal
states they started from. If that is the case, the two
states (medium-1 and medium-2) are compatible.
From an interface design standpoint, the two com-
patible states can be grouped together on the dis-
play and represented as a single user model state
because the intrinsic details of whether the current
internal state is medium-1 or medium-2 are incon-
sequential to the user.

Instead of trying to find all state pairs that are
compatible, it is computationally more convenient
to first find all state pairs that are incompatible.
Once all incompatible pairs (i.e., those that cannot
be grouped together on the interface) are identified
and marked, the remaining state pairs must be
compatible.

An immediate criterion for incompatibility of
a state pair is that the two states that constitute the
pair belong to two distinct specification classes
or have distinct active user-triggered events. For
example, the state pair low-1 and high-1 is outright
incompatible because low-1 belongs to the Low
mode and High-1belongs to the High mode. These
two states must never be grouped together on the
display.

The second criterion for designating a pair of
states as incompatible has to do with event se-
quences. A state pair is marked as incompatible
if, starting from the two states and following the
same sequence of events, a transition is made into
a state pair that has already been deemed incom-
patible. For example, consider the state pair low-2
and low-3. Initially, the pair is tentatively marked
as compatible because the two states belong to the
same specification class and have the same active

user-triggered event (push-up). However, follow-
ing a common event (push-up), this pair transitions
into the state pair medium-1 and high-1. Because
medium-1 and high-1 are already known to be in-
compatible (because they belong to two different
specification classes), the initial pair, low-2 and
low-3, must also be marked as incompatible.

Computing Compatible Pairs

An efficient iterative procedure for computing
such compatible and incompatible state pairs is
based on the use of merger tables (see Kohavi,
1978, and Paull & Unger, 1959), as we will de-
scribe using the transmission example. A merger
table is a table of cells that lists, for each state pair
of the machine, the set of all distinct state pairs that
are reached through a single common transition
event. By iteratively stepping through the table one
event transition at a time, one can progressively
detect all incompatible state pairs, thereby “resolv-
ing” the table; that is, one can uncover all the state
pairs that are not found to be incompatible and thus
designate them as compatible.

In the case of the transmission example, there
are 8 states and [n × (n – 1)/2] = [8 × 7/2] = 28 pos-
sible state pairs. Each state pair corresponds to a
unique cell in the table. 

Initial resolution. Figure 5 shows the merger
table for the transmission system and its initial res-
olution. Based on the observations from the pre-
vious subsection regarding incompatible pairs, the
following procedure is used to populate the cells:

1. For each state pair (e.g., low-1 and high-3) that can
be immediately determined as incompatible, because
they belong to two distinct specification classes
(Low and High) or have distinct sets of active user-
triggered events, the cell is marked as incompatible.

2. In the cells for all other state pairs, write in the next
state pair or pairs that they transition into following
a common event. For example, for the state pair
medium-1 and medium-2, the next state pair, fol-
lowing the common event (push-up), is high-1 and
high-2.

Beginning at the top of the table, the uppermost
cell represents the state pair “low-1, low-2.” Look-
ing at the machine model (see the inset in Figure
5), note that states low-1 and low-2, transition on
automatic upshift (up) to low-2 and low-3 – and
that (low-2, low-3) is written inside the top cell.
Next, go down to the cell representing the state



320 April 2007 – Human Factors 

pair “low-1, low-3.” Note that in the machine
model these two states transition on manual up-
shift (push-up) into medium-1 and high-1 – and
that’s what gets written inside the cell. Moving one
cell to the right to the cell representing “low-2,
low-3,” note that in the machine model there are
two common transitions from this pair: an auto-
matic downshift (event down) to low-1 and low-
2 as well as a manual upshift (event push-up) to
medium-1 and high-1 – these two state-pairs are
therefore written inside the cell.

Now, go down the table to the cell representing
“low-1, medium-1.” Since each state of this pair
belongs to a different specification class, they are
immediately deemed incompatible. The same ap-
plies for low-1 and medium-2. In this fashion, it
is possible to go cell by cell and populate the rest
of the table. Notice, however, that the cell repre-
senting “high-1, high-3” is empty. This is because
these two states are not incompatible (they both
belong to the High mode and have push-down as
an active user-triggered event), yet they don’t tran-
sition into another state pair under a common

event like the rest of the state pairs. Therefore the
cell is left empty, and will be dealt with later.

Second iteration. We can now continue with the
resolution process, but from this step onward it is
not necessary to refer to the machine model any-
more. In an iterative manner, start substituting
state pairs in the cells according to the following
procedure:

1. Cells that were already marked as incompatible stay
that way.

2. Every cell that has not yet been determined as in-
compatible in Figure 5 (e.g., “low-1, low-3”) is up-
dated as follows: If a cell includes a state pair (e.g.,
medium-1 and high-1) that has already been marked
as incompatible, then the cell is designated incom-
patible (see Figure 6).

3. Otherwise, the cell is modified as follows: Each
state pair in the cell is replaced by all the state pairs
that appeared in their original cell. For example, in
Figure 5 the cell representing “low-1, low-2” con-
tains the pair low-2 and low-3. Look into the cell
representing “low-2, low-3” in Figure 5 and note
the two state pairs: “low-1, low-2” and “medium-1,
high-1.” Write these two state pairs inside the cell
representing “low-1, low-2” (in Figure 6).

down

up

down

push-up

pull-down

up

down

up

down

up

down

pull-downpush-up

pull-down
push-up

push-up

pull-down
pull-down

push-up

medium-1

high-3high-1

low-1

high-2

low-3low-2

medium-2

up

low-2

low-3

medium-1

medium-2

high-3

high-1

high-2

low-2 low-3 medium-1 medium-2 high-1 high-2low-1

low-2
low-3

medium-1
high-1

medium-1
high-1

low-1
low-2

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

IncompatibleIncompatible

IncompatibleIncompatible

IncompatibleIncompatible

high-1
high-2

high-2
high-3

high-1
high-2

Figure 5. The merger table for the eight-state transmission system and its initial resolution.



AUTOMATIC GENERATION OF USER INTERFACES 321

Continuing with the procedure, the cell repre-
senting “low-2, low-3” in Figure 6 is now desig-
nated as incompatible (because it contains the pair
medium-1 and high-1, which was already marked
as incompatible). In the cell representing “medium-
1, medium-2,” place the state pair high-2 and
high-3. The cell representing “high-1, high-2”
gets the state pair high-1 and high-2, and the cell
for “high-2, high-3” gets the pair high-2 and high-
3, whereas the cell “high-1, high-3” stays empty,
as before.

Third iteration. In the next iteration the table of
Figure 7 is obtained. Here the cell representing
“low-1, low-2” is marked incompatible (because
it contains medium-1 and high-1).

Final iteration. In this step, because no addi-
tional incompatible pairs are identified, the table
remains identical to that of Figure 7. From here on,
no further iterations will ever produce incompat-
ible pairs. Therefore, the empty cell representing
“high-1, high-3” is marked as compatible, con-
cluding the resolution procedure.

The resolution procedure identified all the in-

compatible and compatible pairs. Figure 8 shows
that there are four such compatible pairs: 

(high-1, high-2), (high-1, high-3), (high-2, high-3) 
(medium-1, medium-2)

What this means is that when it comes to de-
signing the interface for the transmission system,
it will be possible to combine a compatible pair
(e.g., medium-1, medium-2) into a single indica-
tion (because the user does not need to distinguish
between medium-1 and medium-2 in order to per-
form the task). Notice, however, that the states
low-1, low-2, and low-3 do not appear in any com-
patible pairs. As a consequence, no reduction can
be achieved with respect to these three internal
states.

Identifying Compatible Sets

Although all the compatible pairs in the sys-
tem have been identified and the pairs can be com-
bined so as to reduce the number of states (and
corresponding display indications) to create an ab-
stracted user model, the process is not yet finished

low-2

low-3

medium-1

medium-2

high-3

high-1

high-2

low-2 low-3 medium-1 medium-2 high-1 high-2low-1

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

IncompatibleIncompatible

IncompatibleIncompatible

IncompatibleIncompatible

high-2
high-3

high-1
high-2

high-2
high-3

medium-1
high-1

low-1
low-2

Incompatible Incompatible

Figure 6. The second iterative resolution.



322 April 2007 – Human Factors 

because it may be possible to further reduce the
system by considering compatible triples, quadru-
ples, and so forth. The idea here is based on the
observation that a set of states is compatible if all
its constituent state pairs are compatible. That is,
a state triple is compatible if its three constituent
pairs are compatible; a state quadruple is com-
patible if its four constituent triples are compati-
ble; and so on. Recall that the goal is to try to
reduce the system as much as possible; the larger
the compatible sets (or the larger the compatible
n-tuples), the better. Thus, this reduction proce-
dure allows one to find the maximal compatibles.

Returning to the transmission example, note
that the set of compatible pairs (high-1, high-2;
high-1, high-3; and high-2, high-3) constitutes a
compatible triple. What this means is that it is pos-
sible to combine high-1, high-2, and high-3 into
a single indication on the interface. In principle,
after finding this compatible triple, the automated
procedure will try to find bigger compatible sets
(i.e., a quadruple in this case). However, a triplet
is the best that can be done with the transmission

system, and the procedure terminates with the fol-
lowing set of maximal compatibles:

1. (high-1, high-2, high-3);
2. (medium-1, medium-2);
3. (low-1), (low-2), (low-3).

Constructing the Reduced User Model

The set of maximal compatibles forms the
basis from which the user model is constructed.
The internal states high-1, high-2, and high-3 are
combined into a single state called “high,” and
medium-1 and medium-2 into a state called “medi-
um.” Separate states are necessary for low-1, low-
2, and low-3. The reduced user model obtained
for the transmission system is shown in Figure 9
where the states are depicted as modes High, Me-
dium, Low-A, Low-B, and Low-C.

Note that both the Medium and High modes
have self-loops. These are the internal events that
take place “inside” Medium and High. Since these
internal (machine-triggered) events do not cause
any changes in the user model (i.e., there is no
mode switching), it is possible to go ahead and

low-2

low-3

medium-1

medium-2

high-3

high-1

high-2

low-2 low-3 medium-1 medium-2 high-1 high-2low-1

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

IncompatibleIncompatible

IncompatibleIncompatible

IncompatibleIncompatible

high-2
high-3

high-1
high-2

high-2
high-3

Incompatible Incompatible

Incompatible

Figure 7. The third iterative resolution.



AUTOMATIC GENERATION OF USER INTERFACES 323

low-2

low-3

medium-1

medium-2

high-3

high-1

high-2

low-2 low-3 medium-1 medium-2 high-1 high-2low-1

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

Incompatible IncompatibleIncompatible

IncompatibleIncompatible

IncompatibleIncompatible

IncompatibleIncompatible

Incompatible Incompatible

Incompatible

Compatible

Compatible

Compatible Compatible

Figure 8. The final resolution.

MEDIUM

HIGH

push-up

push-up

push-uppush-up

pull-down

pull-down

LOW-A LOW-B

up

down

LOW-C

up

down

down, up

down, up

Figure 9. Succinct and correct user model for the transmission system.



324 April 2007 – Human Factors 

delete them. Nevertheless, beyond the results of
the formal procedure, it is up to the design team to
decide, based on operational and situation aware-
ness consideration, whether they want to provide
some annunciation (e.g., blinking) about their oc-
currence, on the interface. It is noteworthy, how-
ever, that in the case of automatic transmission
systems, most car manufacturers opt not to pro-
vide any indication to the user about internal gear
shifts while the car is in Drive mode.

At this point, it is possible to evaluate the cor-
rectness of the resulting user model by employing
the verification procedure mentioned earlier in the
paper – making sure that no errors have crept in
while constructing the interface or anywhere
throughout the process.

Specifying the Interface and the User
Manual

The final step is to extract from the user model
all the (state) information that must be provided on
the display and then specify the indications and
all the (event related) information that must ap-
pear in the user manual. The abstraction process
of the transmission system is now complete – it
has been reduced as much as possible, providing
the basis for a correct and succinct display (as
well as all the necessary information for the user
manual).

FURTHER ASPECTS OF THE 
REDUCTION PROCEDURE

The transmission system that we used to illus-
trate the reduction procedure was selected because
of its familiarity and its limited number of states
and transitions. As a consequence, not all aspects
of the algorithmic approach could be exhibited.
Next we shall present another, more complex, ex-
ample that will exhibit further aspects of the reduc-
tion procedure.

The machine in Figure 10 has 18 states and 42
transitions (some of which are user triggered, such
as ua and ud; the rest are automatic). Four spec-
ification classes are defined for this machine:
Classes A, B, C, and D. The task requirement is
similar to the previous one: The user must be able
to identify the current specification class (mode)
of the machine and to anticipate the next mode
that the machine will enter as a result of his or her
interactions.

The reduction procedure is performed as de-

scribed in the previous section. The algorithm ter-
minates with the following list of eight maximal
compatibles:

1. (11, 12, 21, 22, 31, 32); 
2. (12, 21, 22, 31, 32, 51); 
3. (11, 21, 22, 31, 32, 53); 
4. (21, 22, 31, 32, 51, 53);
5. (41, 42, 62); 
6. (71, 73);
7. (74, 81);
8. (91, 92, 93).

Note that unlike the transmission system, in
which each internal state appeared in only one
maximal compatible, this example illustrates a
case in which there are multiple overlapping com-
patible sets. In particular, the first four maximal
compatibles contain the states 21, 22, 31, and 32.
This overlap among maximal compatibles is quite
common and frequently implies the existence of
multiple candidate user models. In the example,
there are two candidates to choose from: One con-
sists of the compatibles 1, 4, 5, 6, 7, 8 as its state
set, and the other consists of 2, 3, 5, 6, 7, 8. (These
two sets constitute the only possible minimal cov-
ers, as discussed earlier, in the section titled Out-
line of the Algorithmic Approach.)

The selection among the various candidate user
models cannot, generally, be quantified and is
based on engineering and human factors consid-
erations. Here various kinds of design decisions
can be brought to bear: The number of user model
states, the number (and intuitive nature) of the dis-
played transitions, the physical interpretation of
the reduced model, and so forth. Of course, when
no profound reason exists to prefer one candidate
model over another, any one may be selected. In
the present example we selected the minimal cover
that consists of the maximal compatibles 2, 3, 5,
6, 7, 8 for reasons that will become clear later.

To construct the user model, the selected max-
imal compatibles are incorporated into user model
states (modes A-1 and A-2; B; C-1 and C-2; and
D). Next, the transitions between the user model
states are established in the following way: For
each user model mode and each event label that
emanates from it, we mark the set of all constituent
machine model target states. Figure 11 is a list of
all user model modes, their respective event labels,
and their resultant machine model target states.
Finally, a transition with the corresponding label
is drawn from the mode under consideration to
each mode that includes all the machine model



325

1
1

h

n

r

2
1

3
2

s

n

e

b

g
r

e

g

r
s

4
1

4
2

u
d e

g

2
2

u
d

6
2

r

r

n

b
b

9
1

b
e

r
b

u
p

u
p

c
la
s
s
B

or 7
3

o

o

b r

u
m

u
m

c
la
s
s
c

c
la
s
s
D

u
m

u
m

9
3

7
4

8
1

3
1

5
1

1
2

h
5
3

7
1

c
la
s
s
A

u
d

u
p

g
9
2

F
ig

ur
e 

10
.M

ac
hi

ne
 m

od
el

.



326 April 2007 – Human Factors 

target states. When applied to all user model
modes, this procedure results in the reduced mod-
el shown in Figure 12.

Note that there may be nondeterministic out-
going transitions to states within the given speci-
fication class. (This nondeterminism does not lead
to nondeterministic transitions between specifica-
tion classes and, hence, cannot lead to error states.)
For example, the event r emanates from mode 
A-2 both to A-1 and, as a self-loop, to A-2. This
nondeterminism can be eliminated by judicious
decision as to which of the redundant transitions
to delete. Note further that automatic events that
occur only in self-loops have no effect on the re-
duced model and can be deleted. Thus, when the
redundant transition r from A-2 to A-1 is deleted,
the event r remains only in self-loops.

Finally, groups of events that always appear
together in transitions can be abstracted into sin-
gle representative labels. Thus, in the example, the
events n and s are abstracted into the representa-
tive label p, and the events e and g are abstracted
into q. The resulting user model, which is both cor-
rect and succinct, is depicted in Figure 13. It con-
tains only six modes.

In addition to the six indicated modes, the user

would need to know which user events can be trig-
gered and what will be the ensuing mode. Thus, in
mode B the user can trigger either ud or up, lead-
ing the system to A-2 or to D, respectively. In C-1
and C-2 the user can trigger event um, leading the
system to modes A-1 or B.

Finally, recall that the reduced model of Fig-
ure 12 and the user model of Figure 13 correspond
to the candidate consisting of maximal compati-
bles 2, 3, 5, 6, 7, 8. In this case the models consti-
tute a minimal cover. Had we chosen the second
candidate (consisting of maximal compatibles 1,
4, 5, 6, 7, 8) as the basis for our user model, we
would have had to increment with maximal com-
patible 2 (as discussed in the section titled Outline
of the Algorithmic Approach). The resulting user
model (consisting of maximal compatibles 1, 2,
4, 5, 6, 7, 8) is not a minimal cover, but it is still
an irreducible model.

SUMMARY AND CONCLUSIONS

We began this paper with a discussion on a for-
mal approach for describing and analyzing human-
automation interaction. Two objectives guided us:
The first and foremost was that the user model and

2. (12, 21, 22, 31, 32, 51) h r n e g s b

(71) (51, 22, 32) (31, 51, 12) (11, 31) (11, 21) (12, 21) (53)

3. (11, 21, 22, 31, 32, 53) b g s r e n h

(12, 51) (11, 21) (12, 21) (22, 32) (31) (51) (81)

5. (41, 42, 62) ud g up r e

(31, 32, 53) (42) (92, 91) (62, 42) (41)

6. (71, 73) b um r o

(74) (51) (71) (81)

7. (74, 81) um o r

(62) (73) (74)

8. (91, 92, 93) b e o r g

(93) (62) (74) (92) (42)

Figure 11. List of all user model modes, their respective event labels, and resultant machine model target states.



327

1
2
,
2
1
,
2
2
,
3
1
,
3
2
,
5
1

1
1
,
2
1
,
2
2
,
3
1
,
3
2
,
5
3

c
la
s
s
B

c
la
s
s
c

c
la
s
s
D

c
la
s
s
A

4
1
,
4
2
,
6
2

7
1
,
7
3

u
d

u
p

9
1
,
9
2
,
9
3

r,
e,
g

b
,
e,
g

b
,
r,
e,
n
,
s

r r

b
,
r

o
b
,
o

o

h

h

u
m

u
m

8
1
,
7
4

r,
n
,
s

e,
g

r,
e,
g

A
-1

A
-2 B

C
-1

C
-2 D

F
ig

ur
e 

12
.R

ed
uc

ed
 m

ac
hi

ne
 m

od
el

.



328 April 2007 – Human Factors 

interface were correct; the second was that they
were minimal, or succinct, in terms of the amount
of information (e.g., mode annunciations, selec-
tion buttons, parameter settings, and user manual
content) required to accomplish the task. We then
focused our attention on a systematic procedure
for reducing the machine model according to the
user’s task. The reduction algorithm described in
this paper generates user models that are both cor-
rect and succinct.

Limitations

To analyze and generate user models accord-
ing to the methodologies described in this paper,
one needs a formal description of the underlying
machine, specification classes, and task require-
ments. Although the use of such formal descrip-
tions is currently not the mainstream in human
factors, formal descriptions of system behavior
and requirement specifications are used in many
software development processes (e.g., the Unified
Modeling Language methodology). Furthermore,
many tools are now available that allow design-
ers to specify the system’s behavior (see Harel 
& Politi, 1998), and then the tool automatically
translates the specification into code (e.g., Java or
C++). We believe that just as software design is
moving toward the use of formal methods for
specification, design, and verification, interface
design will eventually follow suit.

For simplicity and clarity of exposition, we
have confined our discussion to machine models,
specification classes, and task requirements that

are based on discrete events and modeled as state
transition systems. Nevertheless, the focus of this
work is not on a particular modeling formalism
and notation. Rather, it is on the ideas that they
encapsulate. As such, the approach, methodology,
and algorithm proposed here can be extended to
other discrete event formalisms, such as Petri nets
and Statecharts, as well as to hybrid systems mod-
els that have both continuous and discrete behav-
iors (e.g., see the hybrid system modeling and
verification approach used in Oishi, Tomlin, &
Degani, 2003).

In principle, the computation of maximal com-
patibles for very large systems with thousands of
states can become exponentially complex and,
eventually, computationally intractable. Neverthe-
less, many algorithmic techniques deal with this
problem (e.g., Kam, Villa, Brayton, & Sangiovanni-
Vincentelli, 1997). Using a computerized tool
(Shiffman, Degani, & Heymann, 2005), the reduc-
tion algorithm described in this paper has been
successfully applied to machine models with more
than 500 internal states. It may be possible, by im-
proving the efficiency of the algorithm, to reduce
even larger machines.

Implications for Design of User Interaction

Most users perceive the interface as if it were
the machine itself. On one hand, this induced mis-
conception is an important design goal (e.g., “direct
manipulation”), providing a smooth, effortless,
and nonintermediary human-machine interaction.
Although it is debatable whether or not it is good

A-1

A-2

D

C-2

C-1

o

B

ud

q

b, qb, p

b

o
b, o

o

h

h

um

q

p

um

q

up

Figure 13. Succinct and correct user model and interface.



AUTOMATIC GENERATION OF USER INTERFACES 329

to always furnish this perception, it is obligatory
that user interface designers not succumb to this
illusion, which, unless carefully designed and ver-
ified, can backfire. For example, if there is a design
flaw in the interface such that the delicate synchro-
nization between the interface and the machine is
disrupted, the interface may give the impression
that the machine is doing one thing when in fact
it is doing something completely different. In con-
sumer electronics, Internet applications, and infor-
mation systems this type of design flaw leads to
user confusion and frustration. In high-risk sys-
tems, it can be disastrous.

Our discussion and the transmission example
illustrate that even for machines that are seem-
ingly simple (i.e., with relatively few states and
straightforward user interaction), coming up with
a correct and succinct interface is not a trivial mat-
ter. Interfaces that intuitively may appear to be
correct have been shown, after applying formal
verification, to be incorrect. While many interface
correctness problems are indeed observed in sim-
ulations and usability testing, some are left un-
identified and can plague a system for years. As
systems become larger and more integrated (i.e.,
comprising several subsystems that are linked and
synchronized), it becomes more difficult to eval-
uate user interfaces using traditional inspection-
based methods. At the same time, there is an
ever-increasing demand for reliable and safer user
interaction.

Beyond incorrect interfaces, there exists the re-
lated issue of succinct interfaces. Given the cur-
rent intuitive and iterative approach for generating
design solutions, there is never a guarantee that the
selected interface solution cannot be further re-
duced. It may very well be the case that some cur-
rent interfaces are more complicated (e.g., require
lengthy interaction sequences) than is necessary.
To this end, we hope that the notion of abstrac-
tion – which is at the cornerstone of our formal
approach for interface design and evaluation – as
well as the interface correctness criteria, verifica-
tion methodology, and procedure for generating
correct interfaces will help interface designers to
better understand and reason about critical design
issues that are currently addressed in an intuitive
and ad hoc way.

ACKNOWLEDGMENTS

The work described in this paper was funded

by NASA’s basic research and technology effort
on human-automation interaction as well as the
Integrated Intelligent Flight Deck project, Aero-
nautics Research Mission Directorate. The first
author was supported by Grant NCC 2-798 from
the NASAAmes Research Center to the San Jose
State University. Michael Shafto and Kevin Jordan
provided much-needed support and encourage-
ment for this research work. Ronen Erez wrote
the first version of the model reduction software.
Smadar Shiffman contributed to this research ef-
fort by modifying and improving the algorithm de-
scribed in this paper and by building a Web-based
tool for verification and generation of interfaces.

REFERENCES

Bauer, B. (1996). Generating user interface from formal specifications
of the application. In J. Vanderdonckt (Ed.), Proceedings of the
1996 Computer-Aided Design of User Interfaces Conference (pp.
141–152). Namur, Belgium: Presses Universitaires de Namur.

Bösser, T., & Melchoir, E. M. (1992). The SANE toolkit for cognitive
modelling and user-centered design. In M. Galer, S. Harker, & J.
Ziegler (Eds.), Methods and Tools in User-Centred Design for
Information Technology (pp. 93–126). Amsterdam: North-Holland.

Browne, T., Davila, D., Rugaber, S., & Stirewalt, K. (1997). Using declar-
ative descriptions to model user interfaces with MASTERMIND. In
F. Paternò & P. Palanque (Eds.), Formal methods in human-
computer interaction (pp. 93–120). London: Springer-Verlag.

Degani, A. (1996). Modeling human-machine systems: On modes, error,
and patterns of interaction. Unpublished doctoral dissertation,
Georgia Institute of Technology, Atlanta.

Degani, A. (2004). Taming HAL: Designing interfaces beyond 2001.
New York: Palgrave Macmillan.

Degani, A., & Heymann, M. (2002). Formal verification of human-
automation interaction. Human Factors, 44, 28–43.

Degani, A., Heymann, M., & Shafto, M. (1999). Formal aspects of pro-
cedures: The problem of sequential correctness. In Proceedings of
the Human Factors and Ergonomics Society 43rd Annual Meeting
(pp. 1113–1117). Santa Monica, CA: Human Factors and Ergonom-
ics Society.

Dix, A. J. (1991). Formal methods for interactive systems. London: Aca-
demic Press.

Doherty, G. J., Campos, J. C., & Harrison, M. D. (2000) Representa-
tional reasoning and verification. Formal Aspects of Computing, 3,
260–277.

Duke, D. J., Fields, B., & Harrison, M. D. (1999). A case study in the
specification and analysis of design alternatives for a user interface.
Formal Aspects of Computing, 11, 107–131.

Foley, J. D., & Wallace, V. L. (1974). The art of natural graphic man-
machine conversation. Proceedings of the IEEE, 62, 462–471.

Harel, D. (1987). Statecharts: Avisual formalism for complex systems.
Science of Computer Programming, 8, 231–274.

Harel, D., & Politi, M. (1998). Modeling reactive systems with State-
charts: The STATEMATE approach. New York: McGraw-Hill.

Harrison, M., & Thimbleby, H. (1990). Formal methods in human-
computer interaction. Cambridge, UK: Cambridge University
Press.

Heymann, M., & Degani, A. (2002). On abstractions and simplifications
in the design of human-automation interfaces (NASATech. Mem-
orandum 2002-211397). Moffett Field, CA: NASAAmes Research
Center.

Jacob, R. J. K. (1983). Using formal specifications in the design of
human-computer interfaces. Communications of the ACM, 26,
259–264.

Jacob, R. J. K. (1986). Aspecification language for direct-manipulation
user interface. ACM Transactions on Graphics, 5, 283–317.

Kam, T., Villa, T., Brayton, R., & Sangiovanni-Vincentelli, A. (1997).
Implicit computation of compatible sets for state minimization of



330 April 2007 – Human Factors 

ISFSM’s. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 16, 657–676

Kieras, D. E., & Polson, P. G. (1985). An approach to the formal analy-
sis of user complexity. International Journal of Man-Machine
Studies, 22, 365–394.

Kohavi, Z. (1978). Switching and finite automata theory. New York:
McGraw-Hill.

Krzystrof, G., & Weld, D. (2004). SUPPLE: Automatically generating
user interfaces. In Proceedings of the 2004 International Conference
on Intelligent User Interfaces (pp. 93–100). New York: Association
for Computing Machinery.

Leveson, N. (1995). Safeware: System safety and computers. New York:
Addison-Wesley.

National Transportation Safety Board. (1997). Grounding of the Pana-
manian passenger ship Royal Majesty on Rose and Crown shoal
near Nantucket, Massachusetts on June 10, 1995. Washington, DC:
Author. (NTIS No. PB97-916401)

Norman, D. (1983). Design rules based on analysis of human error.
Communications of the ACM, 26, 254–258.

Norman, D. (2004). Emotional design. Cambridge, MA: Basic Books.
Oishi, M., Tomlin, C., & Degani, A. (2003). Discrete abstraction of hy-

brid systems: Verification of safety and application to user-interfaces
(NASA Tech. Memorandum 212803). Moffett Field, CA: NASA
Ames Research Center.

Palanque, P., & Paternò, F. (1998). Formal methods in human computer
interaction. London: Springer-Verlag.

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). Amodel for
the types and levels of human interaction with automation. IEEE
Transaction on Systems, Man, and Cybernetics – Part A: Systems
and Humans, 30, 286–297.

Parnas, D. (1969). On the use of transition diagrams in the design of a
user interface for an interactive computer system. In Proceedings
of the 24th Annual ACM Conference (pp. 379–385). New York:
Association for Computing Machinery.

Paternò, F., & Santoro, C. (2002). Preventing user errors by systemat-
ic analysis of deviations from the system task model. International
Journal of Human-Computer Studies, 56, 225–245.

Paull, M. C., & Unger, S. H. (1959). Minimizing the number of states
in incompletely specified sequential switching functions. Institute
of Radio Engineers Transactions on Electronic Computers, EC-8,
356–367.

Rodriguez, M., Zimmerman, M., Katahira, M., de Villepin, M., Ingram,
B., & Leveson, N. (2000, October). Identifying mode confusion
potential in software design. Paper presented at the 19th Digital
Aviation Systems Conference held in Philadelphia, Pennsylvania.

Rushby, J. (1999, June). Using model checking to help discover mode
confusions and other automation surprises. Presented at the Third
Workshop on Human Error, Safety, and System Development,
Liege, Belgium.

Rushby, J. (2001). Analyzing cockpit interfaces using formal methods.
Electronic Notes in Theoretical Computer Science, 43(May), 1–14.

Shiffman, S., Degani, A., & Heymann, M. (2005). UIverify – A
Web-based tool for verification and automatic generation of user
interfaces. In Proceedings of the 8th Annual Applied Ergonomics
Conference [CD-ROM]. Norcross, GA: Institute of Industrial
Engineers.

Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, E., &
Slacher, E. (1996). Declarative interface models for user interface
construction tools: The MASTERMIND approach. In L. Bass, &
C. Unger (Eds.), Engineering for Human-Computer Interaction,
Proceedings of the IFIP TC2/WG2.7 Working Conference on
Engineering for Human-Computer Interaction (pp. 120–150).
London: Chapman & Hall.

Thimbleby, H., Blandford, A., Cairns, P., Curzon, P., & Jones, M.
(2002). User interface design as systems design. In X. Faulkner, J.
Finlay, & F. Détienne (Eds.), Proceedings of People and Computers
XVI Conference (pp. 281–301). London: Springer-Verlag.

Wasserman, A. I. (1985). Extending state transition diagrams for the
specification of human-computer interaction. IEEE Transactions
on Software Engineering, 11, 699–713.

Michael Heymann is a professor of computer science and
director of Center for Intelligent Systems, holding the
Carl Fechheimer Chair in Electrical Engineering, at the
Technion, Israel Institute of Technology. He received his
Ph.D. in chemical engineering in 1965 from the Univer-
sity of Oklahoma, Norman.

Asaf Degani is a research scientist in the Computational
Sciences Division, NASAAmes Research Center, Moun-
tain View, California. He received his Ph.D. in industri-
al and systems engineering from the Georgia Institute of
Technology in 1996.

Date received: August 13, 2003
Date accepted: December 23, 2005


